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Abstract

Background: The white-rot fungus Phlebia sp. MG-60 shows valuable properties such as high ethanol yield from
several lignocellulosic materials, although white-rot fungi commonly degrade woody components to CO2 and H2O.
In order to identify genes involved in ethanol production by Phlebia sp. MG-60, we compared genes differentially
expressed by the ethanol producing fungus Phlebia sp. MG-60 and the model white-rot fungus Phanerochaete
chrysosporium under ethanol fermenting and non-fermenting conditions using next-generation sequencing
technologies.

Results: mRNAs from mycelia of Phlebia sp. MG-60 and P. chrysosporium under fermenting and non-fermenting
conditions were sequenced using the MiSeq system. To detect differentially expressed genes, expression levels
were measured in fragments per kilobase of exon per million mapped reads (FPKM). Differentially expressed genes
were annotated using BLAST searches, Gene Ontology classifications, and KEGG pathway analysis. Functional
analyses of differentially expressed genes revealed that genes involved in glucose uptake, glycolysis, and ethanol
synthesis were widely upregulated in Phlebia sp. MG-60 under fermenting conditions.

Conclusions: In this study, we provided novel transcriptomic information on Phlebia sp. MG-60, and these RNA-seq
data were useful in targeting genes involved in ethanol production for future genetic engineering.
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Background
Most bioethanol production in the world is currently
from food crops, which leads to competition with food
and feed uses. Advanced second-generation bioethanol
is a renewable transportation fuel made from lignocellu-
losic biomass that does not compete with food or feed
[1]. Lignocellulosic biomass is mainly composed of cellu-
lose, hemicellulose, and lignin and is the most abundant
material for bioethanol production. Wood-rot basidio-
mycetes play key roles in the carbon cycle in forest eco-
systems through multi-enzyme systems that degrade

lignocelluloses [2]. Wood-rot basidiomycetes are consid-
ered the most efficient degraders of lignocellulose in na-
ture. Biological delignification by white-rot basidiomycetes,
which is a useful pretreatment for enzymatic saccharifica-
tion of lignocellulosic biomass, is summarized by Moreno
et al. [3]. Basidiomycetes are expected to be used for pre-
treatment in bioethanol production from lignocellulosic
materials. Therefore, some researchers have reported
use of white-rot fungi in pretreatment for enzymatic
saccharification of lignocellulosic biomass [4–6]. Fur-
thermore, several reports have been published about
genome projects on Basidiomycota, Agaricomycetes
and Polyporales lignocellulose-degrading fungi, and
comparative genomic studies recently [7–10].
Several white-rot fungi have been reported to ferment

oligosaccharide materials to ethanol. The white-rot fungi
Peniophora cinerea and Trametes suaveolens efficiently
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convert hexoses to ethanol [11], and Trametes hirsuta
shows efficient fermentation of starch, wheat bran and
rice straw to ethanol without acid or enzymatic hydroly-
sis [12]. Recently, Okamoto et al. documented that the
white-rot fungus Trametes versicolor KT9427 can pro-
duce ethanol from starch, cellulose, xylan, wheat bran
and rice straw [13].
The white-rot fungus Phlebia sp. MG-60 was selected

as a hypersaline-tolerant lignin-degrading fungus from
28 mushrooms and samples of driftwood based on
decolorization and delignification abilities after collec-
tion from mangrove stands in Okinawa, Japan [14]. Phle-
bia sp. MG-60 was capable of converting lignocellulose
to ethanol directly with high yield [6, 15, 16]. When this
fungus was cultured with 20 g L−1 of unbleached hard-
wood kraft pulp for 168 h, 71.8 % of the theoretical
maximum yield of ethanol was observed, and when it
was cultured with waste newspaper, 51.5 % of the theor-
etical maximum yield was observed [16]. The delignifica-
tion, anaerobic saccharification, and fermentation of oak
wood using only Phlebia sp. MG-60, without addition of
chemicals or enzymes, has been also reported [16].
Additionally, alkaline pretreated sugarcane bagasse was
fermented well directly, without addition of cellulases,
by Phlebia sp. MG-60 [6]. Thus, Phlebia sp. MG-60 pos-
sesses not only wood degrading ability but also ethanol
fermentability. However, the detailed mechanism of fer-
mentation by this fungus remains unknown.
The goal of this study was to characterize the specific

genes for ethanol production, and to predict the mech-
anism behind the high yield of ethanol by Phlebia sp.
MG-60. In the present study, we analyzed differential gene
expression of the ethanol producing white-rot fungus
Phlebia sp. MG-60 and the model white-rot fungus P.
chrysosporium, used as the control, under fermenting and
non-fermenting conditions by next-generation sequen-
cing. This is the first report of transcriptomic data of the
ethanol producing white-rot fungus Phlebia sp. MG-60.

Methods
Strains
Phlebia sp. MG-60 (MKFC40001) and P. chrysosporium
ME-446 (ATCC 34541) were used in this study. Both
strains were maintained on potato dextrose agar (PDA)
slants at 4 °C.

