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Abstract 

Events of drought-induced forest mortality and forest fire have been occurred all over 

the world and will be exacerbated in the future due to rising temperature. Both forest 

disturbances have substantial influence on the global hydrological and carbon cycle. 

How to remotely and quantitatively monitor and assess both disturbances have not 

been effectively addressed until now. Remote sensing provides a reliable and practical 

means to assess forest disturbances by the retrieval of related indicators. In this study, 

four indicators, relative water content (RWC), equivalent water thickness (EWT), 

fluorescence–based quantum yield of PSII (ΔF/F'm) and fuel moisture content (FMC) 

were retrieved with hyperspectral indices for detecting forest drought and fire, 

respectively.     

 

Leaf water status information is highly needed for monitoring plant physiological 

processes and assessing drought stress. In Chapter 2, a leaf dehydration experiment 

was designed to obtain a relatively comprehensive dataset with ranges that were 

difficult to obtain in field measurements. RWC and EWT were chosen as the 

surrogates of leaf water status. Moreover, five common types of hyperspectral indices 

including: single reflectance (R), wavelength difference (D), simple ratio (SR), 

normalized ratio (ND) and double difference (DDn) were applied to determine the 

best indices. The results indicated that values of original reflectance, reflectance 

difference and reflectance sensitivity increased significantly, particularly within the 

350-700 nm and 1300-2500 nm domains, with a decrease in leaf water. The identified 

best indices for RWC and EWT, when all the species were considered together, were 

the first derivative reflectance based ND type index of dND (1415, 1530) and SR type 

index of dSR (1530, 1895), with R2 values of 0.95 (p<0.001) and 0.97 (p<0.001), 

respectively, better than previously published indices. Even so, different best indices 

for different species were identified, most probably due to the differences in leaf 
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anatomy and physiological processes during leaf dehydration. Although more plant 

species and field-measured datasets are still needed in future studies, the recommend 

indices based on derivative spectra provide a means to monitor drought-induced plant 

mortality in temperate climate regions. 

 

The information of photosynthetic status is greatly required for better understanding 

forest drought stress. ΔF/F'm is a commonly used indicator of photosynthetic status. 

In chapter 3, ΔF/F'm was retrieved with leaf origin reflectance and first derivative 

reflectance ranging from 400 nm to 800 nm because leaf water content and dry mater 

content had minimal impact on these bands. Results showed that the changes of 

ΔF/F'm could not be traced by the published indices of NDVI and PRI. There were no 

significant correlations between ΔF/F'm and between ΔF/F'm and NDVI when all 

species were considered. The identified best indices for estimating ΔF/F'm was dND 

(533, 686) across different type of indices, with an R2 of 0.88 and an RMSE of 0.11. 

The wavelength of 533 nm which is near xanthophyll-cycle-related 531 nm and 686 

nm is near one of the emission peak of chlorophyll fluorescence, 690 nm. dND (533, 

686) may incorporates the information of both chlorophyll fluorescence and 

xanthophyll cycle, and therefore it is suitable for the estimation of ΔF/F'm under 

water stress. 

 

FMC, the water content either in dead or live fuels, is a critical parameter in fire 

behavior prediction. Although remote sensing is an efficient way to estimate the 

spatial and temporal variations of FMC, most of the existing spectral indices are 

oriented to live fuels, while estimation of FMC in dead fuels is commonly done using 

weather indices instead, and is therefore severely limited by the availability of 

meteorological stations. In chapter 4, dehydration experiments were designed for 

both live and dead fallen leaves in order to determine the best hyperspectral indices 

for different fuel types by tracking the time-varying water contents of both fuel 

materials. Meanwhile, PROSPECT model was used to simulate a dataset with a wide 

range of input parameters. The results showed that the reflected spectra from 400 to 
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1200 nm were quite different between green live leaves and fallen litters with 

decreasing FMC, while the changes of reflected spectra in the domain of 1200 to2500 

nm were similar, with dry matter bands gradually appearing. The identified best index 

for FMC including both fuel types was a derivative spectra-based index of dND(1900, 

2095) with an R2 of 0.85 and an RMSE of 32%, although it was failed in simulated 

dataset by PROSPECT. Two fuel types were well separated by normalizing dND 

(1900, 2095) with a combination of NDVI ((dND-NDVI)/(dND+NDVI)), which had 

an R2 of 0.85 and an RMSE of 21% for FMC in green live leaf fuels and a lower R2 of 

0.45 and RMSE of 69% for FMC in dead fallen leaf fuels. The decreased R2 for FMC 

in dead fallen leaf fuels was primarily caused by the different NDVI values of 

different species, suggesting that the recommend indices should be validated with 

more plant species in the future. 
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Chapter 1 General introduction 

1.1 Background  

1.1.1 Forest disturbances 

Forest ecosystems play a critical role in the climate regulation and global carbon cycle 

(IPCC 2007). A large and persistent carbon sink in forests has been found and may 

annually sequester about 25% anthropogenic carbon emissions to atmosphere (Bonan 

2008; Pan et al. 2011). However, a growing number of evidences show that ongoing 

global warming and extreme climate events are closely linked to vegetation 

disturbances which will have a positive feedback to global warming. These 

disturbances include drought stress, forest fire risk, wind throw and pest and pathogen 

outbreaks caused by heatwave, heavy storms, and floods etc. (Anderegg et al. 2013; 

Reichstein et al. 2013). Among all the disturbances, forest wildfire and drought- and 

heat-induced forest mortality are particularly of research interest because they have 

occurred all over the world (Anderegg et al. 2013; Flannigan et al. 2013; Goto and 

Suzuki 2013; Reichstein et al. 2013; van der Werf et al. 2004). Figure 1-1 shows some 

of the examples of widespread drought induced-tree mortality in many forest biomes 

globally. Predicted-results show that both forest disturbance events will be expected to 

exacerbate and co-occurred in the future (Adams et al. 2009; Allen 2009; Allen et al. 

2010; Liu et al. 2012; Mantgem et al. 2013; Moritz et al. 2012; Williams et al. 2014). 

Drought stress will increase forest fire severity and fire can destroy plant xylem 

conductivity, these interactions are not varying substantially across geographical 

regions (Mantgem et al. 2013). Hence, accurate quantitatively estimation of forest 

drought and fire is an urgent task, although there are abundant annual rainfall 

(1000-4000mm) (Forestry Agency Japan 1990) and few drought-induced forest 

mortality events are observed in Japan, future threaten by rising temperature and high 

rate of forest fire events, about 3000 times per year (Satoh et al. 2004) and large 
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annual forest area burnt (Figure 1-2) make it still necessity.  

 

 
Figure 1-1 Examples of increased tree mortality caused by drought and high 

temperatures during the last two decades all over the world (Allen 2009). 
 

 
Figure 1-2 Annual area burnt in national and private forests of Japan during the 

period 1979 through 2008 (Goto and Suzuki 2013). 
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However, direct measurement of these disturbances is time or labor-intensive and 

costly, and usually limited by the lack of a complete monitoring system which 

extremely rely on meteorological data (Mu et al. 2013), while remote sensing 

provides a practical means to assess forest disturbances across a range of scales and 

its rapid advances substantially improve the understanding of disturbances (McDowell 

et al. 2014).  

1.1.2 Indicators of plant drought stress and wildfire  

The basic principle for monitoring plant drought stress and wildland fire by remote 

sensing is based on potential link between vegetation spectral characteristic and 

disturbance information which is often obtained from plant biochemical and 

biophysical parameters (Carter 1994; Carter and McCain 1993; Garbulsky et al. 2011; 

Jackson et al. 1983; Yebra et al. 2013). Theoretically, the retrieval of these parameters 

can offer the possibilities to assess forest drought and fire.  

 

Recently, more efforts have been focused on the physiological mechanisms of 

drought-induced tree mortality, two hypotheses, hydraulic failure and carbon 

starvation are proposed to explain tree death (McDowell et al. 2008; McDowell et al. 

2013). Meanwhile, lab-controled experimental observations also have been carried out 

to test both hypotheses (Hartmann et al. 2013a; Hartmann et al. 2013b; Sevanto et al. 

2014; Zhao et al. 2013). Although assessments of the individual contributions of two 

interdependent mechanisms are difficult, the common observed results demestrate that 

hydraulic failure is closely related to leaf water status and carbon starvation is fairly 

regulated by the process of photosynthesis (McDowell et al. 2008; McDowell et al. 

2013; Way et al. 2013). The estimations of both leaf water status (Bowman 1989; 

Cheng et al. 2011; Clevers et al. 2010; Colombo et al. 2008; De Jong et al. 2014; Gao 

1996; Hunt Jr et al. 1987; Jacquemoud et al. 2009; Peñuelas et al. 1993; Pu et al. 2003; 

Sims and Gamon 2003; Tucker 1980; Zarco-Tejada et al. 2003) and photosynthesis 

status (Barton and North 2001; Gamon et al. 1992; Gamon et al. 1997; Gamon et al. 
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1993; Gamon et al. 2005; Garbulsky et al. 2011; Wong and Gamon 2015a,b) from 

remote sensing data have been tentatively implemented across a range of spatial and 

temporal scales. Available leaf water status related water stress include water potential, 

relative water content (RWC, %) and equivalent water thickness (EWT, g/cm2). Gas 

exchanges and chlorophyll fluorescence are two commonly available photosynthesis 

statuses. 

 

Among all leaf water status, the most used indicator is EWT, the amount of water 

content per unit leaf area, because it is an input parameter for PROSPECT model 

(Jacquemoud and Baret 1990; Jacquemoud et al. 1996; Jacquemoud et al. 2009). 

RWC, the ratio of the leaf water content at full turgor, is another popular leaf water 

indicator and draw more attention due to its direct relationship with drought stress 

(Carter 1994; Peñuelas et al. 1993). Chlorophyll fluorescence parameters are often 

regarded as indicator of photosynthesis status for remote sensing since it can trace 

variation of photosynthesis yield (Garbulsky et al. 2011; Wong and Gamon. 2015a,b).  

 

Similarly, the indicator fuel moisture content (FMC), the mass of leaf water in relation 

to leaf dry mass, has also been widely retrieved by remote sensing in the past several 

decades (Wang et al. 2013; Yebra and Chuvieco 2009; Yebra et al. 2008; Yebra et al. 

2013) as it is a critical variable for fire behavior prediction models and affects 

combustion, fire severity and spread, fire propagation(Viegas et al. 1992). In this 

study, leaf EWT, RWC, chlorophyll fluorescence and FMC were used as the remotely 

estimation indicators.  

1.1.3 Remote sensing approach 

Remote sensing has been proved as a reliable and rapid method to estimate various 

biophysical and biochemical variables across different spatial and temporal scales, 

particularly hyperspectral remote sensing which can provide more detail spectral 

information than traditional broad-band remote sensing (see section 1.2). Recently, the 
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commonly retrieved indicators by remote sensing can be categorized into two 

different types, physical-related change detection and functional-related change 

detection. Leaf water status of EWT and FMC can be estimated by physical radiative 

transfer model (see 1.2.1), and chlorophyll fluorescence parameters such as quantum 

yield of PSII can be estimated based on functional-related mechanism (see 1.2.2).  

1.2 State of the art  

Hyperspectral remote sensing has advantages of hundreds of narrow contiguous bands 

from 400 to 2500 nm, which can avoid the loss of crucial information available in 

specific narrow bands. Currently, two common remote sensing approaches, physical 

model inversion (Jacquemoud and Baret 1990; Jacquemoud et al. 1996) and spectral 

indices(Ceccato et al. 2001; Ceccato et al. 2002b; le Maire et al. 2008; Le Maire et al. 

2004), have been successfully used to estimate vegetation biochemical and 

biophysical parameters. And the applications of hyperspectral remote sensing at large 

scales will move a substantial stage duo to the continuing improvements in spectral 

resolution of the optical sensors. 

1.2.1 Radiative transfer model 

Different leaf-radiative transfer models have been developed for broadleaves 

(Jacquemoud and Baret 1990) and needle-shaped leaves(Dawson et al. 1998) to 

interpret the interactions between electromagnetic radiation and vegetation leaves. 

The widespread model in remote sensing for broadleaves, PROSPECT, is used in this 

study, which is firstly proposed by Jacquemoud and Baret in 1990. Briefly, 

PROSPECT is a simple plate model assuming leaf as a succession of absorbing layers. 

Leaf reflectance and transmittance from 400 to 2500 nm with a step of 5 nm can be 

calculated by four input parameters: leaf structure index (N), leaf chlorophyll content 

(Cab, µg/cm2), leaf water content (Cw or EWT, g/cm2), and leaf mass area (Cm or 

LMA, g/m2). The leaf reflectance and total absorption coefficient k for one layer is 

calculated by specific absorption coefficients K of each component. More details are 
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as follows: 

 

where k is the wavelength, ke (λ) is the absorption of an “albinos” leaf, and Kab, Km, 

and Kw are the specific absorption coefficients of chlorophyll a+b, leaf dry matter and 

leaf water content, respectively. After then, several improved versions have been 

released, including the introduction of absorption properties from individual dry mater 

components such as cellulose and lignin (Baret and Fourty 1997; Jacquemoud et al. 

1996), the improvement of spectral resolution from 5 nm to 1 nm (Feret et al. 2008; 

Le Maire et al. 2004), combination of chlorophyll a fluorescence emission (Pedrós et 

al. 2010), separation of individual photosynthetic pigment(Feret et al. 2008) and 

up-scaled PROSAIL model (Jacquemoud et al. 2009). Recently, the most used version 

only takes N, Cab, Cw and Cm into account with a 1 nm step (Feret et al. 2008). 

