Stabilization of a hydrophobic natural dye by intercalation into organo-montmorillonite

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2014-03-04
	キーワード (Ja):
	キーワード (En):
	作成者: Kohno, Yoshiumi, Inagawa, Mayu, Ikoma, Shuji,
	Shibata, Masashi, Matsushima, Ryoka, Fukuhara, Choji,
	Tomita, Yasumasa, Maeda, Yasuhisa, Kobayashi,
	Kenkichiro
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/7626

1	Stabilization of a hydrophobic natural dye by intercalation into organo-
2	montmorillonite
3	
4	Yoshiumi Kohno ^{<i>a</i>,*} , Mayu Inagawa ^{<i>a</i>} , Shuji Ikoma ^{<i>b</i>} , Masashi Shibata ^{<i>c</i>} , Ryoka Matsushima
5	^a , Choji Fukuhara ^a , Yasumasa Tomita ^a , Yasuhisa Maeda ^a , Kenkichiro Kobayashi ^a
6	
7	^a Department of Materials Science and Chemical Engineering, Faculty of Engineering,
8	Shizuoka University
9	3-5-1, Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
10	
11	^b Division of Applied Science and Chemical Engineering, Faculty of Engineering, Shizuoka
12	University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8561, Japan
13	
14	^c School of Bioscience and Biotechnology, Tokyo University of Technology, 1404 Katakura,
15	Hachioji, Tokyo 192-0982, Japan
16	
17	* Corresponding author; e-mail: tykouno@ipc.shizuoka.ac.jp; phone: +81-53-478-1623

19 Abstract

20	The stability of the naturally occurring annatto dye against irradiation with visible light
21	was enhanced by intercalation into octyl trimethylammonium and dodecyl
22	trimethylammonium montmorillonite. The intercalated dye exhibited improved light fastness.
23	The effect of the stability enhancement was more distinct with dodecyl trimethylammonium
24	montmorillonite. The reason of the improvement was proved to be the hindrance from the
25	contact with the atmospheric oxygen because the dye molecules were incorporated in the
26	interlayer space. The amount of the adsorbed dye could be increased more than ten times
27	when an aqueous ethanolic solution was used instead of pure ethanol as solvent in the
28	adsorption process.

31 Keywords: annatto dye, organo-montmorillonite, surfactant, light fastness, stabilization

1. Introduction

3	Annatto dye is a natural organic pigment belonging to the carotenoids. It is widely used as
4	a food colorant (C. I. Natural Orange 4) because of its low toxicity. The main components of
5	the annatto dye are bixin and norbixin (Scheme 1). The annatto dye is less stable and easily
6	discolored. Light is the most destructive agent (Najar et al., 1988). Therefore, efforts were
7	made to conserve the color of the annatto dye (Prabhakara Rao et al., 2005). Protection of the
8	dye molecule by other materials is one of the approaches. For example, annatto dye was
9	stored in oleoresin to keep its color (Balaswamy et al., 2006) or incorporated in cyclodextrin
10	to improve the stability against light or heat (Lyng et al., 2005).
11	Scheme 1
11 12	Scheme 1 There are some reports concerning the stability enhancement of the dye by the
12	There are some reports concerning the stability enhancement of the dye by the
12 13	There are some reports concerning the stability enhancement of the dye by the incorporation into the interlayer space of clay minerals (Bauer et al., 2003; Bujdák et al.,
12 13 14	There are some reports concerning the stability enhancement of the dye by the incorporation into the interlayer space of clay minerals (Bauer et al., 2003; Bujdák et al., 2002; Chakraborty et al., 2011; Giustetto et al., 2011). We recently studied the stability

