Characterization of *Paecilomyces cinnamomeus* from the camellia whitefly, *Aleurocanthus camelliae* (Hemiptera: Aleyrodidae), infesting tea in Japan

Tsutomu Saito a, Jun Takatsuka b, Mitsuaki Shimazu b

a Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan

b Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan

ABSTRACT

The whitefly, *Aleurocanthus camelliae* Kanmiya & Kasai (Hemiptera: Aleyrodidae), is an invasive species in Japan that was first discovered in 2004 on tea in Kyoto. Soon after its arrival epizootics of an entomopathogenic fungus were observed in populations of the whitefly in many tea-growing regions. Here we identify this fungus as *Paecilomyces cinnamomeus* (Petch) Samson & W. Gams (Hypocreales: Clavicipitaceae) based on morphological characteristics and molecular analyses. This is the first record of *P. cinnamomeus* in Japan and also the first time it has been recorded from the genus *Aleurocanthus*. A isolate of *P. cinnamomeus* caused greater than 50% and 90% infection in whitefly nymphs at 1×10^6 and 1×10^7 conidia/ml respectively, while the commercial mycoinsecticides Preferd® (*Isaria fumosorosea*) and Mycotal® (*Lecanicillium muscarium*) caused < 10% infection at their recommended field rates (5×10^6 and 9×10^6 conidia/ml, respectively), suggesting that *P. cinnamomeus* may be more useful as a control agent than the currently available mycoinsecticides. Optimum and upper limit temperatures for *in vitro* growth of *P. cinnamomeus* isolates were 22.5-25°C and 32.5°C, respectively. At field rates, the fungicide thiophanate-methyl caused some inhibition of *in vitro* growth of *P. cinnamomeus* isolates, and the bactericide copper oxychloride and the insecticides tolfenpyrad and methidathion were strongly inhibitory. The findings obtained in this study will be useful in the development of microbial control programs using *P. cinnamomeus* against *A. camelliae*.

Keywords:
Tea
Aleurocanthus camelliae
Paecilomyces cinnamomeus
Conoideocrella luteorostrata
Molecular analyses
Pesticides

* Corresponding author. Fax: +81 54 238 4790.

E-mail address: atsaito@ipc.shizuoka.ac.jp (T. Saito).
1. Introduction

In 2004, heavy whitefly infestations were first recorded on tea in Kyoto Prefecture, central Japan, and quickly spread to other Prefectures (Yamashita and Hayashida, 2006; Kasai et al., 2010). Infested tea plants were weakened due to sap loss and to the growth of sooty mold on honeydew-covered leaf surfaces during heavy infestations. Recently this whitefly has been described as a new species, *Aleurocanthus camelliae* Kanmiya & Kasai (Hemiptera: Aleyrodidae), Originally it had been thought to be *A. spiniferus* (Quaintance), a species infesting tea in China (Kanmiya et al., 2011). It is believed that *A. camelliae* was introduced to Japan from China (Kasai et al., 2010).

Simultaneously with outbreaks of the whitefly, fungal epizootics were also observed in *A. camelliae* nymphs in many tea fields. Infected whitefly nymphs all had the common symptom of being covered with a cinnamon-colored mat of mycelium. In this study, the fungus was identified based on morphological characteristics and phylogeny of the ITS rDNA, the β-tubulin gene and the translation elongation factor 1α gene. In addition, the virulences of the fungal isolates were determined and compared with the mycoinsecticides Preferd® (*Isaria fumosorosea*) and Mycotal® (*Lecanicillium muscarium*), which are used commercially to control vegetable whiteflies such as *Bemisia tabaci* (Gennadius) B biotype (formerly *B. argentifolii*) and *Trialeurodes vaporariorum* (Westwood). Moreover, the effects of temperature and pesticides (a bactericide, fungicides and insecticides) on fungal growth were also evaluated. Together, these data inform our understanding of how this fungus might be encouraged under the environmental conditions found in Japanese tea-growing regions and integrated with existing whitefly control strategies.

2. Materials and Methods

2.1. Morphological observation and isolation of the fungus

Infected nymphs were collected from commercial tea plants growing in Kyoto, Shiga and Mie Prefectures, Japan, between August 2009 and February 2010 when heavy infections were observed. Twelve isolates were established as pure cultures on Sabouraud dextrose agar (SDA) (Difco Laboratories Inc., MI, USA) from conidia on cadavers collected in different fields in each Prefecture (Table 1), and deposited in the culture collection of FFPRI (Forestry and Forest Products Research Institute), Tsukuba, Ibaraki, Japan. Infected cadavers were observed and photographed using a stereo microscope (MZ-16, Leica Microsystems GmbH, Wetzlar, Germany) and a scanning electron microscope (SEM; NeoScope JCM-5000, Jeol, Tokyo, Japan). The sizes of conidiogenous cells and conidia of all the isolates were measured using a light microscope (S-Ke, Nikon, Tokyo, Japan).