Production of ethanol from glucose
In order to equalize the growth of mycelia, Phlebia sp.
MG-60 and P. chrysosporium were incubated on PDA
plates at 30 °C for 5 and 3 days, respectively. 10-mm
diameter disks were then punched out from the growing
edge of the mycelia using a sterile cork borer. Two
mycelial disks for each strain were placed into a 100-mL
Erlenmeyer flask containing 10 mL basal liquid medium

(20 g L−1 glucose, 10 g L−1 yeast extract, 10 g L−1 KH2PO4,
2 g L−1 (NH4)2SO4, and 0.5 g L−1 MgSO4-7H2O, pH 4.5).
After sealing the flask with a silicone plug stopper (to en-
sure semi-aerobic conditions), the culture was statically
incubated at 30 °C for 10 days. Cultures were filtered
through a 0.2-μm membrane filter, and the filtrate was
then separated by high-performance liquid chromatog-
raphy (HPLC) using a Shodex SH1821 column (8.0 mm×
300 mm, Showa Denko K.K., Tokyo, Japan) at 75 °C with
0.5 mM H2SO4 as the mobile phase at a flow rate of
0.6 mL min−1, and ethanol and glucose concentrations in
the cultures were measured using an online refractive
index detector. The pH of the culture was also measured
by a glass electrode (D-51S, Horiba Ltd., Kyoto, Japan).

Mycelial dry weight
For monitoring the growth of Phlebia sp. MG-60 and P.
chrysosporium, mycelial dry weights obtained from li-
quid culture which described as above were measured.
Cultures were filtered through 0.2-μm membrane filter,
mycelium and filter were then dried. The mycelial dry
weight calculates by (weight of filter + dried residue) –
(weight of filter paper).

cDNA library preparation for DNA sequencing
To construct RNA-seq libraries, total RNA was isolated
from the mycelia of Phlebia sp. MG-60 after 2 and 9 days
of incubation and from mycelia of P. chrysosporium after
3 and 9 days of incubation. Total RNA was first purified
from cultured mycelia with three biological replicates
obtained from separate cultures using a Qiagen RNeasy
Mini Kit (Hilden, Germany). The quality and quantity of
each RNA sample were assessed as described previously
[17]. Agarose gel electrophoresis and the OD260/OD280
ratio were used for assessing quality of total RNA.
Each extracted total RNA sample was treated with

DNase I and repurified using an RNeasy Mini Kit (Qiagen)
following the manufacturer’s protocol. Purified RNA
(1 μg) was used for first-strand cDNA synthesis using an
oligo-dT primer and PrimeScript reverse transcriptase
(Takara). An equal quantity of 50 ng total RNA was used
for PCR. Primer sequences and the expected product sizes
are shown in Additional file 1: Table S1. RT-PCR was
performed using 1 μg of total RNA with the PrimeScript
RT-PCR Kit and the RT-PCR amplified fragments were
analyzed by agarose gel electrophoresis. The libraries for
strand-specific RNA sequencing were constructed using a
SureSelect Strand-Specific RNA Library prep kit (Agilent
Technologies) according to the manufacturer's protocol.
We generated libraries of each biological replicates,
and then libraries derived from same species were
pooled together. The two individual sequencing runs
for Phlebia sp. MG-60 and P. chrysosporium were
performed, respectively. Transcriptome sequencing of
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paired-end reads (75 bp) was performed by a MiSeq
system (Illumina).

De novo assembly and differential expression analysis
The raw reads were processed using cutadapt version 1.8.1
to remove adapter sequences [18], low-quality bases (qual-
ity scores <30) and reads shorter than 50 nt. The last 76
bases were trimmed by FASTX-Toolkit [19]. After quality
trimming, the high-quality reads were assembled into uni-
genes by Trinity (version 2.0.6) [20] Oases (version 0.2.08)
[21], Trans-ABySS (version 1.5.4) [22] and SOAPdenovo-
Trans (version 1.03) [23]. The resulting unigenes was fur-
ther analyzed using DETONATE (de novo transcriptome
RNA-seq assembly with or without the truth evaluation)
[24]. In de novo transcriptome assembly by Trinity pro-
gram, we selected the Jaccard-clip option to reduce the
generation of chimeric transcripts. rRNA were excluded
from the unigenes by removing sequences matching en-
tries in the SILVA rRNA database by the Megablast
program [25]. The genes derived from mitochondria se-
quences were manually removed from the unigenes using
the result of local BLASTX and BLASTN search against nr
and nt database. High-quality short reads were mapped to
the rRNA-removed unigenes as a reference using Bowtie
[26], and then transcript abundance was estimated using
RSEM software [27]. To identify differentially expressed
genes (DEGs), P-values and fold changes were computed
using the edgeR package [28].

