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Abstract 

 

A volume averaging theory (VAT) established in the field of fluid saturated porous media has 

been successfully exploited to derive a general set of bioheat transfer equations for blood flows and 

its surrounding biological tissue. A closed set of macroscopic governing equations for both velocity 

and temperature fields in intra- and extra-vascular phases has been established, for the first time, 

using the theory of anisotropic porous media. Firstly, two individual macroscopic energy equations 

are derived for the blood flow and its surrounding tissue under the thermal non-equilibrium 

condition. The blood perfusion term is identified and modeled in consideration of the transvascular 

flow in the extravascular region, while the dispersion and interfacial heat transfer terms are modeled 

according to conventional porous media treatments. It is shown that the resulting two-energy 

equation model reduces to Pennes model, Wulff model and their modifications, under appropriate 

conditions. Subsequently, the two-energy equation model has been extended to the three-energy 

equation version, in order to account for the countercurrent heat transfer between closely spaced 

arteries and veins in the circulatory system and its effect on the peripheral heat transfer. This general 

form of three-energy equation model naturally reduces to the energy equations for the tissue, 

proposed by Chato, Keller and Seiler. Controversial issues on blood perfusion, dispersion and 

interfacial heat transfer coefficient are discussed in a rigorous mathematical manner. 
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INTRODUCTION 

 

A number of bioheat transfer equations for living tissue have been proposed since the landmark 

paper by Pennes [1] appeared in 1948, in which the perfusion heat source was introduced. Although 

Pennes model is often adequate for roughly describing the effect of blood flow on the tissue 

temperature, some serious shortcomings exist in his model due to its inherent simplicity, as pointed 

out by Wulff [2], namely, assuming uniform perfusion rate without accounting for blood flow 

direction, neglecting the important anatomical features of the circulatory network system such as 

countercurrent arrangement of the system, and choosing only the venous blood stream as the fluid 

stream equilibrated with the tissue.  

In order to overcome these shortcomings, a considerable number of modifications have been 

proposed by various researchers. Wulff [2] and Klinger [3] considered the local blood mass flux to 

account the blood flow direction, while Chen and Holmes [4] examined the effect of thermal 

equilibration length on the blood temperature and added the dispersion and microcirculatory 

perfusion terms to the Klinger equation. 

All foregoing papers concerned mainly with the cases of isolated vessels and the surrounding 

tissue. The effect of countercurrent heat transfer between closely spaced arteries and veins in the 

tissue must be taken into full consideration when the anatomical configuration of the main supply 

artery and vein in the limbs is treated. Following the experimental study conducted by Bazett and his 

colleagues [5,6], Scholander and Krog [7] and Mitchell and Myers [8] investigated such an effect 

and successfully demonstrated that the countercurrent heat exchange reduces heat loss from the 

extremity to the surroundings, which could be quite significant due to a large surface to volume ratio. 

Keller and Seiler [9] established a bioheat transfer model equation to include the countercurrent heat 

transfer, using a one-dimensional configuration for the subcutaneous tissue region with arteries, 

veins and capillaries. Weinbaum and Jiji [10] proposed a new model, which is based on some 

anatomical understanding, considering the countercurrent arterio-venous vessels. As pointed out by 

Roetzel and Xuan [11], the model may be useful in describing a temperature field in a single organ, 

but would not be convenient to apply to the whole thermoregulation system. Excellent reviews on 

these bioheat transfer equations may be found in Chato [12] and Charny [13].  

Khaled and Vafai [14] and Khanafer and Vafai [15] stress that the theory of porous media is 

most appropriate for treating heat transfer in biological tissues since it contains fewer assumptions as 

compared to different bioheat transfer equations. Roetzel and Xuan [11] and Xuan and Roetzel [16] 

exploited the volume-averaging theory (VAT) previously established for the study of porous media 

(e.g. Cheng [17], Nakayama [18]), to formulate a two-energy equation model accounting for the 

thermal nonequilibrium between the blood and peripheral tissue. In their model, the perfusion term is 

replaced by the interfacial convective heat transfer term. This point should be examined since the 



 3

interfacial convective heat transfer is different from perfusion heat transfer. Naturally, the former 

takes place even in the absence of the latter. 

In this study, we present a rigorous mathematical development based on the volume-averaging 

theory, so as to achieve a complete set of the volume-averaged governing equations for bioheat 

transfer and blood flow. Most shortcomings in existing models will be overcome. We start with the 

case of isolated blood vessels and the surrounding tissue, to establish a two-energy equation model 

for the blood and tissue temperatures. We shall identify the terms describing the blood perfusion and 

dispersion in the resulting equation and revisit Pennes model, Wulff model and their modifications. 

Subsequently, the two-energy equation model is extended to the three-energy equation model, 

so as to account for the effect of countercurrent heat transfer between closely spaced arteries and 

veins in the blood circulatory system. In this model, three individual temperatures are assigned for 

the arteries, veins and tissue. We shall examine the Keller and Seiler model [9] and Chato model [12] 

for the microcirculation as well as the model proposed by Xuan and Roetzel [16] for simulation of 

transient response of the human limb to an external stimulus. Controversial issues on blood 

perfusion, dispersion and heat transfer coefficient will be discussed in a rigorous mathematical 

manner.    