2.2. Molecular analyses
The twelve isolates were cultured on SDA for 5 days at 25°C. Mycelia were scraped from the plates using a 200-μl pipette tip and suspended in TE buffer (10mM Tris, 1mM EDTA, pH 8.0). Each suspension was homogenized with a hand homogenizer for 30 s and the DNA extracted using a PUREGENE Tissue DNA Purification kit (Qiagen, Tokyo, Japan). Morphological studies of the isolates suggested that they were likely to belong to the genus Paecilomyces. To confirm this attribution, or otherwise, DNA sequences and phylogenetic analyses were made on the same three sequence regions that had been used previously to analyze relationships among fungal species placed in Paecilomyces and the neighboring Conoideocrella and Isaria genera (Luangsa-ard et al., 2005; Johnson et al., 2009).

Polymerase chain reactions (PCRs) were performed to amplify the ITS rDNA with primers ITS4 and ITS5 (White et al., 1990), the partial β-tubulin gene (TUB) sequences with primers bt2a and bt2b (Glass and Donaldson, 1995) and the partial translation elongation factor 1α gene (TEF) sequences with primers 983F and 2218R (Rehner and Buckley, 2005). Amplification reactions were made in volumes of 50 µl containing 200 µM dNTPs, 1.25 units of Ex Taq DNA polymerase (Takara Bio Inc., Shiga, Japan), 0.4 µM primer, 1× Ex Taq buffer (Takara Bio Inc. Shiga, Japan) and 10 ng of template DNA. The ITS rDNA was amplified using the same PCR conditions, except for the annealing temperature which was 55°C. PCR conditions for the TUB were 1 cycle at 94°C for 4 min, followed by 35 cycles at 94°C for 1 min, 58°C for 1 min, 72°C for 2 min, and then 1 cycle at 72°C for 7 min. Amplification of the TEF was made under the following conditions: 1 cycle at 94°C for 4 min followed by 37 cycles at 94°C for 30 s, 60°C for 1 min, 72°C for 1 min, and then 1 cycle at 72°C for 7 min. Three µl of each PCR suspension was electrophoresed through a 1.5% agarose gel, stained with ethidium bromide and visualized under ultraviolet light to check for amplification of bands of an expected size. Singly amplified products of 630 bp for ITS rDNA were purified using the QIAquick PCR Purification kit (Qiagen, Tokyo, Japan). The amplified products of 380 and 1030 bp for the TUB and TEF, respectively, were excised from the gel and purified using QIAquick Gel Extraction Kit (Qiagen, Tokyo, Japan).

Purified PCR products were sub-cloned into the p3T cloning vector (MoBiTec GmbH, Göttingen, Germany). DNA sequence analysis of both strands was done with a capillary sequencer (ABI 3130XL, Applied Biosystems, CA, USA). Three clones were sequenced for each strand. DNA sequences were subjected to a Basic Local Alignment Search Tool (BLAST) search to identify sequences deposited in GenBank that had a significant homology. The sequences were aligned with the corresponding sequences of the reference isolates and species shown in Table 2 using ClustalW incorporated in MEGA 4 (Tamura et al., 2007). In the ITS rDNA and TUB phylogenies, the fungal isolates that were used previously to clarify relationships amongst fungal species placed in Isaria and Paecilomyces sect. Paecilomyces (Luangsa-ard et al., 2005) were included. A Paecilomyces sp. isolate from A. spiniferus on tea in China was also included in the ITS phylogeny to understand the relationship between this isolate and our isolates. In the TEF phylogeny, some fungal isolates belonging to Clavicipitaceae were included. These isolates were used in the Johnson et al. (2009) study on systematics of fungi including Conoideocrella spp. that had been referred to as species of
the genus *Torrubiella*. Alignment gaps were treated as missing data in the analyses. Phylogenetic
trees were constructed by the neighbor-joining method of MEGA 4 (Tamura et al., 2007). Bootstrap
analyses of 1000 replications were made to determine the supporting values of branches. *Isaria*
farinosa and *I. tenuipes* were the designated outgroups.

2.3. Bioassays

The three isolates Kyoto-32, Shiga-22 and Mie-1 were used in bioassays because they all
sporulated well on medium. Conidia of each isolate were harvested from 20 plate cultures that had
been grown for 3 weeks on SDA at 25 ± 1°C in darkness by adding 10 ml of sterile 0.1% Tween 80
to each plate, agitating with a sterile spreader and pipetting the conidia suspension into a sterile flask.
Conidial suspensions were filtered through sterile gauze, and conidial concentrations estimated using
a Thoma haemocytometer and adjusted to provide suspensions containing 1 × 10⁶, 1 × 10⁷ and 1 × 10⁸ conidia/ml. The mycoinsecticides Preferd® (Tokai Bussan, Nagoya, Japan; active ingredient *I.
fumosorosea*) and Mycotal® (Arista LifeSience, Tokyo, Japan; active ingredient *L. muscarium*) were
also used at their recommended field application rates (1g/L). The actual conidial concentrations of
these field rates were determined as 5 × 10⁶ and 9 × 10⁶ conidia/ml, respectively, using a Thoma
haemocytometer.

