<table>
<thead>
<tr>
<th>著者</th>
<th>Banerjee Amit, Satoh Hiroaki, Elamaran Durgadevi, Sharma Yash, Hiromoto Norihisa, Inokawa Hiroshi</th>
</tr>
</thead>
<tbody>
<tr>
<td>出版者</td>
<td>AIP</td>
</tr>
<tr>
<td>権利</td>
<td>各権利者</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10297/00027652</td>
</tr>
</tbody>
</table>

doi: 10.1063/1.5083643
Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor

Cite as: J. Appl. Phys. 125, 214502 (2019); https://doi.org/10.1063/1.5083643
Submitted: 29 November 2018 . Accepted: 15 May 2019 . Published Online: 04 June 2019

Amit Banerjee, Hiroaki Satoh, Durgadevi Elamaran, Yash Sharma, Norihisa Hiromoto, and Hiroshi Inokawa

Lock-in Amplifiers up to 600 MHz

starting at
$6,210

Zurich Instruments
Watch the Video
Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor

Amit Banerjee,1,2 Hiroaki Satoh,1 Durgadevi Elamaran,3 Yash Sharma,3 Norihisa Hiromoto,4 and Hiroshi Inokawa1,a)

AFFILIATIONS
1Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011, Japan
2Department of Electrical and Computer Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077
3Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011, Japan
4Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011, Japan

E-mail: inokawa.hiroshi@shizuoka.ac.jp

ABSTRACT

In this study, uncooled antenna-coupled microbolometer arrays were fabricated to detect terahertz waves by using nanoscale meander-shaped Ti thermistors with design widths of DW = 0.1 and 0.2 μm, respectively, on SiO2 and SiNx substrates. Each unit device with a thermistor with DW = 0.1 μm yielded double the electrical responsivity (787 V/W) of unit devices with thermistors with DW = 0.2 μm (386 V/W) at the maximum allowable bias current (Ib = 50 for DW = 0.1 μm and 100 μA for DW = 0.2 μm, respectively). However, the calculated noise-equivalent power (NEP) of unit devices with thermistors with DW = 0.1 μm was 1.85 × 10⁻¹⁰ W/√Hz at Ib = 50 μA and 1.58 × 10⁻¹⁰ W/√Hz at Ib = 100 μA for unit devices with thermistors with DW = 0.2 μm. Hence, the reduction in DW did not lead to an improvement in NEP. This study validates our previous investigation into the effect of width on such device parameters such as the temperature coefficient of resistance (TCR) and resistivity in the context of device miniaturization. The smaller grain size in thinner metal interconnects (thermistors) can be linked to the lower TCR and increased resistivity of the devices. Thus, the enhancement in responsivity in the design was largely due to the nanoscale meander design that, however, was detrimental to the noise response of the devices. These devices with nanoscale Ti meander thermistors deliver high responsivity in unit devices with scope for further miniaturization and have significant potential for application as on-chip integrable detector arrays.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5083643

I. INTRODUCTION

Research on modern thermal radiation detectors originated in homeland security and surveillance needs for night vision. Recent advancements in thermal detector technology, combined with semiconductor device processing and materials science for on-chip integrable devices, offer avenues for application with significant potential. Terahertz (THz) technology involves efforts to harness the power of thermal radiation (~300 GHz–3 THz) and offers remarkable potential for application. The region of electromagnetic frequency around ~1 THz is the most interesting for applications of remote and nondestructive sensing. Electromagnetic waves with shorter wavelengths struggle to penetrate matter and are, hence, not useful for analyzing the interior of materials. THz waves yield high-resolution images compared with millimeter waves and yet are nonionizing and do not trigger harmful chemical reactions because of their low photon energy. Moreover, in the THz region, it is possible to detect molecular vibrations related to weak intermolecular coupling. THz waves are useful in a wide range of applications.
applications, e.g., ultrahigh-speed wireless communication, biomedical diagnosis (screening tooth decay and skin cancer, diagnosing tumors protein, analyzing DNA and genes), drug discovery, environmental monitoring, homeland security (noncontact inspection of explosives, poison gas clouds, hidden weapons, T-ray vision peering through walls),1–6 analysis of materials (defects in tile materials of space shuttles, inspection of imperfections), and food diagnostics (foreign substances in foods). This spectral band has been used in ground or space radio telescopes in the context of remote sensing to investigate the chemical compositions of interstellar materials and mediums as well as planetary atmospheres.11 Some significant breakthroughs have been reported in high-power THz sources in the past decade,10 including uncooled detectors11–13 and simultaneous (real-time) imaging.14 Further innovation is under way in applications with powerful sources and competent detectors to develop commercially viable high-speed sensing and communication systems that are superior to prevalent solid-state devices and compatible with flexible electronics.16–20 The THz research field offers a diverse range of discoveries and applications, but it is important to study perspective THz sources, detectors, optical elements for sensitivity, and speed of measurements for commercially viable products.