18	improved by the intercalation. On the other hand, the anionic dye carmine was intercalated
19	into hydrotalcite, and the light fastness of the dye was enhanced. However, the annatto dye
20	could not be intercalated into the polar interlayer space of the hydrotalcite (Kohno et al.,
21	2009b). Bixin and norbixin can be considered as anionic dyes because they have carboxyl
22	group(s). However, the long conjugated double bond chain in their structure makes the
23	annatto dye strongly hydrophobic. Therefore, to incorporate the annatto dye between the clay
24	mineral layers, the interlayer space must be hydrophobized.
25	Organo-clay minerals were reported to have the ability to incorporate various organic
26	compounds (Lagaly et al., 2006) such as dyes (Sasai et al., 2004; Sasai et al., 2003; Tong et
27	al., 2010), pesticides (Cruz-Guzman et al., 2005; Groisman et al., 2004) or herbicides (Celis et
28	al., 2007; Seki and Yurdakoç, 2005). We succeeded in the intercalation of non-ionic
29	(hydrophobic) 2-hydroxychalcone derivatives into organo-montmorillonite and the
30	photochemical conversion of the chalcone to the flavylium form (Kohno et al., 2011). In this
31	study, we report the intercalation of the hydrophobic natural annatto dye into
32	organo-montmorillonite to enhance its light stability.

2. Experimental

36	2.1 Sample preparation
----	------------------------

38	The annatto dye (ANA) was supplied by Wako Chemical Co. and used without further
39	purification. Montmorillonite Kunipia F (denoted as KF) was supplied by Kunimine Industry.
40	The cation exchange capacity (CEC) of KF was 1.19 meq/g. Octyl trimethylammonium
41	bromide (OTAB) and dodecyl trimethylammonium bromide (DTAB) were obtained from
42	Tokyo Chemical Industry and used as received.
43	To modify KF with the surfactants, 0.2 g of KF were mixed with 2 cm ³ of an aqueous
44	solution containing 0.46 mmol of the surfactant. After stirring for 2 h and standing for 24 h,
45	the organo-montmorillonites (denoted as O-KF and D-KF) were separated by filtration and
46	dried on air.
47	The adsorption of ANA on O-KF and D-KF was carried out as follows. First, 10 mg of
48	ANA were dissolved in 10 cm^3 of ethanol. The ethanol solution of ANA was mixed with 0.2
49	g of O-KF or D-KF, and the dispersion was permitted to stand for 24 h in the dark. The
50	amount of the dye corresponded to 5 mass% of O-KF or D-KF. The sediment was collected
51	by filtration, dried at room temperature and ground to powder. The filtrates remained colored,

52 indicating that not all ANA molecules were adsorbed.

53	A mixture of water and ethanol (1:4 v/v) was also used instead of pure ethanol. The
54	amount of the introduced dye was controlled by changing the volume of the added dye
55	solution. A required volume of the ethanolic solution of ANA (1 mg/cm ³) was mixed with
56	20% (v/v) of water. The aqueous ethanolic solution of ANA was then mixed with 0.2 g of
57	D-KF and maintained for 24 h in the dark. The solids were obtained by filtration and drying at
58	room temperature. These samples are denoted as ANA_{w-x}/D -KF, where x represents the
59	amount of the dye added to the sample (x mass% of D-KF) and ranged from 5 to 20 %.
60	Except for ANA_{w-20}/D -KF, the filtrates of the samples were colorless, indicating that all of the
61	ANA molecules were adsorbed onto D-KF.
62	Silica was used as the reference adsorbent. The silica was supplied from Catalysis Society
63	of Japan (JRC-SIO-6, designated as SIO). SIO (0.2 g) was dispersed in 10 cm ³ of an ANA
64	ethanolic solution containing 10 mg of ANA. The amount of ANA added was 5 % of silica.
65	The ethanol was evaporated under an air stream in the dark at room temperature.