Field-collected nymphs of *A. camelliae* on tea shoots were used. Tea shoots were collected from
an experimental field at the Kyoto Prefectural Tea Experiment Station in Uji, Kyoto, on March 11, 2010. No pesticides had been applied for more than one year, and entomopathogenic fungi infecting
A. camelliae had not been observed. Each tea shoot collected was approximately 15 cm in length
with four or five leaves and approximately 150 (ranging from 135 to 171) overwintering mature
nymphs (3rd and 4th instars) of *A. camelliae*. Before inoculation, the viability of each isolate was
checked; germination rate of conidia was > 90% in all cases. Three replicate shoots were used for
each treatment. The three shoots were inoculated by gentle agitation in 200 ml of the same conidial
suspension for 10 sec. Control shoots were treated in the same way but with sterile 0.1% Tween 80
only. The base of each shoot was then inserted into a polyethylene tube containing water, enclosed in
a polyethylene bag to maintain a high humidity and incubated under controlled conditions of 16L:
8D and 20 ± 1°C. After inoculation the shoots were checked daily using a stereo microscope to
record the first appearance of infection. One, 2 and 3 weeks after inoculation the proportion of
nymphs that had become infected by the fungus was calculated from the number of dead nymphs
exhibiting mycosis and the number of living nymphs remaining that did not exhibit mycosis, as
observed under a stereo microscope.

2.4. Effect of temperature

The three isolates, Kyoto-32, Shiga-22 and Mie-1 used in the bioassays, were cultured on SDA at
20 ± 1°C in darkness for 2 weeks. Plugs were taken from the growing margin of each colony using a
3 mm diameter sterile cork borer and placed individually into the center of sterile 9 cm triple vented
Petri dishes containing 30 ml of SDA. Replicate plates for each isolate were placed into incubators at 10, 15, 20, 22.5, 25, 27.5, 30, 32.5 and 35°C and incubated in darkness for 3 weeks. Colony diameter was then measured in two perpendicular directions, and the mean determined after subtraction of 3 mm to account for the original inoculation plug. Five replicate plates for each isolate were used at each temperature.

2.5. Effect of pesticides

A total of 30 commercial pesticides including 12 fungicides, one bactericide and 17 insecticides were evaluated. These pesticides are in general use to control insect pests and diseases on tea in Japan. Each pesticide was added to sterilized SDA medium at the recommended application rate once it had cooled to below 50°C and mixed using a stirrer before pouring the agar and allowing it to set. Their effects on mycelial growth of Kyoto-32, Shiga-22 and Mie-1 used in the previous experiments were determined using the same procedures as described above for the temperature experiment except that they were incubated at 25 ± 1°C.

2.6. Statistical analyses

The proportion of nymphs infected in bioassays were arcsin square-root transformed and analyzed using ANOVA, followed by Tukey HSD tests to compare infection rates amongst treatments. Data from the pesticide experiment were analyzed using ANOVA, followed by a Dunnett test to detect differences between each pesticide and the control. All analyses were conducted using the software package SPSS (SPSS, 2009).

3. Results

3.1. Description of the fungus

The entomopathogenic fungus was observed infecting nymphs but not eggs or adults in the field. Infected nymphs were covered with a thick cinnamon-colored mat of mycelium that appeared brush-like in form (Fig. 1A). The stromata were raised, pulvinate, tomentose and 1–2 mm in diameter with a hypothallus of thin and smooth-walled hyphae expanding radially to, commonly, 2–3 mm from the host on the leaf surface (Fig. 1B). Large hypothalli expanded to 15–20 mm in total diameter. Conidiogenous cells were phialidic, flask-shaped, and erected loosely on the hypothallus and rarely on the stromata (Fig. 1C). Conidia were fusiform and in basipetal chains (Fig. 1C and D). Perithecia were lacking on the stromata.

All isolates developed flattened, cinnamon-colored colonies in vitro and released a deep purple-red diffusible pigment into the medium, with the exception of Mie-1 that produced white colonies and no diffusible pigmentation. Massed conidia were green and produced sparsely on the colony. The mean sizes of conidiogenous cells (n = 30 per isolate) and conidia (n = 50 per isolate) of...
the 12 isolates ranged between 2.4–2.8 × 9.8–12.5 μm and 2.3–2.6 × 5.2–7.6 μm, respectively (Table 1). Perithecia were also lacking in vitro.

Based on the taxonomic keys of Samson (1974), the fungus was morphologically identical to *Paecilomyces cinnamomeus* (Petch) Samson & W. Gams.