Photon detectors and thermal detectors are the two major types of detectors for the far-infrared and THz regions. The microbolometer, as a THz detector, does not require additional cryogenic support like photon detectors.21 However, its detectivity suffers from thermal noise at room temperature, and it faces other performance issues, such as an extended response time, self-heating (under bias),22,23 and dependence of its responsivity on a susceptible thermistor (sensor) material.24 These issues should be addressed for further improvement of the device. The basic design of a microbolometer consists of (a) an absorber, to receive THz radiation and transfer it to the other part, and (b) a thermistor, which heats up causing a change of resistance, which is further calibrated for sensing. Large absorbers at longer ranges of wavelength like THz render structural sustainability challenging with adequate thermal isolation. In such conditions, an antenna-coupled microbolometer has been found to be technologically feasible.25 The thermistor and the heater in a microbolometer with electrical separation need to be independently optimized and thermally coupled for higher sensitivity.25–27 Our electromagnetic simulation of an antenna-coupled heater demonstrates that a reasonable improvement in performance is expected for a microbolometer with an optimum heater resistance. This helps maximize power transfer between the antenna and the heater, as THz irradiation-induced current in the antenna flows into the heater, at the center of the antenna.28 One figure of merit of a microbolometer is its responsivity, which is defined as the ratio of the output voltage to input power. A high responsivity relaxes the requirement for the readout circuit, i.e., the input-referred noise of the preamplifier can be larger, leading to a smaller footprint and power consumption of the preamplifier. Another important figure of merit in the current discussion, the noise-equivalent power (NEP), for the microbolometer is obtained by measuring the electrical noise generated by the detector. Note that responsivity is directly proportional to the temperature coefficient of resistance (TCR), and NEP is inversely proportional to the TCR of the thermistor material. Hence, the TCR of the thermistor is the most important parameter in the design of a microbolometer. Metallic thermistors, e.g., composed of bismuth (Bi) and titanium (Ti), have relatively small bulk TCR than high-TCR materials, e.g., vanadium oxide (VOx) and amorphous silicon (a-Si). However, metallic thermistors feature reduced noise (mainly shot and thermal noises);28 hence, the device performance has a direct advantage in case of relatively higher TCR achieved in any design. This is not the case with VOx and a-Si. Ti is used for the thermistor–heater material considering its (i) low thermal and electrical conductivity, (ii) invulnerability to electromigration, and (iii) low flicker noise.29–31 Our previous attempts to fabricate an uncooled antenna-coupled microbolometer in the 1-THz band resulted in moderate responsivity of ∼90 V/W and NEP of ∼4.6 × 10^-10 W/Hz1/2.26,30,31 From an examination of the scaling trend of integrated thermistor–heater system, it was found31 that the cutoff frequency improves by downsizing the length. However, responsivity reduces with the reduction in the length of the thermistor while keeping the other dimensions fixed. A meander structure is most appropriate for relaxing such a trade-off relationship. From our electrothermal simulation of an integrated Ti heater–thermistor system, the expected electrical responsivity for a meander shape is approximately four times higher than that of a microbolometer with a straight-line thermistor.31

In the present design of the microbolometer, the meander-shaped thermistor with increased effective length has higher electrical resistance, resulting in enhanced responsivity. However, the current design encounters reduced TCR because of the utilization of Ti thermistors with narrow design width (DW = 0.1 μm or 0.2 μm), which yield one-third of the TCR of bulk Ti.32 Although metal conductors are widely used in ultra-large-scale integrated circuits (ULSI), interconnects at the size scale ∼ mean free path of the conduction electrons suffer from size effects that adversely influence their electrical properties. The phenomenon of the change in the electrical parameters (reduced TCR, increased resistivity) of a thin metal interconnect is called the narrow-width effect. In the quest for miniaturization, the consequence of the narrow-width effect on device performance, e.g., in terms of responsivity, is examined for microbolometers with meander-structured nanoscale Ti thermistors in this study. To the best of the authors’ knowledge, this is the first study to investigate an enhancement in the responsivity of a microbolometer using nanoscale meander thermistors compatible with prevalent semiconductor fabrication technology for a comprehensive understanding of the narrow-width effect in metal nanowires.