Functional annotation
The unigenes were searched against the Swiss-Prot data-
base by a local BLASTX algorithm (E-value cut-off was set
at 10e-5) to predict the biological functions [29]. Open
reading frames (ORFs) and their protein sequences were
predicted from unigenes using TransDecoder, which is in-
cluded in the Trinity package. Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways were assigned to unigenes
using the BlastKOALA server [19, 30]. Gene ontology
(GO) annotation of the transcriptome was performed using
InterproScan software version with the “goterms” option
[31]. Orthologous protein pairs between Phlebia sp. MG-60
and P. chrysosporium were identified by the FastOrtho
program (http://enews.patricbrc.org/fastortho/) [32] as de-
scribed previously [33], which is a reimplementation of the
OrthoMCL program [34]. The longest peptides translated
by TransDecoder were used for orthologous protein ana-
lysis as representatives of peptides encoded by the Trinity
unigenes. Proteins showing one-to-one correspondence
between Phlebia sp. MG-60 and P. chrysosporium were
regarded as orthologous proteins.

Semi-quantitative RT-PCR and quantitative RT-PCR (qRT-PCR)
To analyse gene expression in Phlebia sp. MG-60, samples
were prepared as described in the section Production of

ethanol from glucose. The semi-quantitative RT-PCR
method was as described in our previous study [35]. All
the selected unigenes used in RT-PCR and qRT-PCR
evidenced high similarity with known genes with very low
E-values (< E-20), and these transcripts were manually
confirmed mapping rate of sequencing reads from
each sample and sequence errors using the visualized
software IGV tools version 2.0 (http://software.broad
institute.org/software/igv/home). PCR was performed
for 28 cycles, with template denaturation at 95 °C for
30 s, primer annealing at 58 °C for 30 s, and DNA ex-
tension at 72 °C for 1 min using Ex Taq DNA Polymer-
ase (TaKaRa Bio).
For the quantitative real-time RT-PCR assays, the

Roche LightCycler 480 system was used. Each reaction
contained 50 ng of first-strand cDNAs, 2 μL PCR
primers, 7 μL water, and 10 μL master mix (Roche). Cyc-
ling conditions were set as follows: pre-incubation, 95 °C
for 10 min; amplification, 45 cycles of 95 °C for 10 s,
60 °C for 10 s, and 7 °C for 10 s. The reference genes
actin and hydroxymethylbilane synthase (HMBS) were
used to test for sample-to-sample variation. Relative
quantitation using the comparative Ct method was calcu-
lated as ΔΔCt = (ΔCttarget –ΔCtcontrol) fermenting conditions −
(ΔCttarget – ΔCtcontrol) non-fermenting conditions..

Results
Production of ethanol from glucose
The time courses of ethanol production from glucose
and glucose consumption by the ethanol producing
white-rot fungus Phlebia sp. MG-60 and the control
white-rot fungus P. chrysosporium are shown in Fig. 1.
Phlebia sp. MG-60 produced the maximum ethanol con-
centration of 9.5 g L−1 from glucose after 3 days of incu-
bation, and the concentration then gradually diminished.
On the other hand, maximum ethanol production by P.
chrysosporium was 2.4 g L−1 after 8 days of incubation
(Fig. 1). The glucose concentration of Phlebia sp. MG-
60 and P. chrysosporium were 12.8 g L−1 and 18.2 g L−1

at 1 day, and then almost decreased to 0 g L−1 until
2 days and 5 days after incubation, respectively. We also
measured the mycelial growth and pH changes in liquid
cultures of both species (Additional file 2: Figure S1). Al-
though the growth rate of P. chrysosporium was higher
than that of Phlebia sp. MG-60, ethanol productivity of
Phlebia sp. MG-60 was much higher than that of P.
chrysosporium. The pH in liquid cultures of both species
was between 4.5 and 3.8 during the experiment. All the
results indicated that there exists a correlation between
consumption of glucose and production of ethanol in
the mycelia culture of Phlebia sp. MG-60 at 2 days after
incubation. The consumed glucose was mainly used for
its ethanol production in Phlebia sp. MG-60. The max-
imum ethanol productivity was at 2 days in Phlebia sp.
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MG-60 and 3 days of incubation in P. chrysosporium,
and that ethanol production stopped at 9 days of in-
cubation in both fungi. Therefore, 2-day-incubated
mycelia of Phlebia sp. MG-60 and 3-day-incubated
mycelia of P. chrysosporium were used as the fer-
menting samples, and 9-day-incubated mycelia of
Phlebia sp. MG-60 and 9-day-incubated mycelia of P.
chrysosporium were used as the non-fermenting sam-
ples for further experiments.

Sequencing and de novo assembly
Total RNA was extracted from Phlebia sp. MG-60 and
P. chrysosporium for transcriptome analysis. Samples in-
cluded biological triplicates of cDNA libraries from Phle-
bia sp. MG-60 after 2 and 9 days of incubation and P.
chrysosporium after 3 and 9 days of incubation (termed
MG2D, MG9D, PC3D, and PC9D, respectively). Total
mRNA was purified, and then cDNA libraries were con-
structed and sequenced on the MiSeq platform.
Paired-end sequences (2 x 75 bp in length) from mRNAs