 

VOLUME AVERAGING PROCEDURE 

 

In an anatomical view, three compartments are identified in the biological tissues, namely, 

blood vessels, cells and interstitium, as illustrated in Figure 1. The interstitial space can be further 

divided into the extracellular matrix and the interstitial fluid. However, for sake of simplicity, we 

divide the biological tissue into two distinctive regions, namely, the vascular region and the 

extravascular region (i.e. cells and the interstitium) and treat the whole anatomical structure as a 

fluid saturated porous medium, through which the blood infiltrates. The extravascular region is 

regarded as a solid matrix (although the extravascular fluid is present), and will be simply referred to 

the “tissue” region to differentiate it from the “blood” region.  

Thus, we shall try to apply the principle of heat and fluid flow in a fluid-saturated porous 

medium to derive a set of the volume averaged governing equations for the bioheat transfer and 

blood flow. In order for the volume averaging (smoothing process) to be meaningful, we consider a 

control volume V  in a fluid-saturated porous medium, as shown in Figure 2, whose length scale 
1/3V  is much smaller than the macroscopic characteristic length 1/3

cV , but, at the same time, much 

greater than the microscopic (anatomical structure) characteristic length (see e.g. Nakayama [18]). 
Under this condition, the volume average of a certain variableφ  is defined as 
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Figure 1 Schematic view of biological tissue 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Control volume in a porous medium 
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where fV  is the volume space which the fluid (blood) occupies. Obviously, two averages are 

related as 

 
fφ ε φ=         (3) 

 
where /fV Vε ≡  is the local porosity, namely, the volume fraction of the vascular space, which is 

generally less than 0.1. Following Cheng [17], Nakayama [18], Quintard and Whitaker [19] and 

many others, we decompose a variable into its intrinsic average and the spatial deviation from it: 

 
fφ φ φ= +         (4) 

 

We shall exploit the following spatial average relationships: 

1 2 1 2 1 2
ff f fφ φ φ φ φ φ= +       (5) 

int

1
i

Ai i
n dA

x x V
φ φ φ∂ ∂= +

∂ ∂ ∫   or  
int

1 1f f

i
Ai i f
n dA

x x V
φ ε φ φ

ε
∂ ∂= +
∂ ∂ ∫    (6a,b) 

and 

t t
φ φ∂ ∂=

∂ ∂
        (7) 

where intA  is the local interface between the blood and solid matrix, while in  is the unit vector 

pointing outward from the fluid side to solid side. The similarity between the volume averaging and 

the Reynolds averaging used in the study of turbulence is quite obvious. However, it should be noted 

that the present volume averaging procedure is somewhat more complex than the Reynolds 

averaging procedure, since it involves with surface integrals, as clearly seen from (6).   

We subdivide the anatomic structure into the blood phase (fluid phase) and the tissue and other 

solid tissue phase (solid matrix phase), in which metabolic reactions may take place. We shall 

consider the microscopic governing equations, namely, the continuity equation, Navier-Stokes 

equation and energy equation for the blood phase and the heat conduction equation for the solid 

matrix phase. 

 

For the blood phase: 

0j

j

u
x

∂
=

∂
         (8) 

1 ji i
j i f

j i j j i

uu p uu u
t x x x x x

ν
ρ

⎛ ⎞∂∂ ∂ ∂ ∂ ∂ ⎟⎜+ = − + + ⎟⎜ ⎟⎟⎜⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
    (9) 
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ff p j f
j j j

T Tc u T k
t x x x

ρ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎟ ⎟⎜ ⎜+ =⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜⎜ ⎜⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

     (10) 

For the solid matrix phase: 

s s s m
j j

T Tc k S
t x x

ρ
⎛ ⎞∂ ∂ ∂ ⎟⎜= +⎟⎜ ⎟⎟⎜⎜∂ ∂ ∂⎝ ⎠

      (11) 

 

where the subscripts f and s stand for the fluid and solid, respectively. It is assumed that the fluid 

(blood) is incompressible and Newtonian, and all properties are constant.  

   

VOLUME AVERAGED CONTINUITY AND MOMENTUM EQUATIONS  

FOR BLOOD FLOW  

 

Let us integrate the continuity equation (8) over a local control volume using the formula (6b) 

as 

int

1 0
f

j
j jA

j

u
u n dA

x V

ε∂
+ =

∂ ∫        (12) 

where intA  is the local interface between the blood and solid matrix within the control volume V, 
while jn  is the unit vector pointing outward from the fluid side to solid side. For sake of simplicity, 

the porosity ε is assumed to vary moderately within a porous medium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Capillary blood flow and extravascular flow  
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The second term describes the volume rate of the fluid bleeding off to the solid matrix through 

the interfacial vascular wall, as illustrated in Figure 3. In most microcirculatory systems of the body, 

there is a net filtration of fluid from the intravascular to the extravascular compartment, such that 

capillary fluid filtration exceeds reabsorption. However, this would not cause fluid to accumulate 

within the interstitium since the lymphatic system removes excess fluid from the interstitium and 

returns it back to the intravascular compartment, as indicated in the figure. Thus, the second term 

describing the net filtration is negligibly small, such that equation (12) reduces to 