II. METHODS OF FABRICATION AND CHARACTERIZATION

The fabricated microbolometers were composed of an integrated heater/thermistor/half-wave dipole gold (Au) antenna with a titanium (Ti) heater, a SiO₂/SiNx interlayer, and a Ti thermistor on a substrate (SiO₂/SiNₓ). The thicknesses of the antenna, heater, interlayer, and thermistor were 200, 100, 100, and 50 nm, respectively. In the current design, the microbolometer arrays were equipped with a meander-shaped Ti thermistor, with a DW as small 0.1 and 0.2 μm, fabricated by electron beam lithography. The design of the meander of the thermistor led to a longer effective length that increased electrical resistance and, hence, responsivity. Note that the heater was
stacked on the thermistor but electrically isolated by a thin interlayer. The length and width of the heater were fixed at 11 and 2.1 μm, respectively, to ensure impedance matching with the half-wave dipole antenna. The microbolometer arrays consisted of 16 unit microbolometer devices, each of which was equipped with an integrated heater/thermistor/half-wave dipole antenna designed for 1 THz range. The characteristics of these devices were investigated at room temperature (300 K). As the current design is based on our previous investigation into developing these fine-patterned devices, the interested reader can refer to the relevant studies for the steps of processing and related discussion. Electron micrographs were taken with an analytical JEOL JSM-7001F field-emission scanning electron microscope (FE-SEM). The electrical measurements for these devices were made with a low-temperature probe equipped with an Agilent 4156C precision semiconductor parameter analyzer. To characterize the TCR using the slope of resistance plotted against temperature, five temperatures from 300 to 240 K were used. The responsibilities of these devices were measured by applying AC electrical power up to 5 μW at a frequency of 10 Hz. The output of the thermistor was measured by a lock-in amplifier, with the maximum bias current limited to 50 μA for DW = 0.1 μm and 100 μA for DW = 0.2 μm. The voltage noise was measured for the devices using the temperature-controlled probe, Nagase Techno-Engineering Grail 21-205-6-LV-R, with different bias currents (I₀) of the thermistor. The output noise voltage over a frequency range of 1 Hz–100 kHz was recorded by the Agilent 35670A FFT dynamic signal analyzer. Note that the capacity of the spectrum analyzer to measure low-amplitude signals was restricted by noise produced inside the analyzer. Hence, to attain maximum sensitivity, a preamplifier with low noise and high gain should be used. A DL Instruments’ model 1201 low-noise voltage preamplifier with a maximum gain of ×10 000 and noise of less than 15 nV/√Hz at 10 Hz was used to improve the sensitivity of the spectrum analyzer. The input from the microbolometer and the output of the preamplifier were AC-coupled to avoid overdriving the spectrum analyzer input as a result of DC offset caused by the bias current (I₀).

III. RESULTS AND DISCUSSION

This study is based on insights from our past research, in the quest to understand the narrow-width effect, i.e., the detrimental effects of nanoscale widths on the TCR and resistivity (ρ) of metal interconnects (in this case, the thermistor) in the context of device miniaturization. A detailed study has been conducted on the variations in TCR and resistivity (ρ) as devices are miniaturized and squeezed by reducing various elements, including design width DW (more specifically, actual width or average measured width, AMW) for two substrates with straight-line thermistors. The TCR and resistivity of the devices provided a good fit with the empirical formulas (1) and (2) and were found to hold well for all devices irrespective of the substrate (AMW in nanometers, ρ in ohm meters, and TCR in percent per kelvin).

\[
\text{Ti on SiO}_2: \quad \text{TCR} = 4.16 \times 10^{-02} \ln(\text{AMW}) - 8.54 \times 10^{-02}, \quad (1)
\]

\[
\text{Ti on SiN}_x: \quad \text{TCR} = 3.64 \times 10^{-02} \ln(\text{AMW}) - 5.43 \times 10^{-02}, \quad (2)
\]

\[
\text{Ti on SiO}_2: \quad \rho = 6.837 \times 10^{-06} (\text{AMW})^{-0.2869}, \quad (3)
\]

\[
\text{Ti on SiN}_x: \quad \rho = 8.75 \times 10^{-06} (\text{AMW})^{-0.3260}. \quad (4)
\]

Hence, for the current design based on the empirical equations, a device with the following specifications was used:

- Ti (on SiNₓ/SiO₂/Si),
 - AMW = 0.2 μm: TCR = 0.138 %/K, ρ = 15.5 × 10⁻⁷ ohm m;
 - AMW = 0.1 μm: TCR = 0.113 %/K, ρ = 19.4 × 10⁻⁷ ohm m.
- Ti (on SiO₂/Si),
 - AMW = 0.2 μm: TCR = 0.135%/K, ρ = 14.9 × 10⁻⁷ ohm m;
 - AMW = 0.1 μm: TCR = 0.106%/K, ρ = 18.2 × 10⁻⁷ ohm m.