PROSPECT can simulate thousands of reflectance that are hardly obtained from the 

field based on a series of combinations of input parameters to determine the universal 

indices which are applicable to a wide range of species and leaf structure(le Maire et 

al. 2008; Le Maire et al. 2004). However, model inversion faces a serious ill-posed 

inverse problem, meaning that various combinations of input parameters might yield 

similar spectra (Li and Wang 2011; Yebra and Chuvieco 2009). Moreover, there are 

many other parameters which are not as inputs in the PROSPECT still need to be 

estimated. Thus, in this study, spectral indices, an important statistical method, were 

used to determine the best indices for leaf photosynthesis status and RWC, only 

retrieval of FMC was based on measured jointly with simulated datasets which are 

generating from PROSPECT-4 developed by Feret et al. (2008).  

1.2.2 Spectral indices 

The ill-posed problem limits the application of radiative transfer model, spectral 

indices is an alternative approach based on the reflectance combination of different 

wavelengths computed from various mathematical equation. To data, a large number 
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of spectral indices for target parameters (RWC, EWT and FMC) have been developed 

and applied to different vegetation types at leaf and canopy scales (Table 1-1), 

including simple spectral wavelength, spectral ratio, normalized ratio and first 

derivatives reflectance and its ratios. Most of these indices have been designed 

generally using the typical absorption bands by water centered at around 970 nm, 

1200 nm, 1450 nm, 1940 nm and 2500 nm or by leaf dry mater centered at such as 

around 1650nm and 2100 nm. For example, R1450, R1950 and R2500 for RWC 

applied to Acer platanoides L. and var Emerald Queen (Carter and McCain 1993), WI 

(Peñuelas et al. 1993) and R1300/R1450 (Seelig et al. 2008b) for RWC, NDWI (Gao 

1996) and MSI(Ceccato et al. 2001; Hunt and Rock 1989) for EWT and dSR(2110, 

2260) for FMC (Wang and Li 2012b). Although strong correlations have been 

observed between these indices and target parameters, these indices are usually 

calibrated based on a specific database, which means these indices may not be 

suitable for other databases(le Maire et al. 2008). Most importantly, extreme drought 

stress conditions were not included, which is critical for drought-induced forest 

mortality. There has been no study examining the relationship between leaf water 

status and hyperspectral indices of various types as reviewed by le Maire et al (2004, 

2008) which are essential for determining universal indices. For example, le Maire et 

al (2004) attempted to design universal broad leaf chlorophyll indices using 

PROSPECT simulated and hyperspectral measured database combining index types 

from simple ratios to more sophisticated indices of first derivatives reflectance. 

Furthermore, forest fire is significantly affected by fuel types, among all the FMC 

indices, most of them are specially designed for LMA or EWT of green leaves. Newly 

FMC indices for different fuel types are needed to be designed for monitoring forest 

fire risk in the future.  

 

Previous studies have demonstrated that photosynthetic status is greatly affected by 

drought stress, including stomatal closure, a decrease in photosynthetic efficiency and 

so on (Sevanto et al. 2014; Souza et al. 2004). How to remotely and dynamically 

monitor these changes is still a considerable challenge due to the fact that rapid 
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changes in plant photosynthetic status brought by stress are hardly tracked and the 

link between indices and photosynthetic functioning is uncertain. Even so, a number 

of attempts have been made to develop the spectral indices for monitoring 

photosynthetic status, however, most existing vegetation indices only can be used for 

estimating pigment contents (Feret et al. 2008; Filella and Penuelas 1994; Le Maire et 

al. 2004; Sims and Gamon 2002), vegetation distribution or net primary productivity 

(Box et al. 1989; Newnham et al. 2011; RAYMOND HUNT 1994; Schloss et al. 

1999). For example, Normalized Difference Vegetation Index (NDVI) can be used as 

an empirical indicator of spatial and temporal variability of greenness for certain 

ecosystems(Newnham et al. 2011). But it is a poor indicator for temporal variation in 

photosynthetic status, particularly for evergreen species (Gamon et al. 1995).  

 

Photochemical Reflectance Index (PRI, [R531 − R570]/[R531+R570]) has been 

developed to remotely assess photosynthetic efficiency or photosynthetic light use 

efficiency (Gamon et al. 1990; Gamon et al. 1992; Gamon et al. 1997; Garbulsky et al. 

2011; Peñuelas et al. 1997a; Peñuelas et al. 1994; Penuelas et al. 1995; Stylinski et al. 

2002; Wong and Gamon 2014, 2015) since 531 nm is related to the de-epoxidation 

state of the xanthophyll cycle which has a link with the photosynthesis 

protection mechanism from extra light or heat (Demmig-Adams and Adams Iii 1992). 

However, the relationship between PRI and photosynthetic status under drought is 

unclear although PRI always is used as water stress indicator. Chlorophyll 

fluorescence is an alternative mean for the estimation of leaf physiological status 

bacause it can track the real-time varition of photosynthetic efficiency (Genty et al. 

1989; Kooten and Snel 1990; Maxwell and Johnson 2000) and its parameters always 

are used to test PRI (Garbulsky et al. 2011). These parameters include photochemical 

quenching (qP), non-photochemical quenching (NPQ) and quantum yield of PSII and 

so on. Thus, an attempt examining the relationship between chlorophyll fluorescence 

paremeters and hypespectral reflectance under extreme drought condition was 

essential.  
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Table 1-1 published spectral indices for RWC, EWT and FMC 
Index Scale  Related to Species  Reference 

R810, R1665, R2210 Leaf  RWC 
Gossypium hirsutum cv. Stoneville  

825 
(Bowman 1989) 

R1450, R1950, R2500 Leaf RWC 
Acer platanoides L.  
var Emerald Queen 

(Carter and McCain 
1993) 

R695/R420, R605/R760 
R695/R760, R710/R760 

Leaf RWC Arundinaria gigantea (Walter) Muhl. (Carter 1994) 

LWCI: 
-log[1-(TM4-TM5)]/ 

-log[1-(TM4full turgor-TM5full turgor)] 
Leaf RWC Agave deserti Engelm (Hunt Jr et al. 1987) 

WI: R970/R900 Leaf  RWC 
Gerbera jamesonii; 
Capsicum annuum; 
Phaseolus vulgaris 

(Peñuelas et al. 1993) 

R1300/R1450 Leaf  RWC Spathiphyllum lynise (Seelig et al. 2008b) 
RRI(1455): 

(R1455time of stress 

-R1455control)/R1455control 
Leaf RWC Olea europaea L. (Sun et al. 2008) 

2R960-990/(R920-940+R1090-1110) 
2R1180-1220/(R1090-1110+R1265-1285) 

Leaf RWC Quercus agrifolia (Pu et al. 2003) 

NDVI(895, 675) Canopy RWC 
Ceanothus chaparral 
Chamise chaparral 
Coastal sage scrub 

(Serrano et al. 2000) 

MDWI: 
(Rmax1500-1750-Rmin1500-1750)/ 
(Rmax1500-1750+Rmin1500-1750) 

Leaf and 
Canopy 

RWC 
EWT 

Populus spp. (Eitel et al. 2006) 

MSI: 
SR(1600, 820) 

Leaf  EWT 
LOPEX93 

(about 50 species) 
(Ceccato et al. 2001; 
Hunt and Rock 1989) 

d940, d1000, d1150, d1240, 
d1380, d1550, d1920, d2100 

Leaf EWT 26 species  (Danson et al. 1992) 

(R850-R2218)/(R850-R1928) 
(R850-R1788)/(R850-R1928) 

Leaf EWT 21 Eucalyptus species (Datt 1999) 

 (R970-R1060)/90 Leaf EWT 
Arbutus unedo 
Quercus ilex 

Quercus pubescens 
(De Jong et al. 2014) 

R960/R950 Leaf EWT Citrus Unshiu Marcovitch (Dzikiti et al. 2010) 

R1070/R1340 Leaf EWT Vitis vinifera cv. Pinot noir 
(Rodríguez-Pérez et al. 

2007) 

dSR(1510, 1560) Leaf EWT 
Fagus crenata (main species) and 

other 15 species 
(Wang and Li 2012b) 

DDn(1530, 525) Leaf EWT 
Fagus crenata (main species) and 

other 15 species 
(Wang and Li 2012a) 

SR(2307, 1347) Leaf EWT Gossypium hirsutum L. (Zhang et al. 2012) 
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ND(1347, 2307) 
NDWI: ND(860,1240) Canopy EWT  (Gao 1996) 

R1150-1260 
R1520-1540 

Canopy EWT 23 species (Sims and Gamon 2003) 

GVMI: 
((NIR+0.1)-(SWIR+0.02))/ 
((NIR+0.1)+(SWIR+0.02)) 

Canopy EWT  
(Ceccato et al. 2002a; 
Ceccato et al. 2002b; 
Chuvieco et al. 2002) 

ND(860, 1200) 
ND(860, 1450) 
ND(860, 1940) 

Leaf and 
Canopy 

EWT 
FMC 

wheat (Wu et al. 2009) 

SRWI: 
R858/R1240 

Canopy 
CWC 
FMC 

7 Chaparral species 
(Zarco-Tejada et al. 

2003) 
 (R1050-R1015)/35 Canopy CWC  (Clevers et al. 2010) 

slopes of the 970 and 1200 nm Canopy CWC More than 10 species (Clevers et al. 2008) 
ND(858, 2130) 
ND(858, 1640) 

Canopy CWC corn and soybeans (Chen et al. 2005) 

NDII: 
ND(819,1600) 

Canopy (Fw-Dw)/Fw Spartina alterniflora (Hardinsky et al,1983) 

dSR(2110, 2260) Leaf FMC 
Fagus crenata (main species) and 

other 15 species 
(Wang and Li 2012b) 

SR(1801, 1650) 
ND(1650,1801) 

Leaf FMC Gossypium hirsutum L. (Zhang et al. 2012) 

WI 
NDWI 

Canopy FMC 

Adenostoma fasciculatuml; 
Ceanothus megacarpus; 
Ceanothus crassifolius; 

Salvia mellifera; Salvia leucophylla; 
Artemisia californica 

(Roberts et al. 2006) 

NDWI Canopy FMC 

Adenostoma fasciculatum 
Salvia leucophylla, Salvia mellifera 

Ceanothus megacarpus 
Salvia mellifera 

(Dennison et al. 2005) 

NDWI Canopy FMC savanna (Verbesselt et al. 2007) 
MSI Canopy FMC Calluna vulgaris (Al-Moustafa et al. 2012) 
NDII Canopy FMC  (Caccamo et al. 2012) 

NDVI Canopy FMC 

Agropyron caninum 
Artemisia tridentate 

Pseudotsuga menziesii 
Pinus ponderosa 

Carex geyeri, Berberis repens 
Symphoricorpos albus 

(Hardy and Burgan 1999) 

NDII/NDMI： 
ND(860,1650)/ND(1649, 1722) 

Leaf 
Canopy 

FMC 
Quercus alba L  

Acer rubrum L. Zea mays L. 
(Wang et al. 2013) 

RWC: relative water content; EWT: equivalent water thickness; FMC: fuel moisture 
content; CWC: canopy water content; Fw: leaf fresh weight; Dw: leaf dry weight 
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1.3 Objectives of this study 

This study aims to investigate the hyperspectral indices for estimating the forest 

drought stress- and wildfire- related indicators, both physical and physiological, 

including leaf RWC, EWT, FMC, and quantum yield of PSII. Two experiments were 

designed to understand the physiological characteristic and variation of reflectance for 

different type fuels during gradually dehydration of green leaf and fallen litter. In the 

green leaf dehydration experiment, leaf reflectance, chlorophyll fluorescence, leaf 

water content and leaf weight were measured. In the fallen litter refreshing, leaf 

reflectance, leaf water content and weight were measured. The main objectives are to: 

(1) provide leaf reflectance, leaf RWC and EWT variations of different broadleaved 

species in the temperate climate zone during dehydration processes to compose a 

comprehensive dataset within biological realities and identify the best hyperspectral 

indices for estimating leaf RWC and EWT based on different types and different 

treatments of reflected spectra; (2) investigate the response of chlorophyll 

fluorescence and leaf reflectance ranging from 400-800 nm to drought stress; examine 

whether PRI can be used to trace the variation of quantum yield of PSII and attempt to 

identify best hyperspectral indices for quantum yield of PSII; (3) compare the 

variations of leaf reflectance and first derivative spectra in two different fuel types 

during dehydration processes and determine the best hyperspectral indices for FMC 

based on PROSPECT simulated and measured datasets with an attempt to separate 

FMC estimation in the two fuel materials.  
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Chapter 2 Best hyperspectral indices for tracing RWC and EWT 

as determined from leaf dehydration experiments 

2.1 Introduction 

Plant water status is closely related to forest mortality and physiological processes, 

which are still poorly understood (Sala et al., 2010). Studies have showed that a 

decreased leaf water content slows the rate of photosynthetic carbon assimilation 

(Lawlor and Cornic, 2002) and strongly decreases the intrinsic photochemical 

efficiency and electron transport rate of PS II (Augusti et al., 2001), which would 

result in plant carbon starvation or hydraulic failure, leading to plant death (McDowell 

et al., 2008; McDowell et al., 2013; Sevanto et al., 2014). Therefore, leaf water status 

information is highly needed for monitoring plant physiological processes and 

assessing drought stress. 

 

Traditional measurements on leaf water status are time-consuming, destructive, and 

point-based, which make it difficult to be up-scaled to reflect regional leaf water 

status (Penuelas et al., 1993). In recent decades, remote sensing has been shown to be 

an effective method to assess plant water status across different scales (Ceccato et al., 

2001; Ceccato et al., 2002a, b; Gao, 1996; Hunt et al., 1987; Penuelas et al., 1993; 

Sims and Gamon, 2003; Zarco-Tejada et al., 2003). Two widespread remote sensing 

approaches, i.e. model inversion (Jacquemoud et al., 1996) and spectral indices (e.g. 