66

67 2.2 Measurements

69	XRD patterns were measured with the Rigaku MiniFlex X-ray diffractometer (CuK α , step
70	angle and scan speed 0.05° and 2°/min, 15mA, 30 kV). UV-Vis spectra were collected with
71	the JASCO V-550 spectrophotometer. For the measurement of diffuse-reflectance spectra, the
72	ISV-469 integrating sphere was equipped to the spectrometer. To investigate the light
73	endurance of each sample, the samples were irradiated with visible light under ambient
74	temperature and pressure. A 100 W halogen lamp (Schott Megalight 100) equipped with a 30
75	cm length flexible light guide was used as the visible light source. The powder samples were
76	loaded in a plastic cell covered with a thin glass and placed 1.1 cm from the aperture of the
77	light guide. The degree of the color fading was determined by the decrease of the absorption
78	of ANA measured by the diffuse reflectance spectra. When the sample was irradiated in the
79	absence of oxygen, the sample cell was packed in a transparent gas barrier film filled with
80	nitrogen.
81	
82	3. Results and discussion
83	
84	3.1 Structural analysis
85	

86	The XRD patterns of KF, O-KF and D-KF samples are illustrated in Fig. 1. The reflection
87	of KF at around $2\theta = 7.4^{\circ}$ was assigned to the 001 reflection. The 001 reflection of O-KF and
88	D-KF shifted to lower angle, indicating the increase of the basal spacing of O-KF and D-KF
89	compared with the original KF. Considering the thickness of the silicate layer of KF as 0.96
90	nm, the interlayer distance of O-KF and D-KF was calculated to be 0.43 nm and 0.83 nm,
91	respectively. These values were in good agreement with the reported value (Klapyta et al.,
92	2001; Ogawa and Kuroda, 1997; Ogawa et al., 1992). Since the interlayer distance of O-KF
93	(0.43 nm) corresponded to the size of the polar head group of the surfactant molecule, it was
94	suggested that OTAB molecules formed a monolayer between the layers of KF. The interlayer
95	distance of D-KF of 0.83 nm indicated bilayers of the surfactant ions in the interlayer space
96	(Ogawa and Kuroda, 1997; Ogawa et al., 1992). The formation of the bilayers of DTAB
97	makes the interlayer space more hydrophobic.
98	Figure 1
99	The dye was not adsorbed on KF itself, so that ANA/KF was not colored and the XRD

patterns of KF and ANA/KF were identical. The XRD patterns of ANA/O-KF and ANA/D-KF were almost the same as those of O-KF and D-KF, respectively. Thus, the layered structure of the organo-montmorillonite was maintained after the adsorption of the

103	dye. Since the interlayer distance was not changed by the adsorption of the dye, the ANA
104	molecules were probably dissolved in the <i>pseudo</i> -organic phase formed by the surfactant ions
105	between the clay mineral layers.

107 3.2 UV-vis spectra

109	The diffuse-reflectance UV-Vis spectra normalized at the wavelength of maximal
110	absorption are represented in Fig. 2. The solution of ANA exhibited absorption peaks at 455
111	nm and 482 nm together with a shoulder at 427 nm. ANA/SIO showed a single broad
112	absorption band with λ_{max} at 430 nm. The fine structure observed in the spectrum of the ANA
113	solution was lost, and the main peak shifted to shorter wavelength in ANA/SIO. These results
114	suggested the aggregation of the adsorbed dye molecules. ANA/O-KF and ANA/D-KF
115	exhibited a couple of peaks at 460, 490 nm and 462, 492 nm, respectively, with a shoulder
116	band at around 435 nm. The spectral shape of ANA/O-KF and ANA/D-KF resembled that of
117	the ANA solution suggesting that the ANA molecules were not aggregated but dispersed in
118	ANA/O-KF and ANA/D-KF as in the solution. Compared with the spectrum of the dye
119	molecules in the solution, the peaks were shifted by 5 to 10 nm to longer wavelengths. The