Note that the narrow-width effect due to a change in DW from 0.2 to 0.1 μm for Ti (on SiNₓ/SiO₂/Si substrate) led to a reduction of 22% in TCR while p increased by a factor of 1.25, whereas for Ti (on SiO₂/Si substrate) led to a reduction of 27% in TCR while ρ increased by a factor of 1.22.

For the present layout of the microbolometer, the design widths of the thermistor were DW = 0.1 and 0.2 μm, and its length could be varied to 48.7 or 89.5 μm. This was implemented by a sophisticated design (pattern) of the thermistor, i.e., a meander shape. The meander shape had a longer effective length, consequently higher resistance, and hence enhanced electrical responsivity. Figure 1(a) shows the variation in the actual width (AMW: average measured width), with respect to the DW of titanium (Ti) thermistor lines on two different substrate materials with a fixed length (100 μm) and height (0.05 μm), which follows linear relations up to 50 nm. However, noticeable differences between the AMW and DW were observed for the region of DW ~ 0.1–0.2 μm (100–200 nm), which is important in the current design layout. Due to this discrepancy between actual width and design width, TCR and resistivity were calculated using the average measured width (AMW) through scanning electron microscopy (SEM) instead of design width (DW). Furthermore, Fig. 1 shows the optical microscope (OM) [Fig. 1(b)] and SEM images of two of the test devices fabricated for the electrical measurement of TCR and p, with meander thermistors with DW = 0.1 μm [Fig. 1(c)] and 0.2 μm [Fig. 3(d)], with different pitch distances (PD = 0.2–0.28 μm) at a fixed length (L = 100 μm) and height (H = 0.05 μm). Figure 1(c) shows the variation in TCR and ρ with the change in the pitch of the thermistor for meander structures on two different substrates. Furthermore, the authors’ examination of the correlation between enhanced resistivity and the lowering of TCR with a reduced AMW showed that a reduction in wire pitch in the meander structure reduces ρ but increases TCR. Hence, for a high-TCR value, a pitch of 0.2 μm was selected as the pitch of the thermistor for the fabrication of the microbolometer arrays. The thermistor widths DW = 0.1 μm and 0.2 μm were used for the current design layout for the fabrication of uncooled antenna-coupled THz microbolometer arrays for further investigation.

The authors conducted a comprehensive study on electron backscatter diffraction (EBSD) of Ti lines with widths ranging on the nanometer scale, with detailed information on the grain orientations, sizes, and so on of the crystals. For a Ti film (150 × 150 μm) and thin...
Ti nanowires with $DW = 0.1 \mu m$, no fixed or single-grain orientation was found. A cause of this feature might have been that the orientation and grain size of the crystal largely depend on the synthesis temperature of the thin film or metal lines being studied. The room-temperature synthesis of the thin Ti films or metal thin wires by vacuum evaporation and further lift-off process may give rise to random crystal orientations. Hence, the possibility of a particular crystal orientation contributing to the narrow-width effects in the electrical parameters can be eliminated in this investigation, which corroborated the results of the EBSD. Rather, it is predicated that

FIG. 1. (a) shows the relationship between actual width (AMW) and design width (DW) of thermistor lines on various substrates. (b) displays an optical microscope with FE-SEM micrographs of two test devices fabricated for electrical measurements of TCR and ρ, with meander thermistors with $DW = 0.1 \mu m$ (c) and $0.2 \mu m$ (d). (e) shows the variation in TCR and ρ with the change in thermistor pitch for meander structures on different substrates.
the reduction in TCR with the enhancement of resistivity is linked to the miniaturization of grain size as metal interconnects are squeezed (reduced DW). This might be evident from the FE-SEM and EBSD results linked to the electrical parameters (TCR and ρ). It is also expected that the conventional size effect due to enhanced surface scattering also contributed, but this is beyond the scope of the current discussion.