of Phlebia sp. MG-60 and P. chrysosporium were generated
by MiSeq: 17,822,770 reads (8,911,385 pairs) in MG2D,
25,249,086 reads (12,624,543 pairs) in MG9D, 31,810,504
reads (15,905,252 pairs) in PC3D, and 15,905,252 reads
(7,952,626 pairs) in PC9D (Additional file 3: Table S2).
After removal of low-quality regions of the reads (quality
values <30), each of the high-quality reads from Phlebia sp.
MG-60 and P. chrysosporium were assembled into
unigenes using the Trinity, Oases, Trans-ABySS and
SOAPdenovo-Trans program, and further analyzed using
DETONATE. The resulting RSEM-EVAL score from DET-
ONATE analysis indicated that Trinity produced the most
accurate assemblies in all data sets. Next, rRNA and genes
derived from mitochondria sequences were excluded from
Trinity unigenes by removing those matching entries in
the SILVA 111 rRNA [36], nr and nt database. Ultimately,
we obtained 34,731 (N50 length = 1,422 bp) unigenes in
Phlebia sp. MG-60 and 27,956 (N50 length = 1,533 bp) in
P. chrysosporium (Table 1).

Functional annotations of differentially expressed genes
All unigenes were searched against the Swiss-Prot data-
base using local BLASTX (Additional file 4: Table S3,
Additional file 5: Table S4), and further annotated with
GO terms using InterProScan. To identify DEGs, we
compared the unigenes that were over 2-fold up- or
downregulated with false discovery rate (FDR) < 0.05 be-
tween the fermenting and non-fermenting conditions. In
Phlebia sp. MG-60, 2,944 genes were upregulated, and
3,910 genes were downregulated (Additional file 4: Table
S3). There were 1,689 upregulated genes and 1,901
downregulated genes in P. chrysosporium (Additional file
5: Table S4). We performed GO enrichment analysis of
Phlebia sp. MG-60 and P. chrysosporium, which revealed
that 27 GO terms were upregulated and 5 were down-
regulated in Phlebia sp. MG-60. The most enriched GO
terms were “ATP binding” (GO: 0005524) in the mo-
lecular functions category, “fatty acid biosynthetic
process” (GO: 0006633) in biological processes, and “in-
tegral component of membrane” (GO: 0016021) in cellu-
lar components under fermenting conditions (Table 2).
In contrast, only “catalytic activity” (GO: 0003824) in
molecular functions was significantly enriched in P.
chrysosporium (data not shown).
To evaluate the high ethanol productivity in Phlebia

sp. MG-60, we mapped all genes in Phlebia sp. MG-60
and P. chrysosporium to KEGG metabolic pathways

Fig. 1 Time courses of ethanol production and glucose consumption of Phlebia sp. MG-60 (a) and P. chrysosporium (b). ●: ethanol production; ○: glucose
consumption. Values are the means ± SD of triplicate samples

Table 1 Assembly summary

Phlebia sp. MG-60 P. chrysosporium

Total sequences 34,731 27,956

Total bases 36,064,428 31,633,575

Max sequence length (bp) 9,412 7,982

Average sequence length (bp) 1,038 1,132

Median sequence length (bp) 794 876

N50 length (bp) 1,422 1,533

(A + T)s 45.81 % 41.52 %

(G + C)s 54.19 % 58.48 %
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using BlastKOALA, and focused on genes involved in
ethanol fermentation. Metabolic pathways and biosyn-
thesis of secondary metabolites were the most frequently
represented pathways, including glycolysis and pyruvate
oxidation, which are involved in ethanol production path-
ways. Based on the KEGG pathway assignments, we com-
pared the genes involved in the glycolysis/gluconeogenesis

pathway in Phlebia sp. MG-60 and P. chrysosporium
(Additional file 6: Figure S2). Lists of transcripts related to
the glycolysis/gluconeogenesis pathway are shown in
Additional file 7: Table S5 and Additional file 8: Table S6.
In all, 40 genes were mapped to the glycolysis/gluconeo-
genesis pathway in Phlebia sp. MG-60, but only 18 in P.
chrysosporium.

Table 2 Enrichment of GO terms in differentially expressed sequences in Phlebia sp. MG-60

GO_name GO_id Number of
sequences

Log Fold
Change

Z score P-value FDR

MF ATP binding GO:0005524 799 0.2985 6.1830 6.29E-10 1.4E-07

MF nucleic acid binding GO:0003676 233 0.4418 4.6111 4.01E-06 0.0004

MF phosphogluconate dehydrogenase
(decarboxylating) activity

GO:0004616 11 −2.2802 −4.2490 2.15E-05 0.0010

BP pentose-phosphate shunt GO:0006098 11 −2.2802 −4.2490 2.15E-05 0.0010

MF transferase activity GO:0016740 13 1.9417 4.2346 2.29E-05 0.0010

BP fatty acid biosynthetic process GO:0006633 11 2.0965 4.1939 2.74E-05 0.0010

MF copper ion binding GO:0005507 27 1.2629 4.0514 5.09E-05 0.0016

BP tRNA aminoacylation for protein translation GO:0006418 38 0.9948 3.8449 0.0001 0.0032