120	reason of the red shift in ANA/O-KF and ANA/D-KF was not sufficiently clarified yet. The
121	spectral shift mechanism of carotenoids caused by the medium is still under investigation by
122	several research groups, and the dispersion, polarization or interaction between charges was
123	proposed (Renge and Sild, 2011; Yanagi et al., 2006). However, at least we can say that the
124	ANA molecules were in an environment different from the solution. This suggests that the
125	ANA molecules were surrounded by the alkyl chains of the surfactant ions between the clay
126	mineral layers.
127	Figure 2
128	
129	3.3 Light fastness
130	
131	The spectral changes during irradiation are shown in Fig. 3. In every sample, the
132	absorption of ANA decreased and the color was faded by the irradiation. The shape of each
133	spectrum did not change drastically during the fading process, indicating that the process was
134	not a photochemical conversion but a simple photo-degradation of the dye.
135	Figure 3
136	The time course of the absorption of the adsorbed ANA during irradiation is illustrated in

137	Fig. 4. Serious photo-fading was observed on ANA/SIO, and only 11% of the dye remained
138	after 60 min irradiation. The light fastness of ANA/O-KF was not very good (24%). The most
139	stable sample was ANA/D-KF showing considerable endurance against irradiation (55%).
140	Figure 4
141	
142	3.4 Cause of the stability enhancement
143	
144	To evaluate the effect of the atmospheric oxygen on the light fastness, ANA/D-KF and
145	ANA/SIO were subjected to irradiation under nitrogen (Table 1). After 60 min irradiation,
146	ANA/D-KF maintained 55% and 79% of the absorption of ANA under atmosphere and
147	nitrogen, respectively. Thus, the light fastness of ANA/D-KF was slightly improved under
148	nitrogen. While the retention of ANA absorption of ANA/SIO was only 11% in the air, the
149	value was remarkably improved to 71% under nitrogen. Since ANA molecules are susceptive
150	to oxidative degradation, the stabilization effect observed under nitrogen is interpreted as a
151	hindrance from the contact of atmospheric oxygen. Therefore, we concluded that the ANA
152	molecules in ANA/D-KF were protected from oxygen by the alkyl groups of the surfactant
153	ions in the interlayer space. Although an organic phase generally tend to dissolve more

154	oxygen	molecules,	inhibition	of	the	direct	contact	with	gaseous	oxygen	significantly
155	enhance	d the stabilit	y of the inc	orpo	orate	d dye.					

---Table 1---

157	The stability of ANA/O-KF against irradiation was less than that of ANA/D-KF because
158	the dye molecules in the interlayer space were less protected by the shorter alkyl chains. The
159	monolayer arrangement of the octyl trimethylammonium ions in the interlayer space might be
160	another reason (see section 3.1). Ogawa et al. also reported that anthracene or naphthalene
161	was not clearly intercalated into montmorillonite modified by octyl trimethylammonium ions
162	(Ogawa et al., 1992).

163

164 *3.5 Improvement in the dye adsorption*

The color of ANA/D-KF was not strong because the amount of adsorbed ANA was not large. For the utilization as a colorant, the sample should exhibit a deeper color. Therefore, we tried to increase the amount of adsorbed dye by changing the solvent used in the dye adsorption procedure. Table 2 represents the absorbance of ANA adsorbed on D-KF from aqueous ethanolic solutions. The absorbance of the dye roughly corresponded to the amount

171	of the adsorbed dye. The addition of water considerably increased the amount of dye adsorbed.
172	$ANA_{w\text{-}5}/D\text{-}KF$ and $ANA_{w\text{-}10}/D\text{-}KF$ adsorbed almost all ANA added since the filtrate was
173	colorless. The absorbance of $\ensuremath{ANA_{w\text{-}5}}\xspace$ /D-KF reached a 7 times higher value compared to
174	ANA/D-KF. Since the ANA molecules preferred a hydrophobic environment, the increase in
175	the polarity of the solvent pushed the ANA molecules toward the hydrophobized clay mineral
176	layers.
177	Table 2
178	The absorbance of ANA _{w-10} /D-KF was nearly twice that of ANA _{w-5} /D-KF (Table 2).
179	However, the absorbance of ANA $_{w\mbox{-}20}/D\mbox{-}KF$ was almost the same as that of ANA $_{w\mbox{-}10}/D\mbox{-}KF$. In
180	fact, on preparing ANA _{w-20} /D-KF, the filtrate remained colored, indicating that part of the

182 saturated in ANA_{w-10}/D -KF.