Ceccato et al., 2001), have been developed to retrieve leaf water status based on 

reflectance data. Compared to model inversion, the spectral indices approach, which 

is based on combinations of several narrow or broad spectral bands, is simple and 

correlates well with leaf water status. Thus, how to design a general spectral index to 

estimate vegetation water status by remote sensing data has consequently drawn more 

attention (e.g. Ceccato et al., 2002a, b; Sims and Gamon, 2003; le Maire et al., 2008). 
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A general approach to identify the best spectral indices is based on field measured 

datasets that are usually enclosed measurements of different species under different 

ecological conditions. Different water indices have been designed from previous 

studies such as the normalized difference water index (Gao, 1996) and water index 

(Penuelas et al., 1993), which generally use the typical absorption bands by water 

centered at around 970 nm, 1200 nm, 1450 nm, 1940 nm and 2500 nm; and strong 

correlations have been observed between these indices and leaf water content. 

However, these indices are usually calibrated based on a specific database, which 

means these indices may not be suitable for other databases (le Maire et al., 2008). In 

addition, the method is time and labor consuming, making it difficult to obtain a large 

dataset. Furthermore, numerous factors greatly affect the relationships, including 

water stress, plant species, growing conditions and phenological stages (Wang and Li., 

2012b). Alternatively, simulated or a combination of simulated and measured datasets 

are proposed to generate universally applicable indices, e.g. Wang and Li (2012a, b) 

have reported two new hyperspectral indices (dSR(1510, 1560) and DDn(1530,525)) 

for temperate deciduous plant water status, using both simulated and field datasets 

across a wide range of species. Even so, simulated and field datasets seldom include 

extreme cases, leading to nearly all spectral indices being unable to retrieve the leaf 

water content under extreme water stress conditions. This renders these indices poorly 

applicable to monitoring forest mortality, because all of the datasets are mainly 

obtained from or simulated for healthy leaves under normal natural conditions. 

Although, on the other hand, simulated datasets may include all extremes theoretically, 

biological responses to such extremes are poorly distinguished, as for most cases only 

physically unrealistic combinations of different model inputs are prevalent, leading to 

inaccuracies in applying identified indices to real applications. 

 

The reflectance of dying leaves in different stages of water stress is quite different 

from that of healthy leaves, and leaf reflectance significantly increases throughout the 

400-2500 nm domain during the dehydration process (Carter, 1991, 1993; Foley et al., 

2006; Richardson and Berlyn, 2002; Seelig et al., 2008b). Previous studies have 
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shown that leaf dehydration experiments can provide a dataset with a wide range of 

leaf water conditions and biological realities, which may be more suitable for index 

identification than field measurements under water stress conditions, because 

experiments can not only trace the changes in leaf water status and physiological 

processes in a time and labor saving way, but can also obtain extreme leaf water 

conditions (Carter, 1991; Penuelas et al., 1993, 1997b; Seelig et al., 2008b). The water 

indices SR(970, 900) and SR(1300, 1450) have been presented based on progressive 

dehydration experiments (Penuelas et al., 1993; Seelig et al., 2008b). However, these 

studies only focused on a single type of index (simple ratios of two wavelengths near 

the water absorption bands) based on a dataset with only a few plant species.  

 

Previous studies also demonstrated that the reflectance near 700 nm and its ratio with 

near infrared reflectance can provide the detection of plant water stress (Carter, 1994; 

Carter and Knapp, 2001; Carter and Miller, 1994). However, the wavebands near 700 

nm are strongly influenced by pigments, meaning they cannot directly provide plant 

water information. To our knowledge, there has been no study examining the 

relationship between leaf water status and hyperspectral indices of various types. 

Commonly used types of indices, including reflectance at a given wavelength (R), 

wavelength difference (D), simple ratios (SR), normalized differences (ND) and 

double differences (DDn) then need to be explicitly examined. In addition, specific 

conversion on leaf original reflectance can usually be performed to improve the 

performance of indices. For instance, the derivative spectra technique (dR) can 

eliminate background noise and resolve overlapping spectral features 

(Demetriades-Shah et al., 1990). 

 

The objectives of the current study were: 1) to provide leaf reflectance, leaf RWC and 

EWT variations of different broadleaved species in the temperate climate zone during 

dehydration processes to compose a comprehensive dataset within biological realities; 

2) to validate the performance of existing spectral indices for tracking leaf water 

status; and 3) to identify the best hyperspectral indices for estimating leaf water status 
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based on different types and different treatments of reflected spectra. This study was 

based on leaf dehydration experiments using five common species of temperate zone 

ecosystems. 

2.2 Material and methods 

2.2.1 Leaf sampling and dehydration measurements 

Leaves of four deciduous species, i.e. Zelkova serrata, Idesia polycarpa, Liquidambar 

styraciflua and Prunus x yedoensis, were collected around the campus of Shizuoka 

University, and another dominant temperate deciduous species (Fagus crenata) was 

collected from Mount Naeba, Japan. All samples were collected by the detached 

branch technique which is recognized to be accurate and reliable for reflectance and 

photosynthesis parameter measurements under non-in situ conditions (Koike, 1986; 

Foley et al., 2006; Richardson and Berlyn, 2002). The branches with target leaf 

samples were cut pre-dawn, and re-cut under water to avoid a loss of branch 

conductance. The samples were stored hydrated under dim light, high humidity and 

cool temperatures before measurement. In total, 24 leaf samples were collected for 

five plant species, including 4 sunlit leaves and 4 shaded leaves for F. crenata and 4 

sunlit leaves for each of the other four species. All the samples selected were mature 

fully expanded leaves.  

 

The measurements were conducted in the laboratory in the middle of September, 2013, 

when mean day temperature was about 25°C and average relative humidity was 

around 75%. For each leaf sample, fresh leaf reflectance and weight were firstly 

measured, and then kept naturally under dehydrated conditions. Leaf reflectance and 

weights were measured synchronously at every 1h for the first 5h but less frequent in 

later during the entire leaf dehydration period (ca. 24 hours) until the leaf sample was 

air-dried to a stable weight. Finally, the air-dried samples were oven-dried at 70°C for 

72 h and then weighed again. The total number of measurements was 224 for both 
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leaf reflectance and leaf weight.  

 

Leaf reflectance spectra were measured in the optical range (350-2500 nm) using a 

field spectroradiometer (ASD FR, USA) equipped with a leaf clip, 

in which a light source of a tungsten quartz halogen lamp was embedded. The spectral 

resolution was 3 nm at 700 nm and 30 nm at both 1400 nm and 2100 nm. The 

sampling interval was 1.4 nm from 350 nm to 1050 nm and 2 nm from 1000 nm to 

2500 nm. White reference scan was made for the calibration before reflectance 

measurement, which was done in the leaf clip with matched openings for 

non-destructive contact measurements. Synchronously, leaf weight was measured 

using an electronic balance right after reflectance measurement to make sure both 

measurements were under similar water status as possible. 

2.2.2 Leaf water status 

Leaf relative water content (RWC) and equivalent water thickness (EWT) are 

commonly used as indicators for plant water status, both of which were selected for 

the current study. RWC refers to the ratio of the water content to the maximum water 

content at full turgor for one given leaf (Hunt et al., 1987). EWT is the amount of 

water content per unit leaf area, which is more associated with energy absorption 

(Jacquemoud et al., 1996). Here, we defined RWC as the ratio of the leaf water 

content at time T (h) to the water content of the fresh leaf, not the water content at full 

turgor. This ratio is positively correlated with the ratio using the leaf water content at 

full turgor.  

 

RWC (%) = (WT-WD)/ (WF-WD); 

EWT (g/cm2) = (WT-WD)/LA. 

 

where WT, WD, WF and LA represent leaf weight at time T (h) after leaf cutting, dry 

weight, fresh weight and leaf area, respectively. 
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2.2.3 Published indices for estimating leaf water status 

A number of hyperspectral indices have been developed for estimating plant water 

status based on normalized ratios or simple ratios of different wavelengths. In this 

study, six indices reported in previous works were selected to test their performance in 

monitoring leaf water status during the dehydration process. The selected indices are 

listed in Table 2-1.  

 

Table 2-1 Published water indices for assessing leaf water status 
 

Index Formula References 
WI R970/R900 Penuelas et al. (1993) 
SR(1300,1450) R1300/R1450 Seelig (2008b) 
NDWI (R860-R1240)/ (R860+R1240) Gao (1996) 
SRWI R860/R1240 Zarco-Tejada et al.(2003) 
NDII (R819-R1600)/(R819+R1600) Hardisky et al. (1983) 
DDn(1530,525) 2R1530-R1005-R2055 Wang and Li (2012a) 

2.2.4 Determination of the best indices 

We used four different treatments of reflectance (original reflectance, reflectance 

difference, reflectance sensitivity and the first derivative of reflectance) and five types 

of indices (R, D, SR, ND and DDn), which are currently the most widely used, as 

reviewed by le Maire et al. (2008), to determine the best indices for RWC or EWT. 

 

Reflectance difference = RT-RF 

Reflectance sensitivity = (RT-RF)/RF 

First derivative=dR 

 

where RT, RF and dR are reflectance at the time T (h) after leaf cutting, fresh leaf 

reflectance and first derivative of reflectance, respectively.  

 

The same equations presented below were applied using the original reflectance, 
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reflectance difference, reflectance sensitivity and the first derivative reflectance.  

Specially, indices based on the first derivative treatment are termed as dR, dD, dSR, 

dND and dDDn. 

 

R=Rλ1 

D=Rλ1-Rλ2 

SR=Rλ1/Rλ2 

ND= (Rλ1-Rλ2)/ (Rλ1+Rλ2) 

DDn=2Rλ1-Rλ1-Δ-Rλ1+Δ 

 

where Rλ1, Rλ2 and Δ represent wavelengths at λ1, λ2 and interval wavelengths, 

respectively. R, D, SR, ND and DDn are reflectance at a given single wavelength, 

wavelength difference, simple ratio, normalized ratio and double difference, 

respectively. 

2.2.5 Statistics 

Identification of best hyperspectral indices for tracing leaf water status was based on a 

calibration dataset that was made of 18 leaf samples including three sun-leaves and 

three shade-leaves for F. crenata and three leaves each for the other four species (156 

measurements in total), while the remainder (68 measurements for six leaf samples) 

were used for validating identified indices in this study. The tests were run on the 

calibration dataset to identify the best index. Once this was done and the best index 

selected was applied to the validation dataset to confirm its robustness. 

 

The determination of indices was conducted by liner regression between a given index 

and RWC or EWT in the entire wavelength domain. Regression analysis was 

performed for all possible combinations of wavelengths for a given index type. The 

wavelength interval was 5 nm. Statistical criteria to evaluate the performance of 

published/identified indices were based on the root mean square error (RMSE) and 
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the coefficient of determination (R2). And the best index was identified as the 

combination with the lowest RMSE and the highest R2. 

2.3 Results 

2.3.1 Temporal variation in RWC, EWT and leaf reflectance 

Both RWC and EWT dropped rapidly from the maximum to a near minimum within 

10 h after leaf cutting, particularly in the first 5 h. After 10 h, the values of RWC and 

EWT were maintained stably near zero for each species (Figure. 2-1), indicating the 

leaves were totally dehydrated. For RWC, the decreasing rates of all species were 

similar and could be fitted by an exponential curve, which had an intercept of 2.51%, 

approximated to the average water content of air-dried leaves. However, changes in 

EWT were relatively diverse due to the wide range of starting values of different 

species, with the highest value found for L. styraciflua and the lowest value for 

F.crenata (Figure. 2-1). 

 

 

Figure 2-1 Changes in RWC and EWT over time following leaf cutting 

 

Changes of measured reflectance, reflectance difference with the starting reflectance, 

reflectance sensitivity and the first derivative of reflectance for each species along the 

progress of leaf dehydration are shown in Figure 2-2. As RWC decreased, reflectance 
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tended to increase throughout most of the 350-2500 nm range for all species, 

particularly within the 350-700 nm range and near the water absorption bands at 1450 

nm, 1940 nm and 2500 nm, although there were some inconsistencies. This 

phenomenon was also shown by the increase in reflectance difference and reflectance 

sensitivity whose curves were much smoother. The most important difference among 

species in reflectance was the slope from 750 nm to 1000 nm; e.g., the reflectance 

ranging 750 nm to 1000 nm for L. styraciflua increased as the RWC decreased, yet the 

reflectance at the same range for F. crenata did not show such an increase, with higher 

reflectance appeared in RWC of 48% and lower reflectance in RWC of 16%. 

Variability in the reflectance of I. polycarpa was similar with that of F. crenata, and 

the reflectance variations of Z. serrata and P. x yedoensis were similar with L. 

styraciflua, generally increasing during leaf dehydration. This difference also can be 

seen in the reflectance difference and reflectance sensitivity among different plant 

species. 