MF aminoacyl-tRNA ligase activity GO:0004812 41 0.9504 3.8284 0.0001 0.0032

MF acyl-CoA dehydrogenase activity GO:0003995 16 −1.7053 −3.7871 0.0002 0.0034

MF oxidoreductase activity, acting on the
CH-CH group of donors

GO:0016627 25 −1.3711 −3.7618 0.0002 0.0034

CC integral component of membrane GO:0016021 492 0.2125 3.7428 0.0002 0.0034

BP intracellular protein transport GO:0006886 81 0.6338 3.7239 0.0002 0.0034

BP rRNA processing GO:0006364 17 1.4230 3.5985 0.0003 0.0051

MF nucleotide binding GO:0000166 69 0.6564 3.5460 0.0004 0.0058

MF nitronate monooxygenase activity GO:0018580 16 −1.5292 −3.3773 0.0007 0.0102

MF coenzyme binding GO:0050662 76 0.5828 3.3485 0.0008 0.0106

BP biosynthetic process GO:0009058 73 0.5771 3.2533 0.0011 0.0141

MF protein binding GO:0005515 816 0.1157 3.2119 0.0013 0.0154

MF DNA-directed RNA polymerase activity GO:0003899 48 0.6911 3.0976 0.0020 0.0217

CC membrane coat GO:0030117 15 1.2752 3.0474 0.0023 0.0243

MF methyltransferase activity GO:0008168 77 0.5169 3.0342 0.0024 0.0243

MF RNA binding GO:0003723 107 0.4216 3.0033 0.0027 0.0256

CC cytoplasm GO:0005737 103 0.4287 2.9886 0.0028 0.0256

MF structural molecule activity GO:0005198 11 1.4658 2.9773 0.0029 0.0256

MF DNA binding GO:0003677 275 0.2301 2.9679 0.0030 0.0256

BP ribosome biogenesis GO:0042254 12 1.3692 2.9151 0.0036 0.0282

CC membrane GO:0016020 319 0.2020 2.9042 0.0037 0.0282

MF magnesium ion binding GO:0000287 27 0.8832 2.9037 0.0037 0.0282

MF catalytic activity GO:0003824 327 0.1926 2.8416 0.0045 0.0332

MF oxidoreductase activity, acting on the
aldehyde or oxo group of donors, NAD
or NADP as acceptor

GO:0016620 10 1.4184 2.7516 0.0059 0.0425

CC small-subunit processome GO:0032040 13 1.2130 2.7064 0.0068 0.0472

GO gene ontology, PAGE parametric analysis of gene set enrichment, BP biological process, MF molecular function, CC cellular component, FDR False discovery
rate, Log Fold Change values between fermenting and non-fermenting conditions were used to calculate Z scores. Log Fold change values of each GO terms
upregulated in fermenting condition is represented by positive numbers and downregulated is represented by negative numbers
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Orthologous analysis of Phlebia sp. MG-60 and P.
chrysosporium
According to the results of orthologous analysis, 5,391
orthologous gene pairs of Phlebia sp. MG-60 and P.
chrysosporium were acquired. We obtained 729 (FDR <
0.05) orthologous gene pairs of the two fungi, 1,195 sig-
nificantly differentially expressed in Phlebia sp. MG-60
(FDR < 0.05) and none with any significant difference in
the P. chrysosporium (FDR > 0.05) orthologous gene pairs
(Additional file 9: Table S7). Next, we compared the
orthologous genes related to glycolysis/gluconeogenesis
based on the KEGG pathway database for Phlebia sp.
MG-60 and P. chrysosporium. As shown in Fig. 2a,
five orthologous genes annotated as glyceraldehyde 3-
phosphate dehydrogenase, phosphoglycerate kinase,
pyruvate decarboxylase (PDC), phosphoglucomutase,
and 2,3-bisphosphoglycerate-independent phosphoglycerate
mutase by BLAST search were consistently upregu-
lated, and two orthologous genes annotated aldose 1-
epimerase and phosphoenolpyruvate carboxykinase
(ATP) were downregulated in both Phlebia sp. MG-60
and P. chrysosporium. Two orthologous genes showed dif-
ferent expression levels in Phlebia sp. MG-60 and P.

chrysosporium, and only a pyruvate kinase gene was
particularly upregulated in Phlebia sp. MG-60. Twelve
orthologous gene pairs, including genes encoding
aldehyde dehydrogenase, fructose-1,6-bisphosphatase,
pyruvate dehydrogenase E1 component (two genes),
glucose-6-phosphate isomerase, pyruvate dehydrogenase
E2 component, dihydrolipoamide dehydrogenase, hexoki-
nase (two genes), alcohol dehydrogenase (ADH), fructose-
bisphosphate aldolase, and 6-phosphofructokinase, were
significantly differentially expressed in Phlebia sp. MG-60
(FDR < 0.05), with no significant difference in P. chrysos-
porium (FDR > 0.05) (Fig. 2b).