The light fastness of the ANA_{w-x}/D-KF series (Table 3) was not so different. ANA_{w-5}/D-KF and ANA_{w-10}/D-KF exhibited a little improved photostability compared with ANA/D-KF. This suggests that the ANA molecules were more deeply incorporated in the clay mineral interlayer because of the more polar solvent used in the adsorption process. The photostability of ANA in ANA_{w-20}/D-KF was lower than those of ANA_{w-5}/D-KF and

188	ANA _{w-10} /D-KF. Perhaps, the excess ANA molecules in ANA _{w-20} /D-KF were adsorbed on the
189	external surfaces of the clay mineral particles, and such dye molecules were easily discolored
190	by the oxidation under irradiation.
191	Table 3
192	
193	4. Conclusion
194	
195	As a hydrophobic natural dye, annatto dye was intercalated into montmorillonite if the
196	interlayer space was hydrophobized by alkyl trimethylammonium ions. The annatto
197	dye/organo-montmorillonites showed higher photostability than the pure annatto dye because
198	the dye molecules were protected from the external oxygen by the layered structure of
199	montmorillonite. Modification with dodecyl trimethylammonium ions was superior to octyl
200	trimethylammonium ions in the improvement of the photostability of the annatto dye.
201	Probably, the dodecyl trimethylammonium ions presented a more suitable environment for
202	the adsorption of the dye. The amount of dye adsorbed was increased by using aqueous
203	ethanolic solutions instead of pure ethanol in the adsorption process. The light fastness was
204	not considerably influenced by the amount of the dye. The stabilized annatto dye is expected

to be widely used as an environmentally friendly colorant.

206

207 Acknowledgment

- 208 This work was financially supported by the Cosmetology Research Foundation and the
- 209 Ministry of Education, Culture, Sports, Science and Technology (Grant-in-Aid for Scientific

²¹⁰ Research #22360330).

212 **References**

213	Balaswamy, K., Prabhakara Rao, P.G., Satyanarayana, A., Rao, D.G., 2006. Stability of bixin
214	in annatto oleoresin and dye powder during storage. LWT - Food Sci. Technol., 39,
215	952-956.
216	Bauer, J., Behrens, P., Speckbacher, M., Langhals, H., 2003. Composites of perylene
217	chromophores and layered double hydroxides: Direct synthesis, characterization, and
218	photo- and chemical stability. Adv. Funct. Mater., 13, 241-248.
219	Bujdák, J., Iyi, N., Fujita, T., 2002. Aggregation and stability of 1,1'-diethyl-4,4'-cyanine dye
220	on the surface of layered silicates with different charge densities. Colloids Surf. A,
221	207, 207-214.
222	Celis, R., Trigo, C., Facenda, G., Hermosín, M.D.C., Cornejo, J., 2007. Selective
223	modification of clay minerals for the adsorption of herbicides widely used in olive
224	groves. J. Agric. Food Chem., 55, 6650-6658.
225	Chakraborty, C., Dana, K., Malik, S., 2011. Intercalation of perylenediimide dye into ldh
226	clays: Enhancement of photostability. J. Phys. Chem. C, 115, 1996-2004.