0j

j

u

x

∂
=

∂
        (13) 

Accordingly, the Navier-Stokes equation (9) may be integrated to give 

int

1 1

f
fi f

j i
j

f
fj ji i

f f j j i
Af i j j i f j i j

u u u
t x

u up u p u n dA u u
x x x x V x x x

ν ν
ρ ρ

∂ ∂+
∂ ∂

⎛ ⎞ ⎛ ⎛ ⎞⎞∂ ∂∂ ∂ ∂ ∂ ∂⎟ ⎟⎟⎜ ⎜ ⎜⎟=− + + + − + + −⎟⎟⎜ ⎜ ⎜⎟ ⎟⎟⎜ ⎟⎟⎜⎜ ⎜⎜⎟⎜∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎝ ⎠⎠⎝ ⎠ ∫
 (14) 

In order to close the foregoing macroscopic momentum equations (14), the terms associated with the 

surface integral are modeled according to Vafai and Tien [20] as 

 

( )
int

1/221 fj fi f f f f
f j j i i k k i

Af f j i j

up u n dA u u u b u u u
V x x x K

ν
ν ε ε

ρ
⎛ ⎛ ⎞⎞∂∂ ∂⎟⎟⎜ ⎜− + + − =− −⎟⎟⎜ ⎜ ⎟⎟⎟⎟⎜⎜ ⎜⎜∂ ∂ ∂⎝ ⎝ ⎠⎠∫  (15) 

such that 

( )1/221

f
fi f

j i
j

fff
f fj fi f f

f j ij k k j
i j j i ij

u
u u

t x

up u u b u u u
x x x x K

ν
ν ε ε

ρ

∂ ∂+
∂ ∂

⎛ ⎞∂∂ ∂ ∂ ⎟⎜ ⎟⎜= − + + − −⎟⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟⎜ ⎟⎝ ⎠

 (16) 

 
where ijK and ijb are the permeability and Forchheimer tensors, respectively. These tensors, which 

depend on the anatomical structure, can be determined following the procedure established for 

anisotropic porous structure (Nakayama et al. [21]), as sufficient information on the anatomical 

structure and properties is provided For the vessels of sufficiently small diameter, the foregoing 

equation reduces to Darcy’s law:  

1 0
f

f
j

i ij

p u
x K

ν
ρ
∂− − =
∂

       (17) 

where f
j ju uε= is the Darcian velocity (i.e. apparent velocity). We may use the Darcy law for 

most tissue regions except for the regions where large arteries or veins are located. 
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TWO ENERGY EQUATION MODEL FOR BLOOD FLOW AND TISSUE 

 

Before actually integrating the energy equation (10), it may be quite instructive to focus our 

attention on the volume average of the convection term. Using the equations (5) and (6), it is 

straightforward to show 

( )
int

1
f f f f

f
ff

f p j f p j f p j f p j j
Aj j j

c u T c u T c u T c u T n dA
x x x V

ε ρ ρ ερ ρ∂ ∂ ∂= + +
∂ ∂ ∂ ∫  (18) 

where the first term on the right hand-side describes the macroscopic convection, while the second 

term on the right hand-side takes account of the thermal dispersion (Nakayama et al. [22]). It is the 

last term on the right hand-side that corresponds to the blood “perfusion” heat source. Thus, the 

blood perfusion heat source term is identified as an extra surface integral term resulting from 

changing the sequence of integration and derivation, as we obtain the macroscopic energy equation 

by integrating the microscopic convection term over a local control volume.  

Having expanded the integrated convection term, we may readily transform both the energy 

equation (10) for the blood flow and the conduction equation (11) for the solid matrix into the 

corresponding volume averaged equations as 

 

For the blood phase: 

( )
int int int

1 1

f f

f f

f
f

f p f p j
j

f ff
f j f p j f j f p j j

A A Aj j j

Tc c u T
t x

kT Tk Tn dA c u T k n dA c u T n dA
x x V V x V

ερ ρ

ε ερ ρ

∂ ∂+
∂ ∂

⎛ ⎞∂ ∂ ∂⎟⎜= + − + −⎟⎜ ⎟⎟⎜⎜∂ ∂ ∂⎝ ⎠∫ ∫ ∫
(19) 

For the solid matrix phase: 

( )

( ) ( ) ( )
int int int

1

1 1
1 1

f

s

s s

s
s

s j f j f p j j m
A A Aj j j

Tc
t
T k Tk Tn dA k n dA c u T n dA S

x x V V x V

ε ρ

ε ρ ε

∂−
∂

⎛ ⎞∂ ∂ ∂⎟⎜= − − − + + −⎟⎜ ⎟⎟⎜⎜∂ ∂ ∂⎝ ⎠∫ ∫ ∫
(20) 

where sT  is the intrinsic average of the solid matrix temperature. Note that the dispersion heat 

flux f
f p f j f p f jc u T c u T=ρ ερ  appears in the volume averaged energy equation (19) for the 

blood phase, which may well be modeled under the gradient diffusion hypothesis:  

kj

ff
f p f j dis

k

Tc u T k
x

ερ ε ∂− =
∂

      (21) 

A number of expressions have been proposed for the thermal dispersion thermal conductivity
kjdisk . 