3.2. Molecular analyses

All isolates used in the present study had an identical sequence for 586 bp of ITS rDNA. A BLAST search indicated that the ITS rDNA sequence of our isolates had 99% alignment with a *Paecilomyces* sp. isolate from *A. spiniferus* on tea in China. The second most significant alignment was 98% with the sequences of *P. cinnamomeus* and *Conoideocrella luteorostrata* (Zimm.) D. Johnson, G. H. Sung, Hywel-Jones & Spatafora (formerly *Torrubiella luteorostrata*) (Johnson et al., 2009). In the ITS rDNA phylogram, all of our isolates were grouped with *Paecilomyces* sp., *C. luteorostrata* and *P. cinnamomeus* and were well supported by a bootstrap value of 99% (Fig. 2).

The partial sequences of TUB for our isolates had significant alignments of 89–99% with *C. luteorostrata* and *P. cinnamomeus*. A TUB phylogram positioned our isolates in a clade that included *C. luteorostrata* and *P. cinnamomeus* and was supported by a bootstrap value of 100% (Fig. 3).

The partial sequences of TEF for our isolates had a 99% alignment with *C. luteorostrata* and the second most significant alignment was with the sequences of *Conoideocrella tenuis* (Petch) D. Johnson, G. H. Sung, Hywel-Jones & Spatafora (formerly *Torrubiella tenuis*) in the family Clavicipitaceae (Johnson et al., 2009). A phylogram of TEF indicated that our isolates were positioned with *C. luteorostrata* in a clade that was supported by a bootstrap value of 99% (Fig. 4).

The sequences were deposited in GenBank with accession numbers listed in Table 1.

3.3 Bioassays

Within 5 days of inoculation infected nymphs died and appeared white or cinnamon-colored with hyphae growing from the edges of their bodies. Subsequently the host body became covered with thick-walled cinnamon-colored hyphae. The appearance of the artificially induced infection was similar to that of natural infections in the field.

Bioassays were ended 3 weeks after inoculation when whitefly adults began to emerge (Fig. 5). No mycosis was recorded from nymphs in the control treatment. At week 3 there were significant differences among the isolates in the proportion of nymphs that became infected in the low ($F = 5.51, p = 0.024$), medium ($F = 71.13, p < 0.001$) and high conidial concentration treatments ($F = 83.80, p < 0.001$). At the low concentration (1 × 10⁶ conidia/ml), Kyoto-32 caused the greatest percent infection (52.3%) which was significantly higher than that caused by Shiga-22 but not Mie-1 (Tukey HSD, $p < 0.05$). At the medium concentration (1 × 10⁷ conidia/ml), Kyoto-32 and Shiga-22 infected 91.7% and 81.7% of nymphs respectively and these percentages were significantly greater than that for Mie-1 (Tukey HSD, $p < 0.05$). At the high concentration (1 × 10⁸ conidia/ml), Kyoto-32, Shiga-22 and Mie-1 all infected more than 85% of nymphs and there were no significant differences
amongst the isolates (Tukey HSD, \(p > 0.05 \)). Both mycoinsecticides (Preferd® at \(5 \times 10^6 \) conidia/ml and Mycotal® at \(9 \times 10^6 \) conidia/ml) infected < 10\% of nymphs which was not significantly different to the control where there was 0\% infection (Tukey HSD, \(p > 0.05 \)).

3.4. Effect of temperature

The three isolates, Kyoto-32, Shiga-22 and Mie-1, grew most rapidly between 22.5\(^\circ\)C and 25\(^\circ\)C and ceased growth at 32.5\(^\circ\)C (Fig. 6).

3.5. Effect of pesticides

There were significant differences in growth rates among treatments for Kyoto-32 (\(F = 94.49, p < 0.001 \)), Shiga-22 (\(F = 209.03, p < 0.001 \)) and Mie-1 (\(F = 225.75, p < 0.001 \)). The bactericide copper oxychloride completely inhibited growth of all three isolates (Fig. 7). Most fungicides were harmful to the isolates, especially difenoconazole and tebuconazole, that completely inhibited growth of Shiga-22, while thiophanate-methyl had no effect on growth of Shiga-22 (\(p = 0.78 \)) and showed only slight inhibition of growth of Kyoto-32 (\(p = 0.03 \)) and Mie-1 (\(p = 0.06 \)). Some insecticides, including tolfenpyrad and methidathion, were extremely inhibitory to all isolates, while imidacloprid, thiacloprid and pyridaben had no effect on growth of any isolate.