 

Compared with reflectance, reflectance difference and reflectance sensitivity, the first 

derivative of reflectance provided more detail information about the response to 

dehydration. Although there were some difference in reflectance within the 700-800 

nm domain, “blue shift”, an indicator of senescence, could be seen from the first 

derivative of reflectance among all plant species. Correspondingly, the reflectance in 

the red edge increased with time. Contrary to “blue shift”, the left edges of the water 

absorption troughs centered at 970 nm, 1150 nm, 1450 nm and 1940 nm generally 

shifted to longer wavelengths, and the minima of the first derivative increased for the 

left edges in the troughs 970 nm, 1150 nm and 1450 nm, first decreasing and then 

increasing for the 1940 nm trough with a decrease in leaf water content. Meanwhile, 

several new reflectance peaks and troughs could be observed from the first derivative, 

which were in agreement with original reflectance variations ranging from 2000 nm to 

2500 nm.  
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Figure 2-2 Changes of Reflectance spectra, reflectance differences, reflectance 
sensitivities and first-derivative reflectance spectra for different plant 

species attributed to progressive RWC 
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2.3.2 Performance of the reported indices 

Table 2-2 presents the performance of all indices selected for tracing the variation in 

RWC and EWT. All correlations between either RWC or EWT and the six reported 

indices were significant. The performances of most indices were well for individual 

species (data not shown), with higher R2 (all values of R2 were greater than 0.78) and 

lower RMSE. However, when considering all the species, the performances were 

much poorer, especially for RWC, whose R2 values were all below 0.73. For instance, 

the correlations between RWC and WI for I. polycarpa, L. styraciflua, Z. serrata, P. x 

yedoensis and F. crenata were significant with R2 of 0.81, 0.93, 0.87, 0.88 and 0.86, 

respectively. However, the R2 dropped to 0.70 with composite datasets from 

individual species. Judging from the R2 and RMSE values, the best index for 

predicting RWC and EWT was R (1300, 1450) among the six indices for all 

measurements, with R2 values of 0.73 and 0.94, and RMSE of 17.73% and 0.0010 

g/cm2, respectively. In general, all selected indices were better for EWT than for 

RWC, indicated by the higher R2 values (Table 2-2).  

 

Table 2-2 Published water indices tested for RWC and EWT based on measured 
datasets (all measurements = 224) 

 

Indices Indicators R2 RMSE(% or g/cm2) 

WI RWC 0.70 18.43 
EWT 0.71 0.0022 

SR(1300,1450) RWC 0.73 17.73 
EWT 0.94 0.0010 

NDWI RWC 0.69 18.92 
EWT 0.66 0.0024 

SRWI RWC 0.70 18.59 
EWT 0.67 0.0024 

NDII RWC 0.68 19.28 
EWT 0.85 0.0016 

DDn(1530,525) RWC 0.67 19.57 
EWT 0.90 0.0013 

(The number of measurements, n=224; P<0.001) 
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2.3.3 Newly identified indices for tracing leaf water status 

For each type of index, the combination of different wavelengths with the highest R2 

and the lowest RMSE based on original reflectance, reflectance difference, reflectance 

sensitivity and the first reflectance derivative and their performance with validation 

dataset are listed in Tables 2-3, 2-4, 2-5, 2-6, and the R2 matrix using validation 

dataset for RWC and EWT are shown in Figures 2-3 and 2-4. In general, specific 

wavelengths that correlated significantly with RWC or EWT could be determined for 

each type of index and each treatment, with most of R2 values greater than 0.90 for 

individual species datasets and greater than 0.80 for all measurements.  

For original reflectance, the most used wavelengths estimating RWC or EWT in all 

determined indices were near 1400 nm and 1900 nm (Table 2-3). The best indices 

were different for each species dataset and index (data not shown). Specifically, the 

identified best indices were D (525, 1380) for RWC (R2=0.89, RMSE=10.58%) and 

SR (1670, 1880) for EWT (R2=0.95, RMSE=0.0009 g/cm2) with all measurements. 

They also maintained a good performance with the validation dataset (Table 3). In 

addition, since the sensitivity of single wavelengths (R type of index) to RWC (Figure 

2-3) were similar to that for EWT (Figure 2-4), some of the determined indices for 

both RWC and EWT were similar for the same individual species (data not shown). 

The distribution of the R2 matrix predicting RWC and EWT was also similar, with R2 

(RMSE) for the same index usually higher (lower) for EWT, except D and DDn types 

of reflectance difference and reflectance sensitivity (Figures 2-3 and 2-4).  

Similarly, for the reflectance difference treatment, the most sensitive wavelengths for 

RWC or EWT were near 1400 nm and 1900 nm (Table 2-4, Figures 2-3 and 2-4). The 

R2 matrix for RWC or EWT was similar with that of original reflectance for the R, D 

and DDn types of index, but quite different for both the SR and ND types of index 

(much lower R2). The best indices for RWC and EWT with all measurements were 

D(530,1465) (R2=0.88, RMSE=7.64%) and ND(1980, 2425) (R2=0.82, 

RMSE=0.0013 g/cm2). Although the identified index D(530,1465) performed well 
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with validation dataset (R2=0.92, RMSE=9.51%), the identified ND type of index 

(ND(1980, 2425)) failed when it was applied to the validation dataset (Table 2-4).  

 

Table 2-3 Evaluation of five types of indices with original reflectance for leaf 
RWC and EWT 

 

Indicators Index type 
          Calibration dataset(n=156) Validation dataset(n=68) 

λ1 λ2 or Δ R2 RMSE R2 RMSE 

RWC (%) 
 

R 1385 
 

0.87 11.77 0.90 11.66 

D 525 1380 0.89 10.58 0.88 12.68 

SR 1410 1830 0.88 11.25 0.88 12.81 

ND 1410 1830 0.89 10.78 0.87 13.03 

DDn 1405 1010 0.87 11.36 0.88 12.48 

EWT(g/cm2) 
 

R 1395  0.88 0.0015 0.82 0.0016 

D 1300 1315 0.92 0.0012 0.90 0.0012 

SR 1670 1880 0.95 0.0009 0.96 0.0008 

ND 1370 1375 0.95 0.0009 0.96 0.0008 

DDn 1405 480 0.93 0.0011 0.95 0.0009 

n: the number of measurements; unit of λ1, λ2 and Δ: nm; P<0.001 for regression. 

 

For the reflectance sensitivity treatment (Table 2-5), the R2 matrices of all five types 

of indices were much poorer than that of original reflectance (Figures 2-3 and 2-4). 

The identified best index for RWC was ND (1980, 2425) (R2=0.83, RMSE=9.38%) 

and for EWT this was ND(1980, 2425) (R2=0.81, RMSE=0.0014 g/cm2). However, 

both performed poorly in validation. 

 

For the first derivative of reflectance treatment (Table 2-6, Figures 2-3 and 2-4), 

except for a few wavelengths, the most sensitive wavelengths for RWC or EWT were 

within 1300-1600 nm and 1750-1900 nm. The identified best index for RWC was 

dND(1415,1530) (R2=0.91, RMSE=9.46%), and for EWT was dSR(1530, 1895) 

(R2=0.96, RMSE=0.0009 g/cm2). Both indices performed ever better in validation, 
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with an R2 of 0.95 for dND(1415,1530) and an R2 of 0.97 for dSR(1530, 1895) (Table 

2-6), respectively. 

 

Table 2-4 Evaluation of five types of indices with the treatment of reflectance 
difference for leaf RWC and EWT 

 

Indicators Index type 
           Calibration dataset(n=156) Validation dataset(n=68) 

λ1 λ2 or Δ R2 RMSE R2 RMSE 

RWC (%) 
 

R 1885  0.84 9.00 0.89 11.14 

D 530 1465 0.88 7.64 0.92 9.51 

SR 1960 2435 0.79 10.23 - - 

ND 1960 2435 0.81 9.71 - - 

DDn 1455 915 0.87 8.16 0.91 10.47 

EWT(g/cm2) 
 

R 2035  0.76 0.0016 0.77 0.0017 

D 525 2075 0.81 0.0014 0.80 0.0016 

SR 2000 2220 0.81 0.0014 - - 

ND 1980 2425 0.82 0.0013 - - 

DDn 1560 40 0.80 0.0014 0.78 0.0017 

n: the number of measurements; unit of λ1, λ2 and Δ: nm; P<0.001 for regression; 
“-”:regression insignificant.  

 

Overall, the performance of the five types of indices with original reflectance and the 

first derivative of reflectance were generally better than that with the reflectance 

difference and reflectance sensitivity, judging from the R2 values and RMSE. Most of 

the best indices determined for different treatments were concentrated upon the SR or 

dSR and ND or dND types of indices and were different for different datasets. 
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Table 2-5 Evaluation of different types of indices with the treatment of 
reflectance sensitivity for leaf RWC and EWT 

 

Indicators Index type 
             Calibration dataset(n=156) Validation dataset(n=68) 

λ1 λ2 or Δ R2 RMSE R2 RMSE 

RWC (%) 
 

R 1390  0.53 15.50 0.85 13.13 

D 760 1335 0.77 10.79 0.87 12.47 

SR 1980 2425 0.80 10.11 - - 

ND 1980 2425 0.83 9.38 - - 

DDn 1535 770 0.74 11.46 0.83 14.23 

EWT(g/cm2) 
 

R 1570  0.40 0.0024 0.69 0.0020 

D 555 700 0.70 0.0017 0.49 0.0026 

SR 1980 2425 0.77 0.0015 - - 

ND 1980 2425 0.81 0.0014 - - 

DDn 710 155 0.64 0.0019 0.48 0.0026 

n: the number of measurements; unit of λ1, λ2 and Δ: nm; P<0.001 for regression. 
“-”:regression insignificant.  
 

Table 2- 6 Evaluation of five types of indices with the treatment of the first 
derivative of reflectance for leaf RWC and EWT 

 

Indicators Index type 
               Calibration dataset (n=156) Validation dataset (n=68) 

λ1 λ2 or Δ R2 RMSE R2 RMSE 

RWC (%) 
 

dR 1765  0.83 13.39 0.84 14.54 

dD 670 1765 0.85 12.40 0.92 10.20 

dSR 1840 2185 0.88 11.11 0.86 13.65 

dND 1415 1530 0.91 9.46 0.95 8.18 

dDDn 1865 25 0.85 12.39 0.84 14.55 

EWT(g/cm2) 
 

dR 1305  0.92 0.0012 0.89 0.0013 

dD 1200 1310 0.91 0.0012 0.90 0.0012 

dSR 1530 1895 0.96 0.0009 0.97 0.0007 

dND 1530 1885 0.95 0.0009 0.96 0.0007 

dDDn 1560 425 0.94 0.0011 0.95 0.0009 

n: the number of measurements; unit of λ1, λ2 and Δ: nm; P<0.001 for regression. 
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Figure 2-3 R2 of leaf RWC prediction with different type indices 
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Figure 2-4 R2 of leaf EWT prediction with different type indices 
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2.4 Discussion  

2.4.1 Leaf dehydration dataset for water index identification 

Numerous studies on leaf dehydration have demonstrated similar leaf reflectance 

responses to those described here: increased reflectance across most of the 350-2500 

nm domain with a decrease in leaf water content, particularly within the 350-700 nm 

and 1300-2500 nm ranges (Carter, 1991; Penuelas et al., 1993; Foley et al., 2006; 

Seelig et al., 2008b). This phenomenon was called the “primary effect” by Carter 

(1991), suggesting that a decrease in leaf water content is the most important reason 

for changes in leaf reflectance, offering the possibility of the assessment of leaf water 

content. In addition, our results indicate that leaf dehydration experiments can provide 

a wider range of RWC (3%-100%) and EWT (0.0003-0.0180 g/cm2) (Figures 2-1 and 

2-2) than other field-measured datasets in Japan, with EWT ranging from 

0.0026-0.0158 g/cm2 (Wang and Li, 2012b). Foley et al. (2006) also obtained a 

similar EWT range (within 0-0.0200 g/cm2) for five different tropical species during 

leaf dehydration. Meanwhile, the RWC or EWT ranges of the leaf dehydration dataset 

focus on much lower values (extreme drought) compared with other field sites. For 

instance, Sims and Gamon (2003) estimated EWT using the spectral reflectance of 23 

species across a wide range of functional types, with leaf EWT ranging from 0.0103 

g/cm2 to 0.0728 g/cm2. Colombo et al. (2008) also estimated field leaf EWT from 

0.0091 g/cm2 to 0.0154 g/cm2 using hyperspectral indices. Similarly, de Jong et al. 

(2014) observed leaf EWT ranging from 0.0082 g/cm2 to 0.0209 g/cm2 for three plant 

species in the Mediterranean region where water availability is a strong indicator of 

plant stress. However, the extreme drought ranges of the leaf dehydration dataset are 

not included in these ranges. Although Ceccato et al. (2001) extracted a dataset with 

EWT ranging from 0.0002 to 0.0524 g/cm2 for 37 species, only a few data points were 

below 0.0050 g/cm2. On the other hand, a similar range of leaf EWT was simulated by 

PROSPECT (Jacquemoud and Baret, 1990; Jacquemoud et al., 1996). However, 

model inversion was only suitable for a specific dataset, and indices calibrated using a 
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particular database could be unsuitable for other databases, since the retrieval of leaf 

water status is also affected by plant species, growing conditions and growth stage, etc. 

(le Maire et al., 2008). Hence, a leaf dehydration dataset may have more advantages 

over other field datasets and simulated datasets under water stress conditions. 

 

However, light absorption by leaves within the 350-750 nm range is also affected by 

pigments (Sims and Gamon, 2002). Chlorophyll breakdown (Carter and Knapp, 2001; 

Sun et al., 2008) and stomata closure (Souza et al., 2004; Brodribb and Holbrook, 

2003) will occur during leaf dehydration or under water stress, which may influence 

photosynthesis or other biochemical reactions, thereby affecting leaf reflectance 

(Richardson and Berlyn, 2002; Reddy et al., 2004; Sarlikioti et al., 2010). Carter 

(1991) tested this hypothesis in rehydrating experiments; this is now viewed as a 

“secondary effect” and can also be evidenced by a blue shift, which was associated 

with the chlorophyll concentration (Rock et al., 1988) in all five plant species in this 

study. Moreover, a similar response can be found in visible reflectance with different 

plant stresses (e.g. ozone) (Carter, 1993; Carter and Knapp, 2001). This means that 

leaf dehydration is a particularly complicated physiological process, and it is difficult 

to distinguish the exact reason why leaf reflectance within 350-750 nm varies as the 

leaf water content decreases. This evidence suggests that index identification using 

wavelengths in the 350-750 nm range are unsuitable for estimating leaf water status, 

although some indices have been developed and used to retrieve vegetation water 

status, for example NDVI (Serrano et al., 2000). In fact, some studies have verified 

there are no significant correlations between NDVI and leaf water content for some 

plant species (Wang and Li, 2012b; Seelig et al., 2008b; Sims and Gamon, 2003).  