Nakayama et al. [22] obtained a transport equation for the dispersion heat flux vector, which 

naturally reduces to the foregoing gradient diffusion form. For a bundle of vessels of radius R, they 
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obtained the following expression for the predominant axial component of
kjdisk : 

2

1
48xx

f
f pf

dis f
f

c u R
k k

k
ρ⎛ ⎞

⎜ ⎟=
⎜ ⎟
⎝ ⎠

   : 1
f

f pf

f

c u R
k

ρ
<  (capillary blood vessels)  (22a) 

7 / 8

1/ 82.55
xx

f
f pf

dis f
f

c u R
k Pr k

k
ρ⎛ ⎞

⎜ ⎟=
⎜ ⎟
⎝ ⎠

 : 1
f

f pf

f

c u R
k

ρ
>  (large arteries and veins)  (22b) 

In order to close the foregoing macroscopic energy equations (19) and (20), the terms 

associated with the surface integral, describing the interfacial heat transfer and perfusion between the 

fluid and solid, must be modeled. For the interfacial heat transfer, Newton’s cooling law may be 

adopted as  

( )
int

1 s f
f j f f

A j

T
k n dA a h T T

V x
∂ = −
∂∫      (23) 

where fa  and fh  are the specific surface area and interfacial heat transfer coefficient, respectively. 

For the bundle of vascular tubes of radius R, we have 2 /fa Rε=  and ( )/2f fh Nu k R= , such 

that ( )2/f f fa h Nu k Rε= , where Nu  is the Nusselt number based on the local diameter of the 

vascular tube. If, the local porosity ε and specific surface area fa  are provided for the complex 

tissue-vascular structure, we may estimate the interfacial heat transfer coefficient using 

( )/4f f fh Nu k a ε= . Roetzel and Xuan [11] set Nu = 4.93 for both arterial and venous blood 

vessels. We may appeal to a numerical experiment proposed by Nakayama et al. [23] for complex 

porous structures.  

   As for modeling the blood perfusion term, we may refer back to Figure 3, and note that the 

transcapillary fluid exchange takes place between the blood and the surrounding tissue. However, the 

fluid lost from the vascular space will be compensated by the flow of extravascular fluids and lymph 

from the tissue to vascular space. It is quite reasonable to assume that extravascular fluids and all 

lymph in the tissue space have the same temperature as the tissue itself. Thus, we assume that the 

transcapillary fluid exchange takes place at the rate of ω  (m3/ sm3) and model the blood perfusion 

term as 

( ) ( )
int

1
f f

f s
f p j j f p

A
c u T n dA c T T

V
ρ ρ ω= −∫      (24) 

Note that the perfusion rate ω , unlike that of Pennes, varies locally and we assume that its local 

value is provided everywhere. Pennes found that his model fits the experimental data for ω =2x10-4 

to 5x10-4 (m3/ sm3). 

Furthermore, the surface integral terms   
int

f
j

A

k
Tn dA

V ∫  and 
int

s
j

A

k Tn dA
V

− ∫  present the 

tortuosity heat fluxes, which are usually small, as convection dominates over conduction (see e.g. 
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Nakayama et al. [24]). Therefore, their effects may well be absorbed in effective thermal 

conductivities, as done by Xuan and Roetzel [16]. Having modeled the terms associated with 

dispersion, interfacial heat transfer, blood perfusion and tortuosity, the individual macroscopic 

energy equations may finally be written for the blood and tissue phases as  

 

For the blood phase: 

( ) ( )

f f

jk f

f
f

f p f p j
j

f f
f s f s

f dis f f f p
j j k

Tc c u T
t x

T Tk k a h T T c T T
x x x

ερ ρ

ε ε ρ ω

∂ ∂+
∂ ∂

⎛ ⎞∂ ∂ ∂ ⎟⎜= + − − − −⎟⎜ ⎟⎟⎜⎜∂ ∂ ∂⎝ ⎠

 (25) 

in which the left hand-side term denotes the macroscopic convection term, while the four terms on 

the right hand-side correspond to the macroscopic conduction, thermal dispersion, interfacial 

convective heat transfer and blood perfusion, respectively. 