Figure 2 shows the uncooled antenna-coupled THz microbolometer arrays on two substrates along with an enlarged view of a microbolometer device and its meander structure floating above the cavity. The two types of microbolometer arrays were constructed with a major difference in the length and width of the meander structure of the Ti wire:

TYPE 1: Ti thermistor length $L_{th} = 48.7 \mu m$, Ti meander thermistor $D_{Wth} = 200$ nm,
- Ti heater $L_h = 11.2 \mu m$, heater width $W_h = 2.1 \mu m$, Au antenna, $L_{ant} = 52 \mu m$, $W_{ant} = 5.2 \mu m$;

TYPE 2: Ti thermistor length $L_{th} = 89.5 \mu m$, Ti meander thermistor $D_{Wth} = 100$ nm,
- Ti heater $L_h = 11.5 \mu m$, heater width $W_h = 2.1 \mu m$, Au antenna, $L_{ant} = 52 \mu m$, $W_{ant} = 5.2 \mu m$.

![Figure 2](image-url)
Figures 2(a) and 2(b) show the optical microscope (OM) image of the Ti uncooled antenna-coupled THz microbolometer arrays with DW = 0.1 and 0.2 μm on SiN$_x$ and SiO$_2$ substrates. Figures 2(c) and 2(d) show a pair of unit microbolometer devices with dark field OM, where the meander structure of the thermistor is visibly suspended on a cavity because of the scattering from the edges of the cavity on the dark field images. The enlarged FE-SEM of a unit microbolometer [Figs. 2(e) and 2(f)] gives a clear view of the thermistor with a meander structure on top of the heater, suspended on top of the cavity for thermal isolation. Of the two sets of identical device arrays, one was used to reconfirm the material parameters (TCR, resistivity), while the other two were used for optical THz measurement.

Given that there was no remarkable difference in the material properties of the substrates, electrical responsivity measurement and frequency response with different bias currents for the thermistor are discussed for the SiO$_2$ substrate only. Moreover, optical responsivity with a THz source is currently being investigated and is expected to be proportional to the electrical responsivity discussed here. This report deals with the improvement in the electrical performance of microbolometer devices, along with a correlation of the device parameters with the optical THz measurement.

The authors have previously reported34 the importance of higher responsivity (R_V) in microbolometer devices because the THz signal can be very low. R_V in units of V/W is defined as follows:

$$ R_V = I_b \frac{dR_\theta}{dP_m}, $$

where I_b is the DC bias current through the thermistor and $\frac{dR_\theta}{dP_m}$ is the change in the resistance of the detector (due to the power consumption of the heater).

Considering I = amplitude of an alternating heater current, the average input power is

$$ P_m(\text{ave}) = \frac{P_m(\text{peak})}{2} = \frac{I^2 R_0}{2}, $$

where R_0 is the room temperature (T_0) heater resistance.

Now, the root mean-square output voltage of the bolometer is

$$ V_{out}(\text{RMS}) = \frac{V_{out}(\text{peak to peak})}{\sqrt{2}}. $$

The bolometer’s responsivity is

$$ R_V = \frac{V_{out}(\text{RMS})}{P_m(\text{ave})}. $$

The analysis can further be extended to30

$$ R_V = I_b \frac{dR_\theta}{dP_m} = K I_b R_\theta \alpha_{th}, $$

where I_b is the DC bias current through the thermistor, R_θ is the thermistor resistance, α_{th} is the TCR of a thermistor, and K is the proportionality constant depending on the material characteristics of the thermistor. It is evident that the slope of the input power against the output voltage from Eqs. (5)–(7) for the microbolometer gives the electrical responsivity (R_V). From the equations above, R_V is proportional to bias current (I_b), resistance, and TCR of the thermistor.

The relationships between responsivity (R_V) and physical parameters other than the dimensions of features of the device are also affected by the various limiting mechanisms. For example, the capacity of thermistors to handle large current without breaking depends on4,13,25 Joule heating, electromigration failures (current density limits), breakdown of bias-induced electric field, unstable detector operation, heat loss by thermistor and heater voltage terminal leads, and sharp heating in a suspended thermistor floating above the cavity (for a suspended thermistor, resistance increases linearly with the square of the applied current and is proportional to resistors length).

To calculate the input power to the devices, Fig. 3(a) gives the input–output voltage response of the heater for microbolometer devices with thermistors of width DW = 0.2 μm (a) and 0.1 μm (b). The electrical responsivity of the microbolometers is shown for different bias currents to the thermistor with DW = 0.2 μm (a) and 0.1 μm (c). The electrical frequency response of both microbolometers devices is given in Fig. 3(d). The maximum current (and voltage) across the thermistor was considered well within the limit and could change the resistance in the thermistor by 3% through heating.