Semi-quantitative RT-PCR and qRT-PCR of Phlebia sp. MG-60
To validate the reliability of the expression profiles obtained
by RNA-seq, expression levels of five highly expressed
genes related to ethanol fermentation in Phlebia sp. MG-
60, including one sugar transporter (TR10028|c0_g1), three
genes mapped to the glycolysis/gluconeogenesis pathway
(TR8916|c1_g1, TR11270|c0_g1, TR9324|c0_g1), and
one ADH (TR11797|c0_g1), were compared by semi-
quantitative RT-PCR and qRT-PCR. As shown in
Fig. 3a, semi-quantitative RT-PCR indicated that all of

Fig. 2 Comparison of Phlebia sp. MG-60 and P. chrysosporium orthologs. The X-axis indicates log fold change of Phlebia sp. MG-60, and the Y-axis
indicates log fold change of P. chrysosporium. a: Orthologous genes with significantly different expression (FDR < 0.05) in Phlebia sp. MG-60 and
P. chrysosporium. Orthologous genes related to glycolysis/gluconeogenesis based on the KEGG pathway database are shown in red, including
1: glucose-6-phosphate 1-epimerase [EC: 5.1.3.15]; 2: phosphoglucomutase [EC: 5.4.2.2]; 3: pyruvate decarboxylase [EC: 4.1.1.1]; 4: phosphoglycerate
kinase [EC: 2.7.2.3]; 5: glyceraldehyde 3-phosphate dehydrogenase [EC: 1.2.1.12]; 6: 2,3-bisphosphoglycerate-independent phosphoglycerate
mutase [EC: 5.4.2.12]; 7: aldose 1-epimerase [EC: 5.1.3.3]; 8: phosphoenolpyruvate carboxykinase (ATP) [EC: 4.1.1.49]; 9: pyruvate kinase [EC: 2.7.1.40].
b: Significantly differentially expressed in Phlebia sp. MG-60 (FDR < 0.05) but no significant difference for P. chrysosporium (FDR > 0.05) orthologous
genes. Orthologous genes related to glycolysis/gluconeogenesis based on the KEGG pathway database are shown in red, including 1: aldehyde
dehydrogenase [EC: 1.2.1.3]; 2: fructose-1,6-bisphosphatase I [EC: 3.1.3.11]; 3: pyruvate dehydrogenase E1 component [EC: 1.2.4.1]; 4: glucose-6-
phosphate isomerase [EC: 5.3.1.9]; 5: pyruvate dehydrogenase E1 component [EC: 1.2.4.1]; 6: pyruvate dehydrogenase E2 component [EC: 2.3.1.12];
7: dihydrolipoamide dehydrogenase [EC: 1.8.1.4]; 8: hexokinase [EC: 2.7.1.1]; 9: alcohol dehydrogenase, propanol-preferring [EC: 1.1.1.1]; 10: hexokinase
[EC: 2.7.1.1]; 11: fructose-bisphosphate aldolase [EC: 4.1.2.13]; 12: 6-phosphofructokinase [EC: 2.7.1.11]
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these genes showed higher expression at 2 days of in-
cubation. Using qRT-PCR, we examined the expres-
sion of these genes at 2 and 9 days of incubation and
normalized expression to the actin and HMBS genes
(Fig. 3b). These results all indicated that expression
levels measured by semi-quantitative RT-PCR and
qRT-PCR correlated with the RNA-seq analysis.

Discussion
In this study, we analyzed differential gene expression of
the ethanol producing white-rot fungus Phlebia sp. MG-
60 under fermenting and non-fermenting conditions
using next-generation sequencing techniques, and iden-
tified the genes involved in its high ethanol production.

Gene expression of ligninolytic enzymes in Phlebia sp.
MG-60
Biological delignification is currently attracting much
attention as an alternative technology to traditional
physicochemical methods for the saccharification of lig-
nocellulosic biomass [3]. White-rot fungi have a unique
ability to degrade lignin via extracellular ligninolytic en-
zymes such as lignin peroxidase, manganese peroxidase
(MnP), and laccase [37]. MnP oxidizes Mn2+ to Mn3+,
and Mn3+ acts on monomeric phenol, phenolic lignin di-
mers, and synthetic lignin [38, 39]. Laccases are a group
of multi-copper oxidases, which have the ability to
oxidize both phenolic and non-phenolic lignin units
[40, 41]. Following BLASTx searches of Phlebia sp. MG-
60 against amino acid sequences in the Swiss-Prot data-
base, thirteen MnP genes and eleven laccase genes were
detected (Additional file 4: Table S3). Recently, MnP gene
transformants of Phlebia sp. MG-60 showed higher MnP
activity, and overexpression of the MnP gene improved
delignification ability of Phlebia sp. MG-60 [42]. The

present study was done using glucose as carbon
source and therefore not adapted to discuss about
ligninolytic enzymes involved in lignocellulose conver-
sion. However, Phlebia sp. MG-60 is a candidate for
an integrated fungal fermentation process due to its
efficient delignification.