 

Similarly, the wavelengths within the 750-1300 nm range are closely related to leaf 

structure (Jacquemoud and Baret, 1990; Jacquemoud et al., 1996). The responses of 

leaf structure to dehydration are quite different for different species, e.g. cells are 

quickly and clearly broken for Floss silk, while only shrinking occurs for Common 

guava and Purple guava after a few hours of leaf dehydration (Foley et al., 2006). 
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Additionally, variations in leaf thickness (Foley et al., 2006; Seelig et al., 2008a; 

Seelig et al., 2009) and homogeneity of leaf area (Seelig et al., 2008a) may also affect 

the response of leaf reflectance to dehydration. Our results also show that the most 

considerable variability among species in reflectance is the slope from 750 nm to 

1000 nm, which may be caused by differences in the leaf structure of individual plant 

species. Thus, the wavelengths from 750 to 1300 nm probably are not suitable for leaf 

water status estimation using leaf dehydration dataset. 

 

The most sensitive wavelength to leaf water status is the range from 1300 nm to 2500 

nm, which has been demonstrated in quite a number of studies (Danson et al., 1992; 

Hunt et al., 1987; Carter, 1991; Knipling, 1970; Tucker, 1980), although some bands 

are absorption features (e.g. near 1730 nm and 2100 nm) attributed to leaf dry matter 

(Cheng et al., 2011). Actually, the leaf dry weight almost remained constant during 

short periods of leaf dehydration and the reflectance in this region gradually increased 

as the leaf water content decreased. The leaf water content can be seen as the main 

factor influencing leaf reflectance within the 1300-2500 nm range. However, several 

new absorption troughs ranging from 2000 nm to 2500 nm were observed during leaf 

dehydration, which may bring some uncertainties when retrieving leaf water status. 

Thus, the most suitable range is 1300-2000 nm for estimating leaf water status with a 

leaf dehydration dataset. 

2.4.2 Best indices for tracing leaf water status 

All reported indices selected in this study are based on water absorption bands, such 

as 970 nm for WI (Penuelas et al., 1993), 1240 nm for NDWI (Gao, 1996) and SRWI 

(Zarco-Tejada et al., 2003), 1600 nm for NDII (Hardisky et al., 1983; Ceccato et al., 

2001), 1530 nm for DDn(1530,525) (Sims and Gamon, 2003; Wang and Li, 2012a) 

and 1450 nm for SR(1300, 1450) (Seelig et al., 2008b). These indices have been used 

in different species and under different climate conditions to assess leaf water status 

and usually have a significant relationship with leaf or canopy water status (Penuelas 
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et al., 1993, 1997b; Sims and Gamon, 2003; Seelig et al., 2008b; Cheng et al., 2008; 

Colombo et al., 2008; Wang and Li, 2012a; de Jong et al., 2014), but only a few 

studies have been conducted under extreme or progressive drought conditions 

(Penuelas et al., 1993, 1997b; Seelig et al., 2008b). Our results show that all selected 

indices show good relationships with RWC or EWT, especially for individual plants. 

It seems that these indices are suitable for estimating leaf RWC or EWT for certain 

plant species. However, as shown above, the wavelengths of 819 nm, 860 nm, 900 nm, 

970 nm, 1005 nm and 1240 nm are closely linked to leaf structure during leaf 

dehydration, which may cause errors in the estimation of RWC or EWT when using 

WI, NDWI, SRWI, NDII and DDn(1530,525). This was shown by Penuelas et al. 

(1997b), who used WI to estimate the plant water content for several Mediterranean 

species submitted to progressive desiccation. They found that WI was significantly 

correlated with the plant water content for all species, but this relationship was failed 

for the wider range of plant water content obtained with extreme desiccation. 

Similarly, Seelig et al. (2008b) found that WI and NDWI exhibit a lower sensitivity to 

leaf water content for Spathiphyllum lynise than SR(1300, 1450) due to the relatively 

small absorption troughs and the response of reflectance to dehydration within the 

range of 750-1300 nm. Thus, except for SR(1300, 1450), the other indices are 

probably not suitable for monitoring the leaf dehydration process, but may be used for 

specific plant species and conditions.  

 

In the current study, in order to obtain the best water indices, five types of indices and 

four treatments of reflectance data were used. The results indicate that the indices 

determined by the treatments of reflectance difference and reflectance sensitivity were 

weaker for RWC and EWT and thus could not effectively estimate the leaf water 

status compared with the other two treatments, although the DDn type of index had a 

better R2 value. Since the results calculated by the DDn formula within 1300-2000 nm 

show that the DDn type of index can only reflect information around 1400 nm, and 

may not track leaf water status during leaf dehydration. Similarly, the R2 of the R and 

D types of indices were usually weaker than the SR and ND types of indices within 
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1300-2000 nm for original reflectance and the first derivative of reflectance. Actually, 

the most frequently applied techniques for leaf water indices are the normalized 

differenced index (ND) and simple ratios (SR), which usually exploit typical water 

absorbing wavelengths, for instance WI, NDWI and SRWI. One important reason for 

this is that more than one reference wavelength is usually needed when the indices are 

designed to compensate for signal variation or to avoid background effects. Our 

results also indicate that the SR and ND types of indices with the first derivative of 

reflectance are more sensitive to leaf water status, with the best indices being 

dND(1415,1530) (R2=0.95, p<0.001) for RWC and dSR(1530, 1895) (R2=0.97, 

p<0.001) for EWT with validation dataset. Compared with original reflectance, the 

first derivative of reflectance has some advantages, including removing the noise 

signal and improving the index’s performance, which is often used to obtain 

reflectance information, such as the well-known red edge for photosynthesis (Filella 

and Penuelas, 1994; Horler et al., 1983). Danson et al. (1992) found that the first 

derivative of reflectance at the slopes of water absorption bands was highly correlated 

with leaf water content, which was similar to our results. The performance of the 

selected indices, i.e. dND(1415,1530) and dSR(1530, 1895), was better than that 

reported for SR(1300, 1450) and indices with original reflectance determined in this 

study, probably due to the slope variations at the water absorption bands, 1400 nm 

and 1900 nm. On the other hand, the first derivatives of 1400 nm and 1900 nm tended 

to shift to long wavelengths and may be used as indicators of senescence and can also 

track leaf water status. Moreover, d1530 was tested by Wang and Li (2012b) and 

found to be sensitive to EWT. Hence, both of the new recommend indices are more 

accurate for assessing leaf water status during leaf dehydration. It was noted that the 

distribution of the R2 matrix for RWC and EWT was similar for the treatment of the 

first derivatives, with R2 relatively better for EWT, suggesting that EWT is more 

sensitive to leaf dehydration. 
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2.4.3 Stability of the recommend indices and ecological application 

The performance of the recommended derivative-based hyperspectral indices is better 

than other types of indices and reported indices in this study. Theoretically, an 

efficient index should be tested on different random percent datasets for calibration 

and maintain high stability under different wavelength resolutions, since the most 

commonly used remote sensing data are multispectral and are usually noisy. The test 

of different percent datasets for calibration ranging 40% to 100% for both 

recommended indices showed that the determined wavelengths of the best indices 

were similar and robust (R2>0.90), with dND λ1 near 1415 nm and dND λ2 near 1530 

nm for RWC, and dSR λ1 near 1530 nm and dSR λ2 near 1895 nm for EWT (Figure 

2-5). We have also validated the stability with different bandwidths for leaf water 

parameters (Figure 2-6). dSR(1530, 1895) for EWT had similar and high R2 values up 

to a bandwidth of 100 nm, while dND(1415,1530) for RWC had nearly similar R2 

values up to a bandwidth of 20 nm. This result suggests that both recommended 

indices are suitable for different wavelength resolutions, particularly dSR(1530, 1895) 

for EWT. In addition, there was a good match between the simulations and 

measurements (Figure 2-7). Hence, the stabilities of these new recommend indices 

can satisfy future applications and can also be potentially extendable to larger scales. 

Although there are currently no multispectral remote sensing data can be used to 

calculate these suggested indices for RWC and EWT, rapid progress in hyperspectral 

remote sensing in recent will provide the solution and hence their wide applications 

can be expected. 

 

Furthermore, leaf dehydration is followed by decreased leaf photosynthesis and 

hydraulic failure (Augusti et al., 2001; Lawlor and Cornic, 2002), which is an extreme 

drought condition, to some degree, similar to the plant mortality caused by drought 

(McDowell et al., 2008; McDowell et al., 2013). Actually, under severe drought stress, 

leaf stomatal conductance quickly decreases (Souza et al., 2004), thereby slowing the 

leaf photosynthesis rate; if there is no water supply, the plant will die. Recently, 
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drought-induced forest mortality has occurred worldwide and is expected to be 

exacerbated due to rising temperatures (Allen et al., 2010). In this sense, both new 

indices can probably be used to monitor these plant mortalities across different scales 

in the future, especially in Mediterranean regions where water availability is an 

important limiting factor for plant growth. However, only five deciduous species in 

Japan were used in our study and the experiments were conducted under 

lab-controlled conditions. To obtain a general index suitable for different scales and 

species, more plant species and field-measured datasets should be included in future 

work.  

 
Figure 2-5 Tests of the recommended indices for RWC and EWT with different 

percent datasets for calibration. 

 

 
Figure 2-6 Stability of the recommended indices for RWC and EWT with 

different bandwidths. 
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Figure 2-7 Regressions between the recommend indices and the parameters of 

RWC and EWT (above) and plots of estimated parameter values vs. 
measured parameter values (below). 

2.5 Conclusions 

We examined the relationship between leaf reflectance and leaf water status (RWC 

and EWT) based on leaf dehydration datasets. We found that dND(1415,1530) and 

dSR(1530, 1895) were most sensitive to the leaf water status during leaf dehydration. 

The dSR(1530, 1895) is particularly recommended for its stability on both aspects of 

central wavelengths and band resolution and its potential for large scale monitoring. 

However, much work still needs to be done to scale these water estimation 

relationships to larger scales and to understand the leaf dehydration process. 
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Chapter 3 Estimation of fluorescence-based PSII quantum yield 

with hyperspectral indices 

3.1 Introduction 

Global hydrological cycle is significantly affected by human-induced climate change 

and will be amplified over the coming century, leading to an increase in the frequency 

of drought extremes (Jentsch et al. 2007) which further cause widespread forest 

mortality globally (Adams et al. 2009; Allen 2009; Allen et al. 2010). Forest 

photosynthetic status are greatly affected by drought and always turn forest from 

carbon sinks to carbon sources, resulting in a positive feedback to global warming 

(Anderegg et al. 2013; Breshears and Allen 2002). Hence, estimation of 

photosynthetic status is required to obtain more information of forest mortality and 

accurately predict transient carbon responses to rapid climate change by the dynamic 

global vegetation models (Cramer et al. 2001; Sitch et al. 2008; Sitch et al. 2003).  

 

A non-invasive technique to monitor plant photosynthetic status is the approach of 

chlorophyll fluorescence (CF) (Kautsky et al. 1960). The underlying principle of CF 

analysis is based on modulation of three fates of light energy absorbed by chlorophyll: 

photochemistry, excess energy dissipated as heat and CF emission. Any changes 

associated with the efficiency of one will have a reverse effect on the other two 

(Baker 2008; Kooten and Snel 1990; Maxwell and Johnson 2000). For example, the 

light absorbed by leaf is more than the requirement for photosynthesis when 

photosynthesis is limited under light stress. Heat dissipation and reemit of CF are 

specific mechanisms to prevent photosynthetic apparatus from impairment by excess 

energy(Demmig-Adams and Adams Iii 1992). Consequently, information of 

photochemistry and heat dissipation could be observed from the measurement of CF. 

Among all the parameters, quantum yield of PSII and non-photochemical quenching 

(NPQ) are most commonly used, one is for photochemistry efficiency of PSII, an 
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indicator for photosynthetic status and the other one is linearly related to heat 

dissipation (Baker 2008; Krause and Weis 1991; Maxwell and Johnson 2000; 

Schreiber et al. 1995). Up to now, much effort has been made to detect photosynthetic 

information using CF technique. However, most of these studies are only focused on 

relatively small scales using time-consuming pulse amplitude modulating fluorimeters. 

The application to large spatial scales is still limited although fluorescence imaging 

has been developed to resolve entire leaf or plant spatial heterogeneity of 

photosynthetic performance (Buschmann et al. 2001).  

 

Remote sensed vegetation index is one alternative method to estimate plant 

photosynthesis activity and offer the possibility for upscale to large areas. However, 

most exited indices are often used for estimating net primary productivity or spatial 

distribution of vegetation, for example, Normalized Difference Vegetation Index 

(NDVI, [R800−R680]/[R800+R680]) is directly related to fractional vegetation cover 

and aboveground net primary production of terrestrial vegetation (Carlson and Ripley 

1997; Gamon and Qiu 1999; Gamon et al. 1995; Running and Nemani 1988; Steltzer 

and Welker 2006). But NDVI cannot trace the variation of dynamic carbon, 

particularly for evergreen species (Gamon et al. 1995). Photochemical Reflectance 

Index (PRI, [R531−R570]/[R531+R570]) (Gamon et al. 1990; Gamon et al. 1992; 

Gamon et al. 1997) is a special index for photosynthetic function, because 531 nm is 

related to the de-epoxidation state of the xanthophyll cycle which is an energy decay 

process of excited chlorophyll for protection of photosynthesis (Demmig-Adams and 

Adams 1996; Niyogi 1999). Previous studies demonstrated that PRI could track the 

diurnal and sensonal changes in photosynthetic efficiency at leaf and canopy scales 

and well correlated with quantum yield of PSII under light or nutrient stress (Gamon 

et al. 1997; Garbulsky et al. 2011; Weng et al. 2010; Weng et al. 2005). It also was a 

good indicator for water stress (Suárez et al. 2009; Suárez et al. 2010; Suárez et al. 