For the given microbolometers, TCR, resistivity, and the resistance of the thermistor were estimated according to the following parameters by considering Eqs. (1) and (3):

Ti (on SiO$_2$/Si),

DW = 200 nm: TCR = 0.135 %/K, $\rho = 14.9 \times 10^7$ ohm m;

Resistance R ~ 6500 ohm (considering L = 48.7 μm, H = 55 nm)

DW = 100 nm: TCR = 0.106 %/K, $\rho = 18.2 \times 10^7$ ohm m;

Resistance R ~ 29 500 ohm (considering L = 89.5 μm, H = 55 nm)

Based on the above, the expected ratio of responsivities for DW = 0.1 and 0.2 μm is

$$ \frac{R_{V_{0.1}}}{R_{V_{0.2}}} = \frac{I_b0.1 \cdot R_{b0.1} \cdot \alpha_{th0.1}}{I_b0.2 \cdot R_{b0.2} \cdot \alpha_{th0.2}} = \frac{50}{100} \times \frac{29500}{6500} \times \frac{0.106}{0.135} = 1.78. $$

(8)

However, experimentally from Fig. 3, the ratio is

$$ \frac{R_{V_{0.1}}}{R_{V_{0.2}}} = \frac{787.5}{386.7} = 2.03. $$

(9)

The unit microbolometer devices with the thermistor with DW = 0.1 μm had twice the electrical responsivity of unit devices with the thermistor with DW = 0.2 μm at the maximum permissible current. Note also that unit devices with the thermistor with DW = 0.1 μm operated at half the bias current of devices with the thermistor with DW = 0.2 μm. Resistance in Eq. (8) might have been overestimated because we used DW instead of AMW, which
was lower. From Eqs. (8) and (9), it can be assumed that the enhanced responsivity was obtained owing to (i) higher TCR and/or (ii) higher resistance (more specifically, resistivity in the thinner wire), thus relaxing the trade-off between them.26,31

In addition to responsivity, the sensitivity of the microbolometer (any detector system in general) was measured by NEP, which is the input power with a signal-to-noise ratio of one, for the bandwidth of the output noise per unit.38 NEP is expressed as the smallest measurable power of the microbolometer per the square root of the bandwidth and is calculated by the ratio of noise voltage to responsivity.39,40 In general, it is the measure of the weakest detectable signal that needs to be as low as possible. The noise power spectrum was measured for the microbolometer with the thermistor with DW = 0.1 μm at a bias current I_b of 50 μA and for the microbolometer with the thermistor with DW = 0.2 μm at bias currents I_b of 50 and 100 μA in light of the 3% rise in resistance due to heating as the limiting bias current. The detailed theory underlying the measurement and setup has been discussed previously.33 In the case of responsivity, a constant current (CC) load was connected to the resistance R_T of the thermistor. However, during noise measurement, a metal-film resistor R_L as the load was connected because the constant current load was very noisy. Furthermore, the voltage noise for a constant current load, including noise sources, was calculated based on the circuit diagram in Fig. 4(a), and noise voltage with the CC load was estimated based on the circuit diagram in Fig. 4(b).33 The measured power spectrum density (PSD) of the

FIG. 3. (a) Input and output responses of the heater voltage for microbolometers with thermistor DW = 0.2 μm and 0.1 μm, respectively. Electrical responsivity on different bias currents to thermistor at frequency = 10 Hz, for microbolometers with thermistor DW = 0.2 μm (b) and 0.1 μm (c). (d) Frequency response for the above microbolometers.
voltage noise with $R_L = 10 \, \text{k}\Omega$ and the estimated PSD of the voltage noise with the CC load are shown for the device with the thermistor with $DW = 0.2 \, \mu\text{m}$ at $I_b = 100 \, \mu\text{A}$ in Fig. 4(c), with $DW = 0.2 \, \mu\text{m}$ at $I_b = 50 \, \mu\text{A}$ in Fig. 4(d), and for the device with the thermistor with $DW = 0.1 \, \mu\text{m}$ at $I_b = 50 \, \mu\text{A}$ in Fig. 4(e). The characteristics of this noise have been discussed in detail before.33 The measured and estimated noise was moderately higher than the theoretical values, possibly due to imperfections in the metal wires and the applied bias current. NEPs were calculated from the estimated voltage noise at 10 Hz and responsivity for devices with thermistors with different DWs at different I_b. For devices with the thermistor with $DW = 0.1 \, \mu\text{m}$, $\text{NEP} = 1.85 \times 10^{-15} \, \text{W}/\sqrt{\text{Hz}}$ (at $I_b = 50 \, \mu\text{A}$). For devices with the thermistor with $DW = 0.2 \, \mu\text{m}$, the NEP was 2.24×10^{-10} (at $I_b = 50 \, \mu\text{A}$). Moreover, for the same devices (with the thermistor with $DW = 0.2 \, \mu\text{m}$), $\text{NEP} = 1.58 \times 10^{-10}$ (at $I_b = 50 \, \mu\text{A}$). Devices with thermistors of different widths at a bias current of 50 μA had similar NEP values even though the power of voltage noise was high for the high-resistance ($DW = 0.1 \, \mu\text{m}$) device. The NEP values of the devices substantially improved in comparison with our previous reports.26,27,30,31