Expression of glucose transporter gene in Phlebia sp.
MG-60
GO functional enrichment analysis of Phlebia sp. MG-
60 indicated that two groups, “integral component of
membrane” (GO: 0016021) and “membrane” (GO:
0016020), were significantly enriched in the cellular
components (Table 2). The first step of sugar metabol-
ism is its transport across the cell membrane [43]. Effi-
cient sugar uptake through the expression of hexose
transporter genes can improve fermentation of lignocel-
lulosic biomass to ethanol [44]. Yeast hexose trans-
porters have been most extensively researched, and
Saccharomyces cerevisiae has at least eight hexose trans-
porters that mediate the uptake of glucose [45, 46]. In
the present study, nine glucose transporter genes
were expressed in Phlebia sp. MG-60. In particular,
TR10228|c0_g1, TR10117|c0_g1, TR2714|c0_g1 were
characterized as high-affinity glucose transporters, and
their expression increased 47.8-, 12.9-, and 4.9-fold
under fermenting conditions (Additional file 4: Table
S3). Ali et al. reported that the overexpression of a
high-affinity glucose transporter gene in the fungus
Fusarium oxysporum directly affected the glucose and
xylose transport capacity and ethanol yield [47].
These results confirm that high-affinity glucose trans-
porter genes expressed at a high level in Phlebia sp.
MG-60 play an important role in the initiation of
ethanol fermentation from glucose.

Fig. 3 Confirmation of MiSeq results by qRT-PCR (a) and RT-PCR (b). Five up-regulated genes of Phlebia sp. MG-60 at 2 days of incubation were
selected for confirmation. Actin and hydroxymethylbilane synthase genes were used as reference genes for qRT-PCR. Values are the means ± SD
of triplicate samples
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Expression of genes involved in glycolysis
DEGs involved in the glycolysis pathway and ethanol fer-
mentation in Phlebia sp. MG-60 are summarized in
Fig. 4. For all steps in glycolysis, genes were upregulated
in Phlebia sp. MG-60 under fermenting conditions, in-
cluding hexokinase [EC: 2.7.1.1], glucose-6-phosphate
isomerase [EC: 5.3.1.9], 6-phosphofructokinase [EC:
2.7.1.11], fructose-bisphosphate aldolase [EC: 4.1.2.13],
triosephosphate isomerase [EC: 5.3.1.1], glyceraldehyde
3-phosphate dehydrogenase [EC: 1.2.1.12], phosphoglyc-
erate kinase [EC: 2.7.2.3], 2,3-bisphosphoglycerate-inde-
pendent phosphoglycerate mutase [EC: 5.4.2.12], enolase
[EC: 4.2.1.11], and pyruvate kinase [EC: 2.7.1.40] (Fig. 4,
Additional file 7: Table S5). KEGG annotations indicated
that all genes involved in the production of ethanol from
glucose were expressed in Phlebia sp. MG-60 (Additional
file 6: Figure S2). In contrast, only nine of these genes

were expressed in P. chrysosporium (Additional file 6:
Figure S2). In current commercial ethanol production, the
yeast S. cerevisiae is mostly researched, which shows high
ethanol yield from glucose, and its prime metabolic path-
way of ethanol fermentation is glycolysis [48]. Our results
clarified that the ethanol producing white-rot fungus Phle-
bia sp. MG-60 produces ethanol through the same glyco-
lytic pathway, and that it produces ethanol efficiently by
upregulating all genes involved in glycolysis.

Orthologous analysis between Phlebia sp. MG-60 and P.
chrysosporium
To determine whether the expression levels of gene ortho-
logs between Phlebia sp. MG-60 and P. chrysosporium are
correlated, we performed orthologous analysis using
FastOrtho. From the results, glyceraldehyde 3-phosphate
dehydrogenase [EC: 1.2.1.12], phosphoglycerate kinase

Fig. 4 Summary of upregulated DEGs of Phlebia sp. MG-60 involved in glycolysis and ethanol fermentation. A list of the identified enzymes is
provided in Additional file 7: Table S5
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[EC: 2.7.2.3], PDC [EC: 4.1.1.1], phosphoglucomutase [EC:
5.4.2.2], and 2,3-bisphosphoglycerate-independent phos-
phoglycerate mutase [EC: 5.4.2.12], which are important
in glycolysis, as shown in Fig. 4, were consistently upregu-
lated in both Phlebia sp. MG-60 and P. chrysosporium
under fermenting condition (Fig. 2a). In particular, almost
all log Fold Change (FC) values of upregulated orthologs
in Phlebia sp. MG-60, except for phosphoglucomutase,
were much higher than in P. chrysosporium. On the other
hand, aldose 1-epimerase [EC: 5.1.3.3] and phosphoenol-
pyruvate carboxykinase [EC: 4.1.1.49] were downregulated
in both species under fermenting condition. Glucose-6-
phosphate 1-epimerase [EC: 5.1.3.15] was upregulated in
P. chrysosporium but downregulated in Phlebia sp. MG-
60 (Fig. 2a). Although these three enzymes mapped to the
glycolysis/gluconeogenesis pathway, they do not play a
critical role in glycolysis. Only pyruvate kinase [EC:
2.7.1.40] was upregulated in Phlebia sp. MG-60 but down-
regulated in P. chrysosporium. This observation suggested
that pyruvate kinase is a rate-limiting enzyme in ethanol
fermentation by white-rot fungi. We also compared sig-
nificantly differentially expressed genes in Phlebia sp.
MG-60 (FDR < 0.05) and genes that showed no significant
difference for orthologous gene pairs in P. chrysosporium
(FDR > 0.05) (Fig. 2b). Six genes involved in glycolysis and
ethanol fermentation were significantly differentially up-
regulated in Phlebia sp. MG-60, including glucose-6-
phosphate isomerase [EC: 5.3.1.9], hexokinase [EC:
2.7.1.1] (two genes), fructose-bisphosphate aldolase [EC:
4.1.2.13], 6-phosphofructokinase [EC: 2.7.1.11], and ADH
[EC: 1.1.1.1]. Aldehyde dehydrogenase [EC: 1.2.1.3] was
differentially downregulated in Phlebia sp. MG-60, so it
may be related to ethanol production.