2008; Thenot et al. 2002) or tracer for steady-state chlorophyll 

fluorescence(Dobrowski et al. 2005; Flexas et al. 2000; Flexas et al. 2002), but the 

reports about relationship between PRI and quantum yield of PSII or photosynthetic 
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efficiency under drought stress were varied (Gamon et al. 1992; Harris 2008; 

Peguero-Pina et al. 2008; Sims et al. 2006; Van Gaalen et al. 2007). PRI was not 

always the best index for tracking photosynthetic status, for example, Harris (2008) 

found out that the relationship between quantum yield of PSII and PRI were much 

weaker than the other indices (e.g. NDVI) during progressive drought period. Thus, it 

is necessary to determine the best spectral indices for quantum yield of PSII under 

drought stress. Studied had been showed that leaf leflectance (Carter 1993) and 

phisiological paremeters (Brodribb and Holbrook 2003; Richardson and Berlyn 2002) 

were simultaneously changed in response to water stress. In this study, I hypothesised 

that leaf reflectance from 400 nm to 800 nm and their different combanation as review 

by le Maire et al. (2008) could offer the posibility to determine the best indices for 

quantum yield of PSII as they were only sensitive to photosyhthesis and insensitive to 

leaf water content. 

 

The objectives of this study were: 1) to investagate the response of chlorophyll 

fluorescence to progressive drought for different broadleaved species; 2) to validate 

the performance of PRI and NDVI for tracking quantum yield of PSII; 3) to identify 

the best hyperspectral indices for tracing quantum yield of PSII based on origin 

reflectance and first derivative of reflectance ranging 400-800 nm and different types 

of indices.  

3.2 Material and methods 

3.2.1 Leaf sampling  

Four deciduous species around the campus of Shizuoka University and another 

dominant temperate deciduous species from Mount Naeba, Japan were collected. The 

details of sample species and sampling method have given in Chapter 2.2. In total, 18 

leaf samples were used for five plant species, including 3 sunlit leaves and 3 shaded 

leaves for F. crenata and 3 sunlit leaves for each of the other four species.  
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3.2.2 Leaf dehydration experiment 

The details of experiment design and measurement of leaf reflectance and weights 

have given in Chapter 2.2. Chlorophyll fluorescence was measured with Mini-Pam 

(Walz, Effeltrich, Germany), a portable pulse amplitude modulated photosynthesis 

yield analyzer. The actual quantum yield of PSII was calculated as follows: 

ΔF/F'm =(F'm-F)/F'm 

where F is the steady-state value of fluorescence and Fm' is the maximum 

light-adapted fluorescence when a saturating light pulse duration is imposed. The time 

interval of each measurement is same with leaf reflectance during entire leaf 

dehydration period. 

3.2.3 Determination of the best indices  

Two treatments of original reflectance and first derivative reflectance (dR) and five 

types of indices (R, D, SR, ND and DDn) as reviewed by le Maire et al. (2008) were 

used to identify the best indices for quantum yield of PSII. The equations of five types 

of indices had given in chapter 2.2. 

3.2.4 Statistics 

The determination of indices was conducted by linear regression between a given 

index and quantum yield of PSII ranging 400-800 nm. Regression analysis was 

performed for all possible combinations of wavelengths for a given index type. The 

wavelength interval was 1 nm. Statistical criteria to evaluate the performance of 

published/identified indices were based on the root mean square error (RMSE) and 

the coefficient of determination (R2). And the best index was identified as the 

combination with the lowest RMSE and the highest R2. 

3.3 Results 
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3.3.1 Variation of chlorophyll fluorescence and leaf reflectance following the 

intensity of drought stress  

 
Figure 3-1 Variations of chlorophyll fluorescence though time since leaf cutting 

and RWC vs ΔF/F'm and NPQ. 
 

Values of ΔF/F'm for different plant species were rapidly decreasing in the first 5 h 

since leaf cutting. At the time of around 12 h, ΔF/F'm of each species was near zero, 

meaning that all leaf samples were almost totally died (Figure 3-1). Although the 

values of ΔF/F'm for individual plant species were different with each other, the 

variation trends were similar over the course of the drought treatment. On the contrary, 

NPQ showed an increase trend for all plant species, after 12 hours, the values of NPQ 

were up to the largest and then kept stable later. However, the magnitude of the 

change in NPQ varied between species (Figure 3-1). There was a significant positive 

correlation between RWC and quantum yield of PSII (p<0.01) and a significant 

negative correlation between RWC and NPQ (p<0.01) (Figure 3-1). 
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Increases in reflectance spectra of all five species at all wavelengths from 400 to 800 

nm were observed, although the increasing magnitudes were quite different between 

species, with the least for P. x yedoensis and the largest for L. styraciflua (Figure 3-2). 

The most pronounced bands in all species were near green-yellow wavelengths 

(500-600 nm) and 750-800 nm. Another common characteristic in the change of 

reflectance in response to dehydration was the transition from red edge to near 

infrared plateau (700-750 nm) which became less sharp with the decrease of RWC 

(Figure 3-2). The variations of first derivative reflectance were similar between 

species, in particular, the increase in red edge and blue shift during the progressive 

drought. The derivative reflectance spectra around 500-530 nm and 650-700 nm also 

showed large changes over the drought intensity, both ranges were near the 

carotenoids and chlorophyll absorption region, respectively (Figure 3-2). 

3.3.2 Variation of reflectance indices and performance for estimating quantum 

yield of PSII 

Reflectance incices of both PRI and NDVI had small variation ranges during the 

dehydration period, with the values from -0.07 to 0.05 and 0.65 to 0.85, respectively, 

particularly within species (figure 3-3). Although PRI and NDVI in all species 

showed slightly decrese over dehydration time, the patterns and values between 

species were greatly varied. For example, PRI and NDVI of F.crenata rapidly droped 

from around 0.05 to -0.04 in the first 5 h, while PRI of L. styraciflua slowly decreased 

from about 0.05 to 0.03. PRI and NDVI could not well track the variation of ΔF/F'm 

due to these varied features, and no significant correlations were observed between 

ΔF/F'm and PRI (R2=0.27), and between ΔF/F'm and NDVI (R2=0.25) when all 

species were considered (figure 3-3).  
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Figure 3-2 Changes of reflectance spectra (400-800 nm) and first-derivative 

reflectance spectra for different plant species attributed to progressive 
RWC 
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Figure 3-3 Changes of RRI and NDVI for different plant species following leaf 

cutting and PRI vs ΔF/F'm, NDVI vs ΔF/F'm 

3.3.3 Newly identified indices for estimating quantum yield of PSII 

The identified best indices for estimating ΔF/F'm based on both original reflectance 

and first derivative spectra were presented in Table 3-1. The indices selected based on 

first derivative spectra were better than that based on original reflectance. The newly 

identified dND (533, 686) was the best one for estimating ΔF/F'm across different 

type of indices, with an R2 of 0.88 and an RMSE of 0.11 (Table 3-1 and figure 3-4). 

The performance of dND (533, 686) was also better than PRI (R2=0.27) and NDVI 

(R2=0.25). 
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Table 3-1 Evaluation of five types of indices with the treatment of the first 
derivative of reflectance for leaf ΔF/F'm 

 

dataset 
Index 
type 

origin reflectance first  derivative reflectance 

λ1 λ2 or Δ R2 RMSE dλ1 dλ2 or Δ R2 RMSE 

All 
(n=156) 

R 707 
 

0.73 0.16 d663 
 

0.79 0.14 

D 659 672 0.79 0.14 d533 d687 0.85 0.12 

SR 420 647 0.75 0.16 d533 d693 0.82 0.13 

ND 417 642 0.74 0.16 d533 d686 0.88 0.11 

DDn 684 4 0.82 0.13 d664 23 0.83 0.13 

 

       

 
Figure 3-4 R2 and RMSE of leaf ΔF/F'm estimation with different ND type of 

index based on first derivative of reflectance 

3.4 Discussion 

A sharp decline in ΔF/F'm of the studied broadleaf species caused by the rapid 

dehydration (Figure 3-1) indicated that the photosynthetic apparatus had been 

impaired, which would result in the reduction of photosynthetic pigments and further 

impede the electron donation in PS II until the leaves were totally died 

(Demmig-Adams and Adams Iii 1992; Niyogi 1999). Similar results also were 

observed from other plant species over the different drought courses (Harris 2008; 

Peguero-Pina et al. 2008; Richardson and Berlyn 2002). In addition, the differences of 

NPQ between species were probably due to the amount variation of carotenoids for 
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each species such as xanthophyll cycle involved Zeaxanthin, violaxanthin and 

antheraxanthin which regulated heat dissipation of light energy absorbed by 

chlorophyll (Demmig-Adams and Adams Iii 1992; Demmig-Adams and Adams 1996). 

Therefore, the changes of ΔF/F'm are tightly related to the variation of pigments 

which can be reflected by the changes of leaf reflectance although it exhibits a 

positive correlation with leaf RWC (Figure 3-1), suggesting that the hypothesis of this 

study is reasonable.  

 

Similar results of an increase in reflectance from 400 to 800 nm with the reduction of 

leaf water content had also been observed in other plant species(Carter 1991; Seelig et 

al. 2008a). Although drought probably was the direct reason for the observed changes 

in leaf reflectance, the leaf reflectance from 400 nm to 800 nm were not affected by 

leaf water content(Feret et al. 2008; Jacquemoud and Baret 1990). This common 

increased reflectance has been partly attributed to the degradation of pigments and 

leaf structure which can change the light scattering at the interfaces of cell 

wall-water-air (Carter 1991, 1993). Leaf structure parameter N is an input for 

PROSPECT, simulated results show that leaf reflectance from 400 nm-800 nm is 

gradually and proportionally increasing with an increase of N (Feret et al. 2008; 

Jacquemoud and Baret 1990), indicating that the effects of leaf structure can be 

removed by special technology such as normalized indices. Thus, the information 

about photosynthesis status can be fairly extracted from the leaf reflectance. For 

example, the “blue-shift” or decreases of the red edge position are the evidences of 

chlorophyll degradation (Figure 3-2) (Carter 1993; Richardson and Berlyn 2002).  

 

However, the commonly used vegetation indices NDVI and PRI had no significant 

correlations with ΔF/F'm (Figure 3-3). NDVI is an indicator for greenness or a 

characteristic of green vegetation (Gamon et al. 1995; Running and Nemani 1988), 

with narrow changes during entire dehydration period (Figure 3-3) probably due to 

relative changeless of leaf green color, causing it is unsuitable for tracing ΔF/F'm. PRI 

incorporates the band at 531 nm, which are directly related to the xanthophyll cycle 
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pigments (Gamon et al., 1992). However, chlorophyll degradation is occurred in the 

experiments, disturbing the relationship between ΔF/F'm and PRI. Hence, it is 

necessary to determine new spectral indices for tracing the variation of ΔF/F'm under 

drought stress.  

 

In this work, in order to identify the best indices for estimating ΔF/F'm, two 

treatments of origin reflectance and first derivative reflectance, and five types of 

indices of R, D, SR, ND and DDn were used. The best index was dND (533, 686), 

with an R2 of 0.88 and an RMSE of 0.11 (Table 3-1), which was better than NDVI 

(R2=0.25) and PRI (R2=0.27). It is noted that the wavelength of 533 nm which is near 

xanthophyll-cycle-related 531 nm and 686 nm is near one of the emission peak of 

chlorophyll fluorescence, 690 nm (Meroni et al. 2009). dND (533, 686) may 

incorporates the information of both chlorophyll fluorescence and xanthophyll cycle, 

and therefore it is suitable for ΔF/F'm estimation under water stress. It also can be as a 

water stress indicator because of the significant relationship with RWC. 

3.5 Conclusions 

This work retrieved ΔF/F'm with leaf reflectance and first derivative reflectance range 

from 400 nm to 800 nm obtained from dehydration experiment. The identified best 

indices for estimating ΔF/F'm was d (533, 686) across different type of indices, with 

an R2 of 0.88 and an RMSE of 0.11, which was better than NDVI and PRI. The 

selected d (533, 686) probably could provide a remote mean to track the variation of 

photosynthetic status for plants due to that the wavelength of 533 nm was near 531 

nm and 686 nm was near the chlorophyll fluorescence emission peak, 690 nm. 
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Chapter 4 Retrieval of fuel moisture contents in different fuel 

types  

4.1 Introduction 

Fuel moisture content (FMC) has an overwhelming importance in understanding 

different eco-physiological processes and wildfire behavior prediction among all the 

forest fuel properties as it significantly affects wildfire ignition and propagation 

andCO2 emission from the combustion of organic materials (Chuvieco et al., 2004a; 

Rothermel, 1972; Werf et al., 2004; Viegas et al., 1992; Yebra et al., 2008; Yebra et al., 

2013). FMC can be categorized into two different components based on fuel type: the 

water content in dead fuels, which are most easily to ignite (e.g. dry leaves, littler and 

fallen branches), and that in live fuels (e.g. live leaves).  