Table I gives a comparison between the results obtained here and those of related work in the literature. Note that the devices using VO$_x$ or VO$_2$ as sensing material (thermistor) recorded higher responsivity owing to higher (bulk) TCR. However, these materials are not naturally abundant and cost-effective and cannot be simply integrated into silicon circuits or compatible with the available semiconductor manufacturing technologies. Although exact comparison is not possible with related work due to differences in structure and measurement conditions, meander structure thermistors have previously been proposed. A study by Saxena et al.36 is similar to the one here, where they used a short meander structure with $DW = 2 \, \mu\text{m}$ (approximately 10–20 times thicker than the...
thermistor lines in the devices used here) with a unit responsivity of only 30 V/W. The microbolometer devices made in this study with nanometer-width Ti meander thermistors formed in an array stand out in terms of performance of the unit device and scope for further miniaturization. These devices are well suited to state-of-the-art semiconductor fabrication technology and have significant potential for application as on-chip integrable detector arrays. A few related studies on terahertz imaging and sensing can also be highlighted here for a comprehensive understanding of imaging using these devices. However, owing to different structures, measurement parameters, and conditions, they may not be directly comparable with the devices used here. (i) Nemoto et al.41 dealt with a microbolometer array with a resonant cavity and fabricated a real-time broadband THz camera with high sensitivity. The film microbolometer and thin metallic layer were composed of VOx and TiAlV, respectively. (ii) Oden et al.42 dealt with the imaging of several sources of electron scattering (electron–phonon interactions, electron defects or impurities between electron surfaces, interfaces like grain boundaries, free surfaces), the impact of grain size,45,47 and the dependence of the electrical resistivity of thin metal films on thickness.46–50 However, this report helps enhance the understanding of this by establishing a correlation between the device parameters (responsivity and noise) and considers the aspects of design (thermistor width) and the material parameters (TCR, resistivity, and grain size). Note that the enhancement of responsibility in the devices was obtained largely due to the nanoscale meander design that, however, was detrimental to the noise response of the devices. A reduction in DW does not lead to an improvement in NEP. Hence, the key merit of our design is the higher responsivity of the device parameters (responsivity and noise) and considers the aspects of design (thermistor width) and the material parameters (TCR, resistivity, and grain size). Note that the enhancement of responsibility in the devices was obtained largely due to the nanoscale meander design that, however, was detrimental to the noise response of the devices. A reduction in DW does not lead to an improvement in NEP. Hence, the key merit of our design is the higher responsivity of

The meander shape does not at present improve NEP, and the important merit of our design is higher responsivity. Hence, these devices may not be adequate for thermal imaging with acceptable integration times.43 However, the device arrays can be still employed in imaging systems that utilize an active THz source, similar to the examples above.41–43

A comprehensive model of the narrow-width effect of TCR for metal interconnects is not yet available and may require the consideration of several sources of electron scattering (electron–phonon interactions, electron defects or impurities between electron surfaces, interfaces like grain boundaries, free surfaces), the impact of grain size,45,47 and the dependence of the electrical resistivity of thin metal films on thickness.46–50 However, this report helps enhance the understanding of this by establishing a correlation between the device parameters (responsivity and noise) and considers the aspects of design (thermistor width) and the material parameters (TCR, resistivity, and grain size). Note that the enhancement of responsibility in the devices was obtained largely due to the nanoscale meander design that, however, was detrimental to the noise response of the devices. A reduction in DW does not lead to an improvement in NEP. Hence, the key merit of our design is the higher responsivity of

\[
\text{Responsivity } R_v = \frac{\text{NEP}}{\text{V}_{n,\text{th}}} = \frac{\text{I}_b}{\text{R}_{\text{th}}} = \frac{\lambda^{1/2}}{\text{R}_{\text{th}}} = \frac{\lambda^{1/2}}{\text{R}_{\text{th}}} = \frac{4 \times k_n \times T \times R_{\text{th}}^{1/2}}{\text{NEP}},
\]