 

For the solid tissue phase: 

( )

( ) ( ) ( ) ( )

1

1 1
f

s

s s

s
f s f s

s f f f p m
j j

T
c

t
Tk a h T T c T T S

x x

ε ρ

ε ρ ω ε

∂−
∂

⎛ ⎞∂ ∂ ⎟⎜= − + − + − + −⎟⎜ ⎟⎟⎜⎜∂ ∂⎝ ⎠

(26) 

in which the left hand-side term denotes the thermal inertia term, while the four terms on the right 

hand-side correspond to the macroscopic conduction, interfacial convective heat transfer, blood 

perfusion heat source and metabolic heat source, respectively.  

The resulting equations (25) and (26) appear to be a correct form for the case of thermal 

non-equilibrium, and are expected to clear up possible confusions associated with the blood 

perfusion term. The continuity equation (13), Darcy’s law (17) and the two energy equations (25) 

and (26) form a closed set of the macroscopic governing equations. The present model in a 

multi-dimensional and anisotropic form is quite general and can be applied to find both velocity and 

temperature fields, as we prescribe the spatial distributions of permeability tensor, porosity, 

interfacial heat transfer coefficient, metabolic reaction rate and perfusion rate. It is interesting to note 

that, when the velocity field, porosity and metabolic reaction are prescribed, we only need to know 

the local value of the lumped convection-perfusion parameter, namely, ( )ff f f pa h cρ ω+  (in addition 

to appropriate thermal boundary conditions) to solve the two energy equations (25) and (26) for the 

blood and tissue temperatures, fT and sT .  
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COMPARISON OF PRESENT AND EXISTING BIOHEAT TRANSFER MODELS 

 

It should be noted that most existing bioheat transfer models already reside in the present model 

based on the theory of porous media. We shall revisit some of the existing models and try to generate 

them from the present general model.  

 

Pennes model 

   Pennes model [1] in our notation runs as 

( ) ( ) ( ) ( )01 1 1
f

s s
s

s s s f p Pennes a m
j j

T Tc k c T T S
t x x

ε ρ ε ρ ω ε
⎛ ⎞∂ ∂ ∂ ⎟⎜− = − + − + −⎟⎜ ⎟⎟⎜⎜∂ ∂ ∂⎝ ⎠

 (27) 

where  Pennesω  is the mean blood perfusion rate, while 0aT  is the mean brachial artery 

temperature. We compare the Pennes model against the energy equation (26) for the solid tissue 

phase and find the following relationship: 

 
( ) ( ) ( )0f f

s f s f s
f p Pennes a f f f pc T T a h T T c T Tρ ω ρ ω− = − + −   (28) 

 

Perhaps, Pennes considered that the blood perfusion is the predominant heat source for the tissue, 

and did not bother to describe the interfacial convective heat transfer between the blood and tissue 
via the vascular wall. Instead, he introduced 0aT  to adjust the total heat transfer, which takes place 

as the blood enters and leaves the tissue. We may assume 0
f

aT T  for small vessels, and find 

 
f

f f
Pennes

f p

a h
c

ω ω
ρ

+        (29) 

Thus, Pennes’s perfusion rate may be regarded as an effective one that includes interfacial 

convective heat transfer as well. Pennes assumes that blood enters the smallest vessels of the 
microcirculation at 0aT , where all heat transfer between the blood and tissue takes place. The 

assumption of the complete thermal equilibration with the surrounding tissue is valid only when 

Peclet number is sufficiently small.   

 

Wulff model and Klinger model 

   Wulff [2] criticized the Pennes model, pointing out that the moving blood through a tissue 

convects heat in any direction, not just in the direction of the local tissue temperature gradient. He 

assumed that the blood temperature fT is equivalent to the tissue temperature within a tissue 

control volume and proposed a new bioheat transfer equation. The equation later generalized by 

Klinger [3] runs in our notation as 
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 ( ) ( ) ( )1 1 1
f

ss s
j

s s s f p m
j j j

u TT Tc k c S
t x x x

ε ρ ε ρ ε
⎛ ⎞ ∂∂ ∂ ∂ ⎟⎜− = − − + −⎟⎜ ⎟⎟⎜⎜∂ ∂ ∂ ∂⎝ ⎠

 (30) 

 

We can obtain a similar equation by combining equations (25) and (26) setting f sT T=  as 

follows: 

( )( )

( )( ) ( )

1

1 1

f f

jk

s
s

f p s s f p j
j

s s

f s dis m
j j k

Tc c c u T
t x

T Tk k k S
x x x

ερ ε ρ ρ

ε ε ε ε

∂ ∂+ − +
∂ ∂

⎛ ⎞∂ ∂ ∂ ⎟⎜= + − + + −⎟⎜ ⎟⎟⎜⎜∂ ∂ ∂⎝ ⎠

   (31) 

We can easily see that the foregoing equation reduces to the Klinger equation when the ratio of 

vascular volume to total volume (i.e. porosity ε ) is sufficiently small. Since the porosity is generally 

less than 0.1, the foregoing two equations are quite close to each other. 