4. Discussion

Morphological characteristics of the fungal isolates from \(A. camelliae \) on tea agreed with those for \(P. cinnamomeus \) (Samson, 1974) that was reported to be the anamorph (without perithecia) of \(C. luteorostrata \) (the telemorph with perithecia) by Hywel-Jones (1993). The relationship between both states was confirmed by phylogenetic analyses using the 28S rDNA (Artjariyasripong et al., 2001), the 18S rDNA (Luangsa-Ard et al., 2004) and the ITS rDNA and TUB (Luangsa-Ard et al., 2005). These findings are supported by the present study which demonstrated that our isolates fell into a clade with \(P. cinnamomeus \) and \(C. luteorostrata \) in the phylogenetic analyses of the ITS rDNA and TUB. Though recent phylogenetic work indicates that \(C. luteorostrata \) and \(C. tenuis \) are closely related species forming a sister group within the family Clavicipitaceae (Johnson et al., 2009), phylogenetic analysis using TEF also positioned our isolates with \(C. luteorostrata \) in a 99\% supported clade. In addition, no perithecia could be found on cadavers from the field or from bioassays or \textit{in vitro} cultures. These findings suggest that the fungus should be placed as the anamorph \(P. cinnamomeus \) of \(C. luteorostrata \). \textit{Some Paecilomyces} species (including \(P. cinnamomeus \)) still have taxonomic issues (Luangsa-Ard et al., 2005, 2011), and these issues remain unresolved. Therefore, here we refer to our isolates as \(P. cinnamomeus \).

\textit{Paecilomyces cinnamomeus} can be distinguished from the other \textit{Paecilomyces} spp. by their
fusiform conidia, pigmented hyphae and deep purple-red diffusible pigment in the medium (Samson, 1974; Hywel-Jones, 1993). One of our isolates, Mie-1, produced a white colony and no pigmentation in vitro, although the isolate did produce cinnamon-colored stromata in vivo on hosts as did the other isolates. This suggests that these isolates have morphological and physiological variation in response to media.

Since the relationship between *P. cinnamomeus* and *C. luteorostrata* has only recently been discovered, the two species have generally been studied separately. *Paecilomyces cinnamomeus* has been recorded in Thailand, North and Central America, Cuba, Mexico and Ghana, and is known as a pathogen on scale insects and the citrus whitefly, *Dialeurodes citri* (Ashmead) (Samson, 1974; Hywel-Jones, 1993). In contrast, *C. luteorostrata* has been recorded from scale insects and whiteflies in Thailand, Java, Seychelles, Ceylon, Samoa, New Zealand and the Far East of Russia (Petch, 1924; Dingley, 1953; Kobayasi, 1982; Kobayasi and Shimizu, 1982; Hywel-Jones, 1993). Our record of *P. cinnamomeus* is the first record of this species in Japan and the first time that the host was from the genus *Aleurocanthus*. However, the fungus possibly occurs on *A. spiniferus* infesting tea in China, because phylogeny of the ITS rDNA of our isolates fell into the clade of a *Paecilomyces* sp. that was isolated from *A. spiniferus* on tea in China (Huang et al., 2002). Moreover, a fungal species reported as *P. aleurocanthus*, which was isolated from *A. spiniferus* on tea in China (Tang et al., 2003), appears to be *P. cinnamomeus* according to attributes such as pigmented hyphae, deep purple-red pigment and green colored conidia. There are also other Chinese records of *Paecilomyces* sp. from *A. spiniferus* on tea (e.g. Han and Li, 2001; Tang, 2001; Guo et al., 2006).

In Thailand, the *P. cinnamomeus* and *C. luteorostrata* states occur throughout the year apart from the hot dry season, and both were discovered simultaneously on stroma emerging from infected insects (Hywel-Jones, 1993). Moreover, a second strain from a multiple-conidia isolation of the *P. cinnamomeus* state produced perithecia in vitro after 6 months (Hywel-Jones, 1993). In Japan, however, infected whiteflies attached to tea foliage were found throughout the year including the hot and wet season (summer) and cold dry season (winter), and perithecia could not be found on hosts in the field or in our bioassays. Furthermore, no perithecia formation was observed on 6 month old in vitro cultures (data not shown). These findings suggest that maybe only the *P. cinnamomeus* state occurs in Japan. Further research directed toward factors inducing both *P. cinnamomeus* and *C. luteorostrata* states is necessary.

When the relationship between temperature and growth of *P. cinnamomeus* was unknown, Hywel-Jones (1993) suggested that *P. cinnamomeus* should be considered as an entomopathogen only in tropical and subtropical regions. However, in this study, *P. cinnamomeus* grew most rapidly between 22.5°C and 25°C and ceased growth at 32.5°C, suggesting that the fungus prefers moderate temperatures. In Kyoto, Shiga and Mie Prefectures where our isolates were collected, the lowest air temperature is below 0°C in the winter and the highest air temperature is above 35°C in the summer. However, the microclimate of commercial tea bushes, where many plants are grown closely together, may provide not only the moderate temperatures but also the high humidity necessary to promote infection by *P. cinnamomeus* and the development of epizootics in whitefly populations. In China, entomopathogenic fungi are important natural mortality factors of whiteflies in tea-growing areas.
The citrus whitefly, *D. citri*, has been recorded as a host of *P. cinnamomeus* (Samson, 1974). This whitefly is a common pest on Satsuma mandarin, *Citrus unshiu* Marc., which is widely grown in Japan. However, *P. cinnamomeus* has not been found on *D. citri* in Japan. Moreover, *P. cinnamomeus* was highly virulent to the tobacco whitefly, *B. tabaci* B biotype, in the laboratory (Saito, unpublished data), which is also widespread in Japan, but again, infection by *P. cinnamomeus* in the field has never been recorded. It is possible either that *P. cinnamomeus* had been restricted to forests before invasion of *A. camelliae* since the primary habitat of the fungus is forests (Hywel-Jones, 1993), or that it was introduced simultaneously into Japan together with *A. camelliae*.