227	Cruz-Guzman, M., Celis, R., Hermosin, M.C., Koskinen, W.C., Cornejo, J., 2005. Adsorption
228	of pesticides from water by functionalized organobentonites. J. Agric. Food Chem., 53,
229	7502-7511.
230	Giustetto, R., Wahyudi, O., Corazzari, I., Turci, F., 2011. Chemical stability and dehydration
231	behavior of a sepiolite/indigo maya blue pigment. Appl. Clay Sci., 52, 41-50.
232	Groisman, L., Rav-Acha, C., Gerstl, Z., Mingelgrin, U., 2004. Sorption of organic compounds
233	of varying hydrophobicities from water and industrial wastewater by long- and
234	short-chain organoclays. Appl. Clay Sci., 24, 159-166.
235	Klapyta, Z., Fujita, T., Iyi, N., 2001. Adsorption of dodecyl- and
236	octadecyltrimethylammonium ions on a smectite and synthetic micas. Appl. Clay Sci.,
237	19, 5-10.
238	Kohno, Y., Ito, M., Kurata, M., Ikoma, S., Shibata, M., Matsushima, R., Tomita, Y., Maeda,
239	Y., Kobayashi, K., 2011. Photo-induced coloration of 2-hydroxychalcone in the clay
240	interlayer. J. Photochem. Photobiol. A, 218, 87-92.
241	Kohno, Y., Kinoshita, R., Ikoma, S., Yoda, K., Shibata, M., Matsushima, R., Tomita, Y.,
242	Maeda, Y., Kobayashi, K., 2009a. Stabilization of natural anthocyanin by intercalation
243	into montmorillonite. Appl. Clay Sci., 42, 519-523.

244	Kohno, Y., Totsuka, K., Ikoma, S., Yoda, K., Shibata, M., Matsushima, R., Tomita, Y.,
245	Maeda, Y., Kobayashi, K., 2009b. Photostability enhancement of anionic natural dye
246	by intercalation into hydrotalcite. J. Colloid Interface Sci., 337, 117-121.
247	Lagaly, G., Ogawa, M., Dékány, I., 2006. Clay mineral organic interactions. In: Bergaya, F.,
248	Theng, B.K.G., Lagaly, G. (Eds.), Handbook of Clay Science: Developments in Clay
249	Science, Volume 1. Elsevier, Amsterdam, pp. 309-377.
250	Lyng, S.M.O., Passos, M., Fontana, J.D., 2005. Bixin and α -cyclodextrin inclusion complex
251	and stability tests. Process Biochem., 40, 865-872.
252	Najar, S.V., Bobbio, F.O., Bobbio, P.A., 1988. Effects of light, air, anti-oxidants and
253	pro-oxidants on annatto extracts (bixa orellana). Food Chem., 29, 283-289.
254	Ogawa, M., Kuroda, K., 1997. Preparation of inorganic-organic nanocomposites through
255	intercalation of organoammonium ions into layered silicates. Bull. Chem. Soc. Jpn.,
256	70, 2593-2618.
257	Ogawa, M., Shirai, H., Kuroda, K., Kato, C., 1992. Solid-state intercalation of naphthalene
258	and anthracene into alkylammonium-montmorillonites. Clays Clay Miner., 40,
259	485-490.

260	Prabhakara Rao, P.G., Jyothirmayi, T., Balaswamy, K., Satyanarayana, A., Rao, D.G., 2005.
261	Effect of processing conditions on the stability of annatto (bixa orellana L.) dye
262	incorporated into some foods. LWT - Food Sci. Technol., 38, 779-784.
263	Renge, I., Sild, E., 2011. Absorption shifts in carotenoidsinfluence of index of refraction
264	and submolecular electric fields. J. Photochem. Photobiol. A, 218, 156-161.
265	Sasai, R., Iyi, N., Fujita, T., López Arbeloa, F., Martínez, V., Takagi, K., Itoh, H., 2004.
266	Luminescence properties of Rhodamine 6G intercalated in surfactant/clay hybrid thin
267	solid films. Langmuir, 20, 4715-4719.
268	Sasai, R., Iyi, N., Fujita, T., Takagi, K., Itoh, H., 2003. Synthesis of Rhodamine 6G/cationic
269	surfactant/clay hybrid materials and its luminescent characterization. Chem. Lett., 32,
270	550-551.
271	Seki, Y., Yurdakoç, K., 2005. Paraquat adsorption onto clays and organoclays from aqueous
272	solution. J. Colloid Interface Sci., 287, 1-5.
273	Tong, D.S., Zhou, C.H., Lu, Y., Yu, H., Zhang, G.F., Yu, W.H., 2010. Adsorption of Acid
274	Red G dye on octadecyl trimethylammonium montmorillonite. Appl Clay Sci., 50,
275	427-431.