 

Direct measurements of FMC are severely limited by the available reliable data 

obtained from field sampling, particularly for large areas where such sampling is 

generally not feasible. Thus, FMC in dead fuel has often been computed by models 

associated with meteorological variables over the past several decades, because it is 

mainly controlled by changes in atmospheric conditions (Aguado et al., 2007; Camia 

et al., 2003; Nieto et al., 2010; Viegas et al., 2001; Viney, 1991). However, 

meteorological indices are not satisfactory for estimating FMC in live fuel due to the 

complex water-use strategies of live plants, which are regulated by plant physiological 

processes, for example water loss by leaf evapotranspiration and water uptake by 

roots. Even certain relationships between live FMC and meteorological codes were 

also noted for some specific species (Carlson and Burgan, 2003; Dimitrakopoulos and 

Bemmerzouk, 2003). In addition, hardly any meteorological data may be obtained 

from sparsely populated regions where no meteorological stations are available. 

Hence, there is a great need for an alternative approach that can provide temporal and 

spatial information on FMC. 

48 
 



 

Remote sensing approaches which provide spectral information on plant water and 

dry mater content on multiple scales may overcome some of the above mentioned 

challenges (Hunt Jr et al., 1987; Tucker, 1980; Wang et al., 2011a; Wang et al., 2011b; 

Zarco-Tejada et al., 2003). Currently, equivalent water thickness (EWT) is a 

commonly estimated water status parameter, since it is directly related to leaf 

reflectance (Ceccato et al., 2001; Ceccato et al., 2002a; Ceccato et al., 2002b; 

Jacquemoud and Baret, 1990; Jacquemoud et al., 1996; Jacquemoud et al., 2009). 

While FMC can be linked to EWT via leaf mass area (LMA), in contrast to the 

popularly retrieved EWT, estimating FMC is proving to be more difficult due to the 

masking effect of leaf water content on dry matter, which makes it hard to effectively 

distinguish the spectral information of leaf dry matter from leaf water content (Riaño 

et al., 2005; Romero et al., 2012; Wang et al., 2013; Yebra et al., 2013). 

 

Even so, a number of studies have attempted to retrieve FMC using reflected spectra. 

These studies mainly focus on three aspects, as follows:1) empirical methods based on 

spectral indices which are physically related with leaf water content or dry matter 

content (several indices are listed in Table 1) (Dennison et al., 2005; Roberts et al., 

2006; Wang and Li, 2012; Wang et al., 2013); 2) combining meteorological data and 

spectral data to estimate FMC (Chuvieco et al., 2004b; Chuvieco et al., 2004c; García 

et al., 2008; Nieto et al., 2010); 3) generalizing from simulated datasets because EWT 

and LMA are two important input parameters for commonly used leaf and canopy 

radiative transfer models (e.g. PROSPECT and PROSAIL) (Bowyer and Danson, 

2004; Danson and Bowyer, 2004; Riaño et al., 2005; Wang and Li, 2012; Yebra and 

Chuvieco, 2009). Although inverse retrieval from radiative transfer models is much a 

mechanism-based approach, challenges still exist and might be even greater than for 

empirical methods since the approach not only requires plant physiological and 

structural inputs that are frequently unavailable in nature but also faces a serious 

ill-posed problem (Bowyer and Danson, 2004; Li and Wang, 2011; Yebra and 

Chuvieco, 2009; Yebra et al., 2013). On the contrary, the spectral index approach is a 
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rapid and simple way to estimate FMC. Its estimation accuracy may further be 

improved if indices are made up of bands whose absorption features are sensitive to 

EWT and LMA and insensitive to background effects (Dennison et al., 2005; Roberts 

et al., 2006; Wang et al., 2013; Wang and Li, 2012).  

 

However, most of the previous studies were always oriented toward live FMC with 

only water indices or dry matter indices from satellite data, like NOAA-AVHRR and 

MODIS. For instance, Dennison et al (2005) estimated live FMC using NDVI and 

NDWI from MODIS reflectance data, while Roberts et al (2006) used WI and NDWI 

from AVIRIS and MODIS data. Furthermore, Chuvieco et al. (2004c) combined 

NDVI and surface temperature to estimate live FMC with NOAA-AVHRR data. 

Although empirical relationships were found between live FMC and these selected 

indices, the spectral information of dry matter remains unclear.  

 

Riaño et al (2005) suggested that measurements of dry leaf samples were necessary to 

accurately estimate FMC because dry matter can only be accurately estimated when 

leaf material is dry. Leaf dehydration processes can clearly track the changes of leaf 

state transition from the fresh live situation to the dry dead situation, with leaf 

reflectance increasing significantly in the domain from 400 to 2500 nm (Carter, 1991; 

Foley et al., 2006; Seelig et al., 2008), which may simultaneously provide more 

spectral details about leaf water and dry matter. Wang et al. (2013) demonstrated that 

NDII/NDMI was significantly correlated with FMC based on the hypothesis that 

FMC could be estimated by the indices combining the water index and the dry matter 

index calculated from hyperspectral data using both fresh and drying green leaves. 

However, the wavelengths in both the numerator and the denominator of NDII/NDMI 

are not only affected by water or dry matter content as hypothesized by the authors. 

Moreover, most existing indices for estimating FMC are usually based on origin 

reflectance, but no study has ever concentrated on the first derivative spectra, which 

can provide information on key spectral locations it can eliminate the other 

background noise, such as the red edge and water absorption peaks (Filella and 
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Penuelas, 1994; Horler et al., 1983). Furthermore, there is only a little knowledge 

about the estimation of FMC for dead fuel types using spectral indices, such as litter, 

although litter is usually masked by the overstory vegetation, the widespread 

drought-induced tree mortality have leaded to much higher exposure rate of litter on 

the regional scale. Therefore, new types of spectral indices for estimation of different 

fuels' FMCs are expected.  

 

The objectives of this study were: 1) to compare the variations of leaf reflectance and 

first derivative spectra in two different fuel types during dehydration processes: green 

live leaves and litter fallen from different broadleaved species in the temperate climate 

zone; 2) to validate existing spectral indices to estimate the FMC of both green live 

and fallen litter fuels; 3) to determine the best hyperspectral indices for FMC based on 

different types of indices with an attempt to separate FMC estimation in the two fuel 

materials and 4) to investigate the difference of published and selected indices 

between measured-dataset and simulated-dataset developed from leaf scale radiative 

transfer model (PROSPECT) and attempt to examine whether the reflectance of fallen 

litter leaf can be simulated by PROSPECT.  

4.2 Materials and methods 

4.2.1 Leaf dehydration and litter refreshing experiments 

Two fuel materials, green live leaves and fallen litter, were used for the leaf 

dehydration experiment and litter refreshing experiment, respectively. Green leaves of 

five deciduous species were collected, namely Zelkovaserrata, Idesiapolycarpa, 

Liquidambar styraciflua, and Prunus× yedoens isfrom the campus of Shizuoka 

University and Fagus crenata from Mount Naeba, Japan. All branches with target 

green leaf samples were first cut pre-dawn and then re-cut under water, which can 

make the measurements of leaf reflectance accurate and reliable under non-in-situ 

conditions (Foley et al., 2006; Richardson and Berlyn, 2002). After that, all samples 
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were covered by plastic bags and quickly transported to the laboratory. The samples 

were stored under high humidity, dim light, and cool temperatures before reflectance 

measurements were taken. Four to five green mature leaves for each species, making a 

total of 24 samples, were used for the next experiments. Five fallen litter leaf samples 

of each of the same species, with no broken holes on the surface, making a total of 25 

samples, were collected on the top ground as well. The colors of all litter samples 

were brown and there were no visible indications for the presence of leaf chlorophyll 

in the leaves. 

 

Leaf mass was measured with an electronic balance and leaf areas were scanned using 

a scanner. Spectral reflectance (350–2500 nm) was measured with a field 

spectroradiometer (ASD FR, USA) equipped with a leaf clip, in which a light source 

of a tungsten quartz halogen lamp was embedded. The spectral resolution was 3 nm in 

the VNIR (350-1000 nm) and 30 nm in SWIR (1000-2500 nm). A white reference 

scan was made for the calibration before taking the reflectance measurement in the 

leaf clip with matched openings for non-destructive contact measurements.  

 

Reflected spectra of green leaf samples were measured after samples were taken back 

to the laboratory. Then, the leaves were cut with scissors and leaf mass was measured 

immediately. After that, the leaves were placed on an experimental bench for 

dehydration, and leaf reflectance and mass were measured synchronously at 

progressive time intervals of 30 min, 1 h, 2h, and 4h during the entire dehydration 

period until the leaf sample was air-dried to a stable weight. Finally, the air-dried 

samples were oven-dried at 70°C for 72 h and then weighed again. A total of 224 

measurements were made for 24 green leaves. 

 

All fallen litter leaf samples were first soaked in water for 48 hours at 20°C to refresh 

them and to ensure there was sufficient water in the samples for dehydration. Then, 

water on the sample surface was wiped off and all samples were placed on an 

experimental bench for dehydration. Reflectance measurements and leaf mass were 
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measured synchronously at progressive time intervals of 10 min, 30 min, 1 h, and 2h 

until all samples were air-dried. Finally, air-dried samples were oven-dried at 70°C for 

72 h and then reweighed. The total number of measurements was 299 for all 25 litter 

samples.  

 

4.2.2 Simulated dataset 

PROSPECT 4 (Féret et al., 2008) was used to simulate leaf reflectance from 400 to 

2500 nm with 1 nm step as a function of leaf structure index (N), leaf total chlorophyll 

content (CHL, µg/cm2), water content (EWT, g/cm2), and dry mass content (LMA, 

g/cm2). In order to generate various reflectance and FMC, a uniform distribution 

within a wide range of each input parameter was chosen. Because CHL had no effect 

on water and dry matter indices, a constant value of 50µg/cm2 was held. A dataset of 

5000 simulations was built (Table 4-1). 

 

Table 4-1 Input parameters and values for simulated dataset (n=5000) with 
PROSPECT model 

 

Parameters Minimum Step Maximum 

N 1 0.2 3 

CHL (µg/cm2) 50 0 50 

EWT(g/cm2) 0.0025 0.0025 0.05 

LMA(g/cm2) 0.002 0.002 0.05 

4.2.3 Calculation of FMC and reported spectral indices for FMC estimation 

FMC is normally expressed by the ratio of the leaf water content to the leaf dry 

weight: 

EWT (g/cm2) =(Wf–Wd)/A            (1) 

    LMA=Wd/A                    (2) 

FMC (%)=((Wf–Wd)/Wd)×100=EWT/LMA  (3) 
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where Wf was the leaf mass during the dehydration processes for green leaf and fallen 

litter samples. Wd and A were the leaf dry weight, and leaf area, respectively. 

 

A wide range of spectral indices for estimating plant water and dry matter have been 

devised based on different combinations of wavelengths. In this study, five water 

indices[WI, SR(1300, 1450), SRWI, NDWI, and NDII], four dry matter indices 

[NDMI, ND(2309, 1495), LCA, and CAI], and one ratio of water index to dry matter 

index reported in previous studies were selected to test their performance in 

monitoring FMC during the dehydration process. The details of all selected indices 

are shown in Table 4-2. 

 

Table 4-2 Published indices for water content and dry matter 
 

Index Formula References 
WI R970/R900 Peñuelas et al. (1993) 
SR(1300,1450) R1300/R1450 Seelig (2008a) 
SRWI R860/R1240 Zarco-Tejada et al.(2003) 
NDWI (R860-R1240)/ (R860+R1240) Gao (1996) 
NDII (R860-R1650)/(R860+R1650) Hardisky et al. (1983) 
NDMI (R1649−R1722)/(R1649+R1722) Wang et al. (2011b) 
ND(2305,1495) (R2305−R1495)/(R2305+R1495) Romero et al. (2012) 

NDII/NDMI ((R860-R1650)(R1649+R1722))/(
(R860+R1650) (R1649−R1722)) Wang et al. (2013) 

LCA 2R2205−(R2165+R2330) Daughtry et al. (2005) 
CAI 0.5( R2031 −R2211) – R2101 Nagler et al. (2000) 

 

4.2.4 Determination of the best indices 

 

Four commonly used types of indices (R, D, SR, and ND) (le Maire et al., 2008) 

based on both the original reflectance and the first derivative of reflectance were used 

to determine the best indices for FMC. The equations of the four types of indices for 

original reflectance are as follows: 
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R=Rλ1 

D=Rλ1–Rλ2 

SR=Rλ1/Rλ2 

ND= (Rλ1–Rλ2)/(Rλ1+Rλ2) 

 

where R, D, SR, and ND are the reflectance at a given single wavelength, wavelength 

difference, simple ratio, and normalized ratio, respectively. Rλ1 and Rλ2 are the 

wavelengths at λ1 and λ2, respectively. Indices based on the first derivative of 

reflectance are termed dR, dD, dSR, and dND, respectively. And the calculations of 

the indices based on the derivative spectra are analogous in their computation to the 

non-derivative spectral indices. 