Preferd® and Mycotal®, mycoinsecticides currently used to control whiteflies, caused very little infection (<10%) in *A. camelliae* at recommended field application rates (5 × 10⁶ and 9 × 10⁶ conidia/ml, respectively), suggesting that neither are useful as control agents of this whitefly. In contrast, when isolate Kyoto-32 was used at the lower concentration of 1 × 10⁶ conidia/ml, the proportion of nymphs becoming infected (>50%) was greater than that achieved by the mycoinsecticides. At a concentration of 1 × 10⁷ conidia/ml, the proportion of nymphs infected by isolate Kyoto-32 reached >90%. These findings suggest that *P. cinnamomeus* may be more useful as a control agent for augmentation into tea fields than the currently available commercial mycoinsecticides.

Whether *P. cinnamomeus* can be used as a control agent for augmentative control or natural control will be influenced by interactions with pesticides that are currently in use in tea. For example, previous studies have shown that fungicides may disrupt control by entomopathogenic fungi, thereby resulting in extremely high populations of insect pests (Steinkraus, 2007). In this study, all the fungicides evaluated significantly inhibited growth of *P. cinnamomeus* although thiophanate-methyl was relatively safe for the fungus. The high susceptibility of the fungus to the bactericide copper hydroxide is interesting since this bactericide has different effects depending on the fungus species and whether in vitro growth or germination are being considered; it strongly affects *Lecanicillium* spp. (Saito, 1988; Saito and Yabuta, 1996) but not *Beauveria bassiana* (Saito, 1984). It is necessary to note that some insecticides e.g., tolfenpyrad and methidathion, were also highly inhibitory to the fungus. Further studies will be needed to determine what effect these pesticides may have on fungal efficacy in the field.

Acknowledgements

We are grateful to Y. Yoshiyasu and A. Kasai (Kyoto Prefectural University) for promoting this program and to K. Yamashita (Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Center) for providing the whitefly. We thank co-operators in Kyoto, Shiga and Mie Prefecture for collecting infected whiteflies. We thank Dr. J.K. Pell for critical review and copyediting of the manuscript. We also appreciate critical comments from X-F. Chen and M-J. Tang (Tea Research Institute, Chinese Academy of Agricultural Science). This study was funded in part by a
Grant-in-Aid for Utilizing Advanced Technologies in Agriculture, Forestry and Fisheries (21002) supported by MAFF.

References

Captions of Figures

Fig. 1. *Paecilomyces cinnamomeus* as an entomopathogenic fungus on the camellia spiny whitefly, *A. camelliae*. (A) Naturally infected larvae in a tea growing field, (B) cinnamon-colored stroma on the host and conidia on hypothalli expanding on a tea leaf, (C) conidiogenous cells and conidia, and (D) conidia.

Fig. 2. Neighbor-joining tree based on analysis of the ITS rDNA sequences showing the link between isolates from *A. camelliae* and *Paecilomyces* sp., *C. luteorostrata* and *P. cinnamomeus*. Numbers above or below the nodes indicate bootstrap values (> 50%) generated after 1000 replications. Branch termini are labelled according to species and GenBank accession numbers. Species names were expressed as the anamorph or telemorph according to the morph of the analyzed samples.

Fig. 3. Neighbor-joining tree based on analysis of the partial β-tubulin gene sequences showing the link between isolates from *A. camelliae* and *C. luteorostrata* and *P. cinnamomeus*. Numbers above or below the nodes indicate bootstrap values (> 50%) generated after 1000 replications. Branch termini are labelled according to species and GenBank accession numbers. Species names were expressed as the anamorph or telemorph according to the morph of the analyzed samples.

Fig. 4. Neighbor-joining tree based on analysis of the partial translation elongation factor 1α gene sequences showing the link between isolates from *A. camelliae* and *C. luteorostrata*. Numbers above or below the nodes indicate bootstrap values (> 50%) generated after 1000 replications. Branch termini are labelled according to species and GenBank accession numbers. Species names were expressed as the anamorph or telemorph according to the morph of the analyzed samples.