Expression of genes involved in ethanol fermentation via
pyruvate
We identified upregulated genes involved in ethanol fer-
mentation via pyruvate in Phlebia sp. MG-60 (Fig. 4,
Additional file 7: Table S5). Two genes coding for PDC
[EC: 4.1.1.1] were identified as DEGs catalyzing the con-
version of pyruvate into acetaldehyde and carbon diox-
ide. Finally, ADH [EC: 1.1.1.1] converts acetaldehyde to
ethanol. It is common knowledge that there are two
ethanol fermentation pathways from pyruvate. In the
two-step ethanol fermentation pathway, pyruvate is non-
oxidatively decarboxylated to acetaldehyde by PDC, and
then acetaldehyde is converted to ethanol by ADH [49].
In the three-step ethanol fermentation pathway, pyruvate
is oxidatively decarboxylated to acetyl-CoA by pyruvate
ferredoxin oxidoreductase and pyruvate formate lyase.
Acetyl-CoA is then converted to acetaldehyde by a CoA-
dependent-acetylating acetaldehyde dehydrogenase. Fi-
nally, ADH converts acetaldehyde to ethanol [50, 51].
The three-step pathway is widespread in bacteria, but

not in white-rot fungi. In the present study, pyruvate fer-
redoxin oxidoreductase, pyruvate formate lyase, and
CoA-dependent-acetylating acetaldehyde dehydrogenase
were not detected in the DEGs of Phlebia sp. MG-60
under fermenting conditions. These observations indi-
cated that Phlebia sp. MG-60 mainly uses the two-step
pathway of ethanol production from pyruvate, and that
the PDC and ADH genes play the major roles in ethanol
production. Recently, we reported that highly expressing
transformants of the PDC gene in the white-rot fungus
P. sordida YK-624 showed improved ethanol production
[52]. As shown in Additional file 7: Table S5 and
Additional file 8: Table S6, two genes of PDC in Phle-
bia sp. MG-60 increased PDC expression by 5.0- and
6.3-fold, and three ADH genes increased ADH ex-
pression by 11.6-, 4.4-, and 4.1-fold under fermenting
conditions. Although six ADH genes were identified
in this study, three were downregulated under fer-
menting conditions. These three upregulated ADH
genes may have been the main ones used for ethanol
production in the fermentation conditions of this
study. In contrast, PDC expression was 2.9- and 3.0-
fold increased, and ADH expression was 2.9-fold de-
creased in P. chrysosporium based on RNA-seq data.
Additionally, eleven genes for aldehyde dehydrogenase
[EC: 1.2.1.3], which is responsible for the subsequent
oxidation of acetaldehyde into acetate, were identified
in Phlebia sp. MG-60. However, all aldehyde dehydro-
genase genes of Phlebia sp. MG-60 showed low ex-
pression in fermentation conditions (Additional file 4:
Table S3), which suggested that low expression of al-
dehyde dehydrogenase in Phlebia sp. MG-60 might be
a cause of high ethanol productivity.
During ethanol fermentation, the ethanol produced

inhibits the growth and viability of the microorganism
[53, 54]. Thus, a high level of ethanol tolerance is consid-
ered to be important for a high yield of ethanol. It has
been reported that alteration in ethanol tolerance could
be affected by many factors, such as fatty acid composition
and activity of plasma membrane H+-ATPase [55–58]. In
this study, “fatty acid biosynthetic process” (GO: 0006633)
in the biological processes category and “ATP binding”
(GO: 0005524) in the molecular functions were the most
abundant terms in GO enrichment analysis of Phlebia sp.
MG-60 under fermenting conditions (Table 2). These ob-
servations indicated that a high resistance of Phlebia sp.
MG-60 to ethanol stress might have an effect on its high
ethanol productivity.

Conclusions
In this study, we provided novel transcriptomic informa-
tion on the ethanol producing white-rot fungus Phlebia
sp. MG-60, and investigated the genes involved in its
high ethanol yield by comparing them to the model
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white-rot fungus P. chrysosporium. Based on differential
gene expression analysis, the genes involved in glucose
transport, glycolysis, and ethanol fermentation were up-
regulated in Phlebia sp. MG-60. This suggests that the
high ethanol productivity of Phlebia sp. MG-60 is due to
genes related to glucose uptake, metabolism, including
the production of pyruvate, and ethanol synthesis, which
are upregulated under fermenting conditions. This study
may lead to a better understanding of fermentation by
white-rot fungi, and will provide information needed for
the genetic engineering of ethanol production.
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