\[
\text{Noise-equivalent power } \text{NEP} = \frac{\text{I}_b}{\text{R}_{\text{th}}} = \frac{\lambda^{1/2}}{\text{R}_{\text{th}}} = \frac{\lambda^{1/2}}{\text{R}_{\text{th}}} = \frac{4 \times k_n \times T \times R_{\text{th}}^{1/2}}{\text{NEP}},
\]

\[
\text{Noise voltage } \text{V}_{n,\text{th}} = \frac{\text{I}_b}{\text{R}_{\text{th}}} = \frac{\lambda^{1/2}}{\text{R}_{\text{th}}} = \frac{\lambda^{1/2}}{\text{R}_{\text{th}}} = \frac{4 \times k_n \times T \times R_{\text{th}}^{1/2}}{\text{NEP}},
\]

\[
\text{Bias power consumption } \text{P}_{\text{th}} = \frac{\text{I}_b}{\text{R}_{\text{th}}} = \frac{\lambda^{1/2}}{\text{R}_{\text{th}}} = \frac{\lambda^{1/2}}{\text{R}_{\text{th}}} = \frac{4 \times k_n \times T \times R_{\text{th}}^{1/2}}{\text{NEP}},
\]

\[
\text{Bias power consumption } \text{P}_{\text{th}} = \frac{\text{I}_b}{\text{R}_{\text{th}}} = \frac{\lambda^{1/2}}{\text{R}_{\text{th}}} = \frac{\lambda^{1/2}}{\text{R}_{\text{th}}} = \frac{4 \times k_n \times T \times R_{\text{th}}^{1/2}}{\text{NEP}},
\]

\[
\text{Bias current } \text{I}_b = \frac{\text{I}_b}{\text{R}_{\text{th}}} = \frac{\lambda^{1/2}}{\text{R}_{\text{th}}} = \frac{\lambda^{1/2}}{\text{R}_{\text{th}}} = \frac{4 \times k_n \times T \times R_{\text{th}}^{1/2}}{\text{NEP}},
\]

\[
\text{TCR of thermistor } \alpha_0 = \frac{\text{R}_{\text{th}}}{\text{I}_b} = \frac{\lambda^{1/2}}{\text{R}_{\text{th}}} = \frac{\lambda^{1/2}}{\text{R}_{\text{th}}} = \frac{4 \times k_n \times T \times R_{\text{th}}^{1/2}}{\text{NEP}},
\]

\[
\text{Temperature rise by bias current } R_{\text{th}} = \frac{\text{I}_b}{\text{R}_{\text{th}}} = \frac{\lambda^{1/2}}{\text{R}_{\text{th}}} = \frac{\lambda^{1/2}}{\text{R}_{\text{th}}} = \frac{4 \times k_n \times T \times R_{\text{th}}^{1/2}}{\text{NEP}},
\]

\[
\text{Bia...
TABLE III. Trend of scaling for microbolometer when thermal conductance is inversely proportional to thermistor resistance (R_{th}).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Scaling factor</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermistor resistance</td>
<td>R_{th}</td>
<td>λ</td>
</tr>
<tr>
<td>Thermal conductance</td>
<td>G_{th}</td>
<td>$1/\alpha$</td>
</tr>
<tr>
<td>Bias current</td>
<td>I_b</td>
<td>$1/\alpha$</td>
</tr>
<tr>
<td>Bias power consumption</td>
<td>P_b</td>
<td>$1/\alpha$</td>
</tr>
<tr>
<td>Temperature rise by bias current</td>
<td>ΔT</td>
<td>1</td>
</tr>
<tr>
<td>TCR of thermistor</td>
<td>α_{th}</td>
<td>1</td>
</tr>
<tr>
<td>Responsivity</td>
<td>R_μ</td>
<td>λ</td>
</tr>
<tr>
<td>Noise voltage</td>
<td>$V_{n,th}$</td>
<td>$\lambda^{1/2}$</td>
</tr>
<tr>
<td>Noise-equivalent power</td>
<td>NEP</td>
<td>$1/\alpha$</td>
</tr>
</tbody>
</table>

Increased by factor λ due to meander shape. To implement fixed ΔT.

Properties of the material were assumed independent of the meander shape.

In practice, they were slightly reduced by the narrow-width effect.

The optical response, which is currently being investigated, is expected to show proportional improvement to that in the electrical results reported here and is likely to enrich the overall understanding of these devices.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI (Grant No. 15H03990), the Cooperative Research Project of the Research Center for Biomedical Engineering with RIE, Shizuoka University, and the Cooperative Research Project Program of RIEC, Tohoku University.

REFERENCES