Fig. 5. Proportion of nymphs infected 1, 2 and 3 weeks after inoculation with isolates Kyoto-32, Shiga-22, Mie-1 and the mycoinsecticides (Preferd® and Mycotal®). The isolates were inoculated at three different concentrations of conidia, the low concentration (1 × 10⁶ conidia/ml), the medium concentration (1 × 10⁷ conidia/ml) and the high concentration (1 × 10⁸ conidia/ml). The mycoinsecticides Preferd® and Mycotal® were inoculated at their recommended field application rates that were measured as conidial concentrations of 5 × 10⁶ and 9 × 10⁶ conidia/ml, respectively. Error bars represent one standard error of 3 replicates. Columns followed by different letters in the same week of each inoculum are significantly different at the 5% level using Tukey HSD test.
Fig. 6. Effect of temperature on growth of the three isolates, Kyoto-32, Shiga-22, Mie-1. Colony diameter was determined 3 weeks after inoculation. Error bars represent standard error of 5 replicates.

Fig. 7. Effect of pesticides on growth of the three isolates, Kyoto-32, Shiga-22 and Mie-1. Colony diameter was measured 3 weeks after inoculation. Error bars represent one standard error of 3 replicates. Asterisks indicate significant differences between each pesticide and the control at the 5% level using the Dunnet test.
<table>
<thead>
<tr>
<th>Isolates</th>
<th>Sites and dates of collection</th>
<th>Cultural observation</th>
<th>Size (µm, mean ± SE)</th>
<th>GenBank accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conidiogenous cells</td>
<td>β-tubulin genotype</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conidia</td>
<td></td>
</tr>
<tr>
<td>Kyoto-26</td>
<td>Soraku, Kyoto, 2 Nov. 2009</td>
<td>Cinnamon Yes</td>
<td>2.5 ± 0.12 × 9.8 ± 0.44</td>
<td>AB649298</td>
</tr>
<tr>
<td>Kyoto-31</td>
<td>Soraku, Kyoto, 14 Oct. 2009</td>
<td>Cinnamon Yes</td>
<td>2.6 ± 0.12 × 11.1 ± 0.75</td>
<td>AB649299</td>
</tr>
<tr>
<td>Kyoto-32</td>
<td>Soraku, Kyoto, 14 Oct. 2009</td>
<td>Cinnamon Yes</td>
<td>2.5 ± 0.06 × 11.4 ± 0.86</td>
<td>AB649300</td>
</tr>
<tr>
<td>Shiga-1</td>
<td>Koga, Shiga, 17 Sep. 2009</td>
<td>Cinnamon Yes</td>
<td>2.7 ± 0.14 × 12.5 ± 0.77</td>
<td>AB649301</td>
</tr>
<tr>
<td>Shiga-2</td>
<td>Gamo, Shiga, 17 Sep. 2009</td>
<td>Cinnamon Yes</td>
<td>2.8 ± 0.09 × 10.5 ± 0.77</td>
<td>AB649302</td>
</tr>
<tr>
<td>Shiga-4</td>
<td>Koga, Shiga, 19 Nov. 2009</td>
<td>Cinnamon Yes</td>
<td>2.9 ± 0.13 × 10.3 ± 0.70</td>
<td>AB649303</td>
</tr>
<tr>
<td>Shiga-11</td>
<td>Koga, Shiga, 19 Nov. 2009</td>
<td>Cinnamon Yes</td>
<td>2.6 ± 0.11 × 12.1 ± 0.80</td>
<td>AB649304</td>
</tr>
<tr>
<td>Shiga-12</td>
<td>Koga, Shiga, 19 Nov. 2009</td>
<td>Cinnamon Yes</td>
<td>2.8 ± 0.08 × 10.8 ± 0.65</td>
<td>AB649305</td>
</tr>
<tr>
<td>Shiga-22</td>
<td>Koga, Shiga, 19 Nov. 2009</td>
<td>Cinnamon Yes</td>
<td>2.7 ± 0.16 × 12.1 ± 0.58</td>
<td>AB649306</td>
</tr>
<tr>
<td>Mie-1</td>
<td>Taki, Mie, 20 Oct. 2009</td>
<td>White No</td>
<td>2.8 ± 0.05 × 12.2 ± 0.94</td>
<td>AB649307</td>
</tr>
<tr>
<td>Mie-2</td>
<td>Watarai, Mie, 20 Oct. 2009</td>
<td>Cinnamon Yes</td>
<td>2.6 ± 0.06 × 12.3 ± 0.57</td>
<td>AB649308</td>
</tr>
<tr>
<td>Mie-41</td>
<td>Kameyama, Mie, 11 Mar. 2010</td>
<td>Cinnamon Yes</td>
<td>2.4 ± 0.12 × 10.2 ± 0.64</td>
<td>AB649309</td>
</tr>
<tr>
<td>Specimens</td>
<td>Host taxon</td>
<td>GenBank accession no.</td>
<td>ITS rDNA</td>
<td>β-tubulin gene</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Aschersonia badia</td>
<td>Scale insect (Hemiptera)</td>
<td>DQ522317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. placenta</td>
<td>Scale insect (Hemiptera)</td>
<td>EF469066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balansia henningsiana</td>
<td>Panicum sp. (Poaceae)</td>
<td>AY496610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. pilaeformis</td>
<td>Poaceae</td>
<td>DQ522319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamaeleomycetes viridis</td>
<td>Chameleo lateralis (Chamaeleonidae)</td>
<td>AY624197</td>
<td>AY624235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chameleo lateralis (Chamaeleonidae)</td>
<td>AY624236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Claviceps fusiformis</td>
<td>Poaceae</td>
<td>DQ522320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. paspali</td>
<td>Poaceae</td>
<td>DQ522321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. purpurea</td>
<td>Dactylis glomerata (Poaceae)</td>
<td>AF543777</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conoideocrella luteocrostrata</td>
<td>Hemipteran insect</td>