   Another interpretation on the directional effect on the tissue temperature field is possible. When 

the blood flow is strong enough to neglect the macroscopic diffusion, the energy equation (25) for 

the blood flow reduces to      

( ) ( )f f
f f s f s

f p j f f f p
j

c u T a h T T c T T
x

ρ ρ ω∂ = − − − −
∂

   (32) 

Substitution of the foregoing equation into the energy equation for the tissue (26) yields the Klinger 

equation (30). The assumption implicit here is that the blood flow velocity is sufficiently high that 

the ratio of the bulk convection heat transfer to conduction heat transfer, namely, the Peclet number, 

is much greater than unity. Thus, the Klinger model applies to the tissue with comparatively large 

vessels. 

 

Cheng and Holmes model 

   Cheng and Holmes [4] assumed that all tissue-arterial blood heat exchange occurs along the 

circulatory network after the blood flows through the terminal arteries and before it reaches the level 

of the arterioles, which prompted them to propose the following bioheat transfer model: 

( )( ) ( ) ( )* *1 1

f

f

t
f p j t

j

t t
f s p f p j a t m

j j j

T
c c u T
t x

T T
k k k c T T S

x x x

ρ ρ

ε ε ρ ω ε

∂ ∂+
∂ ∂

⎛ ⎞∂ ∂ ∂ ⎟⎜= + − + + − + −⎟⎜ ⎟⎟⎜⎜∂ ∂ ∂⎝ ⎠

  (33) 

where  
( )1f sρ ερ ε ρ= + −        (34a) 

( )( )1 /
ff p s sc c cερ ε ρ ρ= + −       (34b) 

and 
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( )( )1 /
f

f s
t f p s sT c T c T cερ ε ρ ρ= + −      (34c) 

is the temperature of the continuum based on a volume average. Moreover, *
jω is the perfusion 

bleed-off to the tissue only from the micro-vessels past the j th generation of branching, while *
aT is 

the blood temperature at the j th generation of branching. Both *
jω and *

aT  require the anatomical 

data. Chen and Holmes also take account of the “eddy” conduction due to the random flow of blood, 
by introducing the thermal conductivity pk , which corresponds to our dispersion thermal 

conductivity disk . The energy equation similar to their equation (33) may be obtained by combining 

the two energy equations (25) and (26) in the present model as 

 

( ) ( )1 1

f

jk

t f
f p j

j
f s f

f s dis m
j j j k

T
c c u T
t x

T T T
k k k S

x x x x

ρ ρ

ε ε ε ε

∂ ∂+
∂ ∂

⎛ ⎞∂ ∂ ∂ ∂ ⎟⎜= + − + + −⎟⎜ ⎟⎟⎜⎜∂ ∂ ∂ ∂⎝ ⎠

  (35) 

When the three temperature gradients on the right hand-side are close and 
jkdis p jkk kε δ= , the 

foregoing equation reduces to  

( )( ) ( )1 1

f
t f

f p j
j

t t
f s p m

j j j

T
c c u T
t x

T T
k k k S

x x x

ρ ρ

ε ε ε

∂ ∂+
∂ ∂

⎛ ⎞∂ ∂ ∂ ⎟⎜= + − + + −⎟⎜ ⎟⎟⎜⎜∂ ∂ ∂⎝ ⎠

    (36) 

which is close to the equation of Chen and Holmes, except that ( )* *
ff p j a tc T Tρ ω − is missing, as in 

the models of Wulff and Klinger, since it should vanish, as we add equations (25) and (26).  

 

A GENERAL THREE ENERGY EQUATION MODEL  

FOR COUNTERCURRENT BIOHEAT TRANSFER  

 

Bazett and his colleagues [6] found that the axial temperature gradient in the limb artery of 

human, under conditions of very low ambient temperature, is an order of magnitude higher than 

under normal ambient conditions. Their experimental finding brought attention to the role of 

countercurrent heat exchange in bioheat transfer. A schematic view of the tissue layer close to the 

skin surface is shown in Figure 4, in which the arteries and veins are paired, such that the 

countercurrent heat transfer takes place. Mitchell and Myers [8] mathematically modeled this 

important role in a more general manner than that presented by Scholander and Krog [7] and 

demonstrated that the countercurrent heat exchange reduces heat loss from the extremity to the 

surroundings. However, their one-dimensional model was not able to take account of either 
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metabolic reaction or perfusion bleed-off from the artery to vein. The foregoing survey prompts us to 

establish a multi-dimensional model, which can be applied to the regions of extremity, where the 

countercurrent heat transfer between closely spaced arteries and veins in the blood circulatory 

system plays an important role in the peripheral heat transfer from the extremity to the surroundings. 