- 276 Yanagi, K., Miyata, Y., Kataura, H., 2006. Highly stabilized β-carotene in carbon nanotubes.
- 277 Adv. Mater., 18, 437-441.

279	Figure captions
280	
281	
282	Figure 1. XRD patterns of (a) KF, (b) O-KF and (c) D-KF.
283	
284	Figure 2. (a) UV-Vis spectrum of the ethanolic solution of ANA and diffuse reflectance UV-Vis spectra of (b)
285	ANA/SIO, (c) ANA/O-KF and (d) ANA/D-KF.
286	
287	Figure 3. Changes in the absorption spectra of (a) ANA/SIO, (b) ANA/O-KF and (c) ANA/D-KF during visible
288	light irradiation of 60 min.
289	
290	Figure 4. Absorption of ANA-montmorillonites at λ_{max} during irradiation of 60 min. (a) ANA/SIO, (b)
291	ANA/O-KF and (c) ANA/D-KF. The ordinate is the ratio of the absorbance to the initial value.

Tables

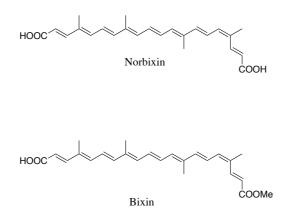
 Table 1. Light fastness of ANA/SIO and ANA/D-KF in the presence or absence of oxygen.

	ANA/D-KF	ANA/SIO	
A/A_0 in the air ^{<i>a</i>}	0.55	0.11	
A/A_0 under N ₂ ^{<i>a</i>}	0.79	0.71	

^{*a*} Ratio of the absorption at λ_{max} before and after irradiation of 60 min.

Table 2. Changes in the absorbance of ANA by the solvent used in the adsorption step.

Sample	ANA/D-KF	ANA _{w-5} /D-KF	ANA _{w-10} /D-KF	ANA _{w-20} /D-KF
$A_{460}{}^a$	0.08	0.54	1.01	1.12
$A_{460}/A_{460(\text{ANA/D-KF})}^{b}$	1	7	13	14


^{*a*} Absorbance at λ_{max} (460 nm).

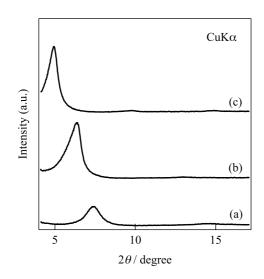
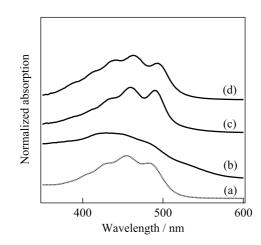
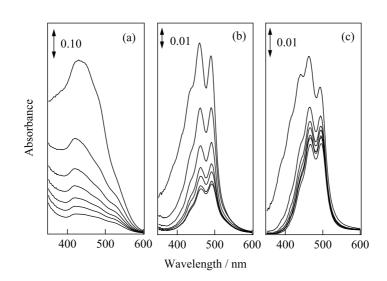

^{*b*} Ratio of the absorbance of each sample to that of ANA/D-KF at λ_{max} , reflecting the increase in the amount of adsorbed ANA.

Table 3. Light fastness of ANA/D-KF with various amounts of ANA loading.


Sample	ANA/D-KF	ANA _{w-5} /D-KF	ANA _{w-10} /D-KF	ANA _{w-20} /D-KF
A/A_0^{a}	0.55	0.65	0.67	0.57


^{*a*} Ratio of the absorption at λ_{max} before and after irradiation of 60 min.