<td>AY624206</td>
<td>AY624237</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scale insect (Hemiptera)</td>
<td>EF468800</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scale insect (Hemiptera)</td>
<td>EU369028</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scale insect (Hemiptera)</td>
<td>EU369029</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scale insect (Hemiptera)</td>
<td>EU369030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epichloe typhina</td>
<td>Festuca rubra (Poaceae)</td>
<td>AF543777</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypocreella schizostachyi</td>
<td>Scale insect (Hemiptera)</td>
<td>DQ522346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isaria färinosa</td>
<td></td>
<td>AY624179</td>
<td>AY624217</td>
<td></td>
</tr>
<tr>
<td>l. tenuipes</td>
<td>Lepidopteran pupa</td>
<td>DQ522348</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lepidopteran larva</td>
<td>AY624195</td>
<td>AY624233</td>
<td></td>
</tr>
<tr>
<td>Metacordyceps chlamydospora</td>
<td>Egg of slug (Diplopona)</td>
<td>DQ522327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metarhizium album</td>
<td>Cofana spectra (Hemiptera)</td>
<td>DQ522352</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. anisopliae</td>
<td>Oryctes rhinoceros (Coleoptera)</td>
<td>AF543774</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. cylindrospora</td>
<td>Hemipteran adult</td>
<td>AY624204</td>
<td>AY624247</td>
<td></td>
</tr>
<tr>
<td>M. flavoviride</td>
<td>Hemipteran adult</td>
<td>AF368270</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nilaparvata lugens (Hemiptera)</td>
<td>AY624248</td>
<td>AY624249</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coleopteran larva</td>
<td>AY624246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myriogenospora atramentosa</td>
<td>Andropogen virginicis (poaceae)</td>
<td>AY489628</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomuraea rileyi</td>
<td>Trichoplusia ni (Lepidoptera)</td>
<td>AY624205</td>
<td>AY624250</td>
<td></td>
</tr>
<tr>
<td>Orbiocrella petchii</td>
<td>Scale insect (Hemiptera)</td>
<td>EU369022</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scale insect (Hemiptera)</td>
<td>EU369023</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scale insect (Hemiptera)</td>
<td>EU369021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paecilomyces carneus</td>
<td>Soil</td>
<td>AY624170</td>
<td>AY624210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dune sand</td>
<td>AY624171</td>
<td>AY624209</td>
<td></td>
</tr>
<tr>
<td>P. cinnamomeus</td>
<td>Coccidae insect</td>
<td>AY624214</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Living leaf of Syzygium jambos (Myrtaceae)</td>
<td>AY624174</td>
<td>AY624213</td>
<td></td>
</tr>
<tr>
<td>P. marquandii</td>
<td>Soil</td>
<td>AY624193</td>
<td>AY624229</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AB099511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. penicillatus</td>
<td>Rotting mushroom</td>
<td>AY624194</td>
<td>AY624232</td>
<td></td>
</tr>
<tr>
<td>Paecilomyces sp.</td>
<td>Aleurocanthus spiniferus (Hemiptera)</td>
<td>AF368806</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pochonia goniodites</td>
<td>Nematode</td>
<td>DQ522354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purpureocillium lilacinum</td>
<td>Aethus sp. (Hemiptera)</td>
<td>AY624190</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Egg mass of Meliodogyne</td>
<td>AY624228</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Egg mass of Meliodogyne</td>
<td>AY624188</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil</td>
<td>AY624189</td>
<td>AY624227</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cydnid bug (Hemiptera)</td>
<td>AY624226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regiocrella camerunensis</td>
<td>Scale insect (Hemiptera)</td>
<td>DQ118743</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotiferophthora angustispora</td>
<td>Rotifer (Rotifera)</td>
<td>AF543776</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verticillium epiphylum</td>
<td>Hemilea vastatrix (Uredinales)</td>
<td>DQ522361</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1 \times 10^6 \text{ conidia/ml}

- Kyoto-32
- Shiga-22
- Mie-1
- Control

1 \times 10^7 \text{ conidia/ml}

- Kyoto-32
- Shiga-22
- Mie-1
- Control

1 \times 10^8 \text{ conidia/ml}

- Kyoto-32
- Shiga-22
- Mie-1
- Control

Field application rates

- Preferd®
- Mycotal®
- Control