Thus, we assign individual temperatures aT vT and sT to the arterial blood, venous blood 

and tissue, respectively, to propose a general three-energy equation model as follows:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Schematic view of countercurrent heat exchange near the skin surface 

 

 

For the arterial blood phase: 

( )

f f

jk f

a
a a

a f p f p a j
j

a a
a s a

a a a disa a a f p a
j j k

T
c c u T

t x

T T
k k a h T T c T

x x x

ε ρ ρ ε

ε ε ρ ω

∂ ∂
+

∂ ∂

⎛ ⎞∂ ∂∂ ′⎜ ⎟= + − − −
⎜ ⎟∂ ∂ ∂⎝ ⎠

   (37a) 

For the venous blood phase: 

( )

f f

jk f

v
v v

v f p f p v j
j

v v
v s v

v v v disv v v f p v
j j k

T
c c u T

t x

T T
k k a h T T c T

x x x

ε ρ ρ ε

ε ε ρ ω

∂ ∂
+

∂ ∂

⎛ ⎞∂ ∂∂ ′⎜ ⎟= + − − −
⎜ ⎟∂ ∂ ∂⎝ ⎠

   (37b) 

 

 

Arterial vessel

Venous vessel

Deep tissue layer

Cutaneous layer
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For the solid tissue phase: 

( )

( ) ( )

( ) ( )

1

1

1

f

f

s

s s

s
a s a

s a a f p a
j j

v s v
v v f p v m

T
c

t
T

k a h T T c T
x x

a h T T c T S

ε ρ

ε ρ ω

ρ ω ε

∂
−

∂
⎛ ⎞∂∂ ′⎜ ⎟= − + − +
⎜ ⎟∂ ∂⎝ ⎠

′+ − + + −

    (38) 

 

where 

a vε ε ε= +        (39) 

 

Since the arterial-venous anastomoses provide direct paths from terminal arteries to veins, the net 
volume filtration rates of the arterial and venous vessels, aω′  and vω′ , are no longer negligible for 

the peripheral heat transfer of this kind, such that ( )
int

/
f f

f
f p j j f p

A
c u T n dA V c Tρ ρ ω ′=∫ . 

Accordingly, the velocity fields should be determined from 

0
f

a j
a

j

u

x

ε
ω

∂
′+ =

∂
  and 1 0

a
a

a j
i aij

p
u

x K
ν ε

ρ
∂

− − =
∂

   (40a,b) 

 0
v

v j
v

j

u

x

ε
ω

∂
′+ =

∂
  and   1 0

v
v

v j
i vij

p
u

x K
ν ε

ρ
∂

− − =
∂

   (41a,b) 

where aε and vε are the volume fractions of the arterial blood and that of the venous blood, 

respectively. For the microcirculation of peripheral tissue in which capillaries provide a continuous 

connection between the terminal artery and vein (i.e. arterial-venous anastomoses), we may readily 

set 

 

a vω ω′ ′= −          (42) 

 

such that the present energy equation for the solid tissue phase reduces to 

 

( )

( ) ( ) ( ) ( ) ( )

1

1 1
f

s

s s

s
a s v s a v

s a a v v f p a m
j j

T
c

t
T

k a h T T a h T T c T T S
x x

ε ρ

ε ρ ω ε

∂
−

∂
⎛ ⎞∂∂ ′⎜ ⎟= − + − + − + − + −
⎜ ⎟∂ ∂⎝ ⎠

 (43) 
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Figure 5 One-dimensional model for countercurrent heat exchange 

 

Keller and Seiler model 

Keller and Seiler [9] noted that the axial temperature gradient in the limb is much higher than 

the transverse one and considered an energy balance within a control volume for the idealized 

one-dimensional steady case, as illustrated in Figure 5, for which they proposed 

( ) ( ) ( ) ( ) ( )
2

21 1 0
f

s
a s v s a s

s a a v v f p m

d T
k a h T T a h T T c T T S

dx
ε ρ ω ε′− + − + − + − + − =  (44) 

which is almost identical to what we would get for the one-dimensional case from our 

multi-dimensional expression (43), except that the temperature difference in the perfusion term 

somewhat differs from ours. Keller and Seiler obtained solutions assuming that the arterial blood 

enters the peripheral region at the isothermal core temperature and that the venous blood is 

completely equilibrated with the tissue at the cutaneous layer.      

 

Chato model 

Chato’s countercurrent heat transfer model [12] differs from Keller and Seiler [9] in its 

neglect of heat transfer between the blood and tissue. In this way, he was able to concentrate on the 

two temperatures instead of three as in Keller and Seiler. Chato’s one-dimensional model can easily 

be generated from our general expressions (37a) and (37b) along with (40a) and (41a), dropping the 

thermal inertia and conduction terms as 

( )f f

a a a v a
f p a a a f p a

dc u T a h T T c T
dx

ρ ε ρ ω′= − − −     (45a) 

Arteries

Veins

Capillaries

Tissue space
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( )f f

v v v a a
f p v v v f p a

dc u T a h T T c T
dx

ρ ε ρ ω′= − − +     (45b) 

where  

0
a

a au u xε ω′= −  and 0
a

a au u xε ω′= − +      (46a,b) 

Note that 0u is the apparent velocity at x=0 and that the right hand-side terms in the two equations 

(45a) and (45b) cancels out each other, as they should for this “perfect” heat exchange system. Chato 

obtained arterial and venous temperature profiles along the length of the vessels and demonstrated 

that the effect of perfusion bleed-off is to increase the heat transfer between the vessels as compared 

with the case of constant mass flow rate.  

 

Roetzel and Xuan model 

Roetzel and Xuan [11] used the theory of porous media to simulate a transient response of 

the limb to external stimulus, in which the effect of the countercurrent heat exchange on the 

temperature response is expected to be significant. Their energy equation for the tissue in our 

notation runs as 

( )

( ) ( ) ( ) ( )

1

1 1

s

s s

s
a s v s

s a a v v m
j j

T
c

t
T

k a h T T a h T T S
x x

ε ρ

ε ε

∂
−

∂
⎛ ⎞∂∂ ⎜ ⎟= − + − + − + −
⎜ ⎟∂ ∂⎝ ⎠

  (47) 

Comparison of the foregoing equation against our expression (43) for the tissue reveals that the 

perfusion term ( )f

a v
f p ac T Tρ ω′ − is missing. Obviously, they did not retain the term describing 

the transcapillary fluid exchange via arterial-venous anastomoses, namely,  

( )
int

/
f f

f
f p j j f p

A
c u T n dA V c Tρ ρ ω ′=∫ . If they did, they would have obtained our expression (43), 

which may be rearranged in their form as 

 
( )

( ) ( )( ) ( )( ) ( )

1

1 1
f f

s

s s

s
a s v s

s a a f p a v v f p a m
j j

T
c

t
T

k a h c T T a h c T T S
x x

ε ρ

ε ρ ω ρ ω ε

∂
−

∂
⎛ ⎞∂∂ ′ ′⎜ ⎟= − + + − + − − + −
⎜ ⎟∂ ∂⎝ ⎠

(48) 

In their model, the convection-perfusion parameters, namely, ( )ff f f pa h cρ ω ′± , are replaced by the 

interfacial convective heat transfer coefficients, f fa h . This difference should not be overlooked 

since the perfusion heat sources could be quite significant for the bioheat transfer in the extremities, 

as Chato [12] demonstrated using his model. 
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Concluding remarks 

 

A rigorous mathematical development based on the volume averaging theory has been 

presented to give a correct set of bioheat transfer equations for the blood flow and its surrounding 

biological tissue. The blood perfusion heat source term is identified as an extra surface integral term 

resulting from changing the sequence of integration and derivation, as we obtain the macroscopic 

energy equation by integrating the microscopic convection term within a local control volume. Using 

this general boiheat transfer model, we have revisited existing bioheat transfer models, such as 

Pennes, Wulff, Klinger, Cheng and Holmes, so as to point out possible shortcomings in the models. 

The two-energy equation model has been further extended to the three-energy equation model, 

to investigate the countercurrent heat exchange between the arterial and venous blood vessels in the 

circulatory system. Keller and Seiler model and Chato model may easily be generated, writing the 

present model for the idealized one-dimensional case. The present three-energy equation model in a 

multi-dimensional and anisotropic form is found to be quite general and can be applied to all regions 

peripheral heat transfer from the extremity to the surroundings. The three energy equations coupled 

with the continuity and Darcy’s laws may be solved to find both velocity and temperature fields, as 

we prescribe the spatial distributions of permeabilities, volume fractions, interfacial heat transfer 

coefficients and perfusion rates. 

As pointed out by Roetzel and Xuan [11], some physiological parameters such as porosity and 

specific surface area depend on such factors as the body temperature and interaction with the 

environment, as well as vasoconstrictor and vasodilator mechanisms. These physiological 

parameters and model constants, which should be determined experimentally, are urgently in need. 

Shortage of these experimental data, however, should not hinder us from applying the present 

bioheat transfer model to certain cases using some estimated values. It is believed that even the 

applications with the estimated values do not affect explanation of the applicability of the present 

bioheat transfer model. Such attempts are underway. 
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FIGURE CAPTIONS 

 

Figure 1 Schematic view of biological tissue  

Figure 2 Control volume in a porous medium 

Figure 3 Capillary blood flow and extravascular flow  

Figure 4 Schematic view of countercurrent heat exchange near the skin surface 

Figure 5 One-dimensional model for countercurrent heat exchange 

 
NOMENCLATURE 

 
A : surface area 
Aint : interface between the fluid and solid 
fa  : specific surface area  

ijb  : Forchheimer tensor 
cp : specific heat at constant pressure 
fh   : interfacial heat transfer coefficient  

k : thermal conductivity 
ijK  : permeability tensor 

jn  : unit vector pointing outward from the fluid side to solid side 
p : pressure 
mS  : metabolic reaction rate 

T : temperature 
iu  : velocity vector 
V  : representative elementary volume 
x, y : Cartesian coordinates 
α  : thermal diffusivity 
ε  : porosity 
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ν  : kinematic viscosity 
ρ  : density 
ω  : perfusion rate 
ω′  : net filtration rate 
  
Special symbols 
φ  : deviation from intrinsic average 
φ  : volume average 

, , ,f s a vφ  : intrinsic average 
 
Subscripts and superscripts 
a : artery 
dis : dispersion 
f : fluid 
s : solid 
v : vein 