 

There different datasets, the green dataset, the litter dataset and simulated dataset, 

were used to determine the best hyperspectral indices for FMC estimation. The 

determination of indices was carried out based on linear regression between FMC and 

a given index which covered all possible combinations of wavelengths from 400 to 

2500nm with a wavelength interval of 5 nm. The root mean square error (RMSE) and 

the coefficient of determination (R2) were used as statistical criteria to evaluate the 

performance of published/identified indices. Let 𝑦𝑦𝑖𝑖 , 𝑦𝑦𝑖𝑖′ , and 𝑦𝑦�  be the measured 

values, predicted values, and the average of the observed values, respectively, and n 

the number of observations; then: 

 

𝑅𝑅2 = 1 −�(𝑦𝑦𝑖𝑖′ − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

�(𝑦𝑦𝑖𝑖′ − 𝑦𝑦�)2
𝑛𝑛

𝑖𝑖=1

�  

 

RMSE = �
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖′ − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1
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4.3 Results 

4.3.1 Changes in leaf reflectance of different fuel type during leaf dehydration 

Figures 4-1 and 4-2 show the changes of reflectance and first derivative of reflectance 

for green leaf and litter samples of each plant species attributed to progressive 

dehydration, respectively. The reflectance of green leaf samples generally increased in 

the range from 400 to 2500 nm as FMC decreased for different species, particularly 

around the two water absorption bands of 1450 and 1940 nm. Meanwhile, new peaks 

near 2000 and 2400 nm gradually appeared and differences in reflectance among 

species were very clearly observed from 400 to 1200nm. The reflectance of litters 

showed increasing trends similar to those of green leaves, and new peaks appeared 

near 2000 and 2400 nm as well. The most apparent difference in reflectance between 

green leaves and litter samples is within the wavelength domain from 400 to 1200 nm. 

For instance, there were no chlorophyll absorption bands in the litter samples, and 

therefore the slopes around 750 nm were much steeper for green leaves than for litters, 

which can also be clearly noted in the corresponding wavelengths of the first 

derivative spectra. 

 

A common characteristic of the first derivative spectra for both materials was that 

there is a shift towards long wavelengths on the left side edges near to water 

absorption troughs centered at 1450 and 1940 nm, corresponding to the decrease of 

FMC. Moreover, a “blue shift” in the red edge was found for green leaves. Further, 

the peaks of the first derivative spectra near 2050–2100 and 2250–2300 nm were 

observed, in agreement with the variations of original reflectance near to both 2000 

and 2400nm. 
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Figure 4-1 Variations of reflectance and first-derivative reflectance for green leaves of different plant species attributed to progressive 

dehydration 
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Figure 4-2 Variations of reflectance and first-derivative reflectance for litters of different plant species attributed to progressive 

dehydration 
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4.3.2 Performance of reported indices for estimating FMC based on measured 

datasets 

Five water indices were all significantly correlated with FMC and EWT in the green 

leaf dataset, but these correlations were very weak for the litter dataset, except for SR 

(1300, 1450), which had the highest R2 for FMC and EWT in different datasets. There 

were no significant relationships between all five water indices and LMA (Table 4-3). 

In contrast to water indices, dry matter indices had smaller correlations with FMC for 

all datasets, and only CAI showed significant correlations with EWT, while the ND 

(2305, 1495) was well correlated with LMA when using different datasets. 

NDII/NDMI was significantly correlated with FMC and EWT in the green leaf dataset, 

but failed for litters, and its correlation with LMA was also insignificant (Table 4-3). 

As a result, SR (1300, 1450) was the most sensitive index to FMC and EWT but was 

insensitive to LMA, while ND (2305, 1495), on the contrary, was most sensitive to 

LMA but insensitive to EWT and FMC. 

4.3.3 Identified best indices for FMC estimation of different fuel types 

The identified best indices based on both original reflectance and first derivative 

spectra for estimating FMC are presented in Tables 4-4 and 4-5. Among all selected 

indices of original reflectance, the ND (1630, 1680) was the best one for estimating 

FMC across different datasets, with an R2 of 0.79 and an RMSE of 37.69% when all 

datasets were pooled. The SR (1820, 1830) had similarly higher values of R2 but the 

two wavelengths used were too close together given the spectra resolution. 

Furthermore, the performance of ND (1630, 1680) with EWT was significant as well, 

with an R2 of 0.78 and an RMSE of 0.0023 g/cm2. However, none of the identified 

indices had significant correlations with LMA. 
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Table 4-3 Published spectral indices for FMC, EWT, and LMA based on 
different datasets 

 

P<0.001; “–”:R2<0.25. 

 

Related 
to 

Indices 
Green leaf dataset(n=224) Litter leaf dataset(n=299) Pooled dataset(n=523) 

R2 RMSE R2 RMSE R2 RMSE 

FMC 
(%) 

WI 0.69  30.42  – – – – 
SR(1300,1450) 0.74  27.77  0.67  53.42  0.70  44.95  

SRWI 0.67  31.17  – – – – 
NDWI 0.66  31.74  – – – – 
NDII 0.60  34.18  – – – – 

NDMI – – – – – – 
ND(2305,1495) – – 0.31  77.15  0.33  67.80  

NDII/NDMI 0.73  28.22  – – – – 
LCA 0.25  47.05  0.39  72.69  0.38  65.02  
CAI 0.53  37.00  0.61  58.25  0.57  54.14  

EWT 
(g/cm2) 

WI 0.71  0.0022 – – – – 
SR(1300,1450) 0.94  0.0010 0.86  0.0018 0.89  0.0016 

SRWI 0.67  0.0024 – – – – 
NDWI 0.66  0.0024 – – – – 
NDII 0.82  0.0018 – – – – 

NDMI – – – – – – 
ND(2305,1495) – – – – – – 

NDII/NDMI 0.67  0.0024 – – – – 
LCA – – 0.44  0.0037 0.38  0.0038 
CAI 0.74  0.0021 0.80  0.0022 0.76  0.0023 

LMA 
(g/cm2) 

WI – – – – – – 
SR(1300,1450) – – – – – – 

SRWI – – – – – – 
NDWI – – – – – – 
NDII – – – – – – 

NDMI 0.60  0.0014  – – 0.27  0.0018  
ND(2305,1495) 0.71  0.0012  0.61  0.0011  0.61  0.0013  

NDII/NDMI – – – – – – 
LCA – – – – – – 
CAI – – – – – – 
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Table 4-4 Evaluation of four types of indices with original reflectance for FMC, 
EWT, and LMA 

 

Datasets Index type   
Green leaf dataset(n=224) Litter leaf dataset(n=299) Pooled dataset(n=523) 

λ1 λ2 R2 RMSE R2 RMSE R2 RMSE 

FMC 
(%) 

R 1390 
 

0.80 24.02 0.68 52.86 0.70 44.91 

D 420 1385 0.81 23.75 0.70 50.71 0.74 42.40 

SR 1820 1830 0.88 18.83 0.76 45.85 0.79 38.02 

ND 1630 1680 0.83 22.28 0.78 43.81 0.79 37.69 

EWT 
(g/cm2) 

R 1390 
 

0.84 0.0016 0.79 0.0023 0.81 0.0021 
D 420 1385 0.84 0.0017 0.81 0.0022 0.82 0.0020 

SR 1820 1830 0.88 0.0014 0.86 0.0019 0.87 0.0017 
ND 1630 1680 0.84 0.0016 0.73 0.0026 0.78 0.0023 

LMA 
(g/cm2) 

R 1390 
 

– – – – – – 

D 420 1385 – – – – – – 

SR 1820 1830 – – – – – – 

ND 1630 1680 – – – – – – 

P<0.001; “–”: insignificant regression. 

 

Table 4-5 Evaluation of four types of indices with first derivative of reflectance 
for FMC, EWT, and LMA 

 

Datasets Index type   
Green leaf dataset(n=224) Litter leaf dataset(n=299) Pooled dataset(n=523) 

λ1 λ2 R2 RMSE R2 RMSE R2 RMSE 

FMC 
(%) 

dR 1915 
 

0.72 28.45 0.62 56.83 0.64 49.56 

dD 1550 1985 0.70 29.64 0.68 52.19 0.71 44.68 

dSR 1655 1910 0.68 30.62 0.82 39.34 0.81 36.17 

dND 1900 2095 0.87 19.33 0.83 38.19 0.85 31.53 

EWT 
(g/cm2) 

dR 1915 
 

0.72 0.0022 0.75 0.0025 0.75 0.0024 
dD 1550 1985 0.85 0.0016 0.80 0.0022 0.82 0.0020 

dSR 1655 1910 0.68 0.0023 0.61 0.0031 0.64 0.0029 
dND 1900 2095 0.83 0.0017 0.73 0.0026 0.76 0.0023 

LMA 
(g/cm2) 

dR 1915 
 

– – – – – – 

dD 1550 1985 – – – – – – 

dSR 1655 1910 – – – – – – 

dND 1900 2095 – – – – – – 

P<0.001; “–”: insignificant regression. 
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Figure 4-3 R2 and RMSE of FMC estimation with dND type indices. The 

positions with black circles in the figures are the selected dND (1900, 2095) 
 

On the other hand, the best identified indices using first derivative spectra were the 

dND (1900, 2095) (Table 4-5 and Figure 4-3), for both green leaves and litters, with 

an R2 of 0.87 and an RMSE of 19.33% for the green leaf dataset and an R2 of 0.83 and 

an RMSE of 38.19% for litters. The overall R2 reached 0.85 when all datasets were 

pooled and the RMSE was 31.53%. The dND (1900, 2095) was also closely 

correlated with EWT but had no significant correlation with LMA. Compared with 

the original reflectance based indices, the first derivative spectra based dND (1900, 

2095) is apparently superior to SR (1300, 1450) and ND (1630, 1680), with higher R2 

and lower RMSE when estimating FMC for different datasets. 

4.3.4 Performance of published and selected indices for FMC estimation with 

simulated dataset 

The performances of published indices for FMC (Table 4-6) estimation using 

simulated dataset were quite different with that using green leaf or litter 

measured-dataset (Table 4-3). For example, all water indices (WI, SR(1300, 1450), 

SRWI, NDWI and NDII) showed weaker relationship with FMC in simulated dataset 

than that in green leaf dataset (Table 4-3), and they were still significantly correlated 

with EWT but no relationship with LMA (Table 4-6). 
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Table 4-6 Performance of published and selected indices for FMC, EWT and 
LMA estimation based on simulated dataset 

 

Indices 
FMC (%) EWT(g/cm2) LMA(g/cm2) 

R2 RMSE R2 RMSE R2 RMSE 
WI 0.22 283.89 0.90 0.0046 0.04 0.0141 

SR(1300,1450) 0.15 296.84 0.88 0.0051 0.00 0.0144 
SRWI 0.17 292.99 0.88 0.0050 0.01 0.0143 
NDWI 0.17 293.43 0.89 0.0049 0.01 0.0143 
NDII 0.04 316.52 0.79 0.0066 0.07 0.0139 

NDMI 0.33 263.96 0.01 0.0143 0.88 0.0050 
ND(2305,1495) 0.38 254.64 0.08 0.0138 0.76 0.0070 

NDII/NDMI 0.86 119.83 0.24 0.0126 0.46 0.0106 
LCA 0.01 321.41 0.33 0.0118 0.26 0.0124 
CAI 0.01 320.89 0.26 0.0124 0.33 0.0118 

R(1390) 0.03 318.13 0.59 0.0092 0.06 0.0140 
D(420, 1385) 0.01 319.88 0.53 0.0098 0.08 0.0138 

SR(1820,1830) 0.37 255.91 0.62 0.0089 0.34 0.0117 
ND(1630, 1680) 0.44 240.68 0.35 0.0116 0.62 0.0089 

dR(1915) 0.07 311.57 0.62 0.0089 0.0028 0.0144 
dD(1550, 1985) 0.27 276.13 0.70 0.0079 0.0687 0.0139 
dSR(1655,1910) 0.00 322.30 0.00 0.0144 0.0000 0.0144 
dND(1900, 2095) 0.00 322.26 0.00 0.0144 0.0000 0.0144 

 

However, except SR (1300, 1450), the performance of the other water indices were 

similar between simulated and litter dataset for FMC estimation. The best indices for 

FMC estimation using simulated dataset was NDII/NDMI (R2=0.86, 

RMSE=119.83%), but it failed in litter dataset (Table 4-3). The selected dND(1900, 

2095) based on green and littler datasets was insignificantly correlated with FMC in 

simulated datasets.  All in all, there were no indices that synchronously significantly 

correlated with FMC in all three datasets.  

4.4 Discussion 

4.4.1 FMC estimation with spectral indices 

Retrieval of FMC based on spectral indices has been attempted in many former 
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studies (Yebra et al., 2008; Yebra et al., 2013 and references therein). However, those 

indices are usually designed only based on the absorption features of leaf water or leaf 

dry matter but ignoring that FMC is regulated by both parameters, although several 

indices were found to be correlated with FMC (Table 4-3). Our results clearly 

indicated that only SR (1300, 1450) (Seelig et al., 2008a) and CAI (Nagler et al., 2000) 

were satisfactory for estimating FMC and EWT simultaneously for both green and 

litter fuel types among all published indices, and both had insignificant relations with 

LMA (Table 4-3). A high R2 with EWT (Table 4-3) but low R2 with LMA of the FMC 

index suggested that the leaf dry matter information in FMC was mostly suppressed 

by leaf water content. In addition, statistically much stronger relationships with leaf 

EWT than with FMC were also found by Danson and Bowyer (2004) using different 

spectral vegetation indices. 

 

The most likely reason for the failure of the other published indices examined in this 

study may be primarily due to the big difference in the reflected spectra within the 

domain of 400 to 1200 nm for both fuel types (Figures 4-1 and 4-2). Most reported 

indices selected in this study used wavelengths in this domain, such as the 

wavelengths of 970 nm in WI (Penuelas et al., 1993) and 860 nm in NDWI (Gao, 

1996), SRWI (Zarco-Tejada et al., 2003), and NDII (Hardisky et al., 1983; Ceccato et 

al., 2001). Furthermore, these water indices were designed solely on a physical basis 

with leaf water content, such as 1240 nm in NDWI and SRWI and 1650 nm in NDII. 

Similarly, the wavelengths in NDMI (Wang et al., 2011b), ND (2305, 1495) (Romero 

et al., 2012), and LCA (Daughtry et al., 2005) were only determined by dry matter 

content. To solve this problem, Wang et al (2013) proposed an index ratio of 

NDII/NDMI for correlation with FMC, in which NDII was only correlated with leaf 

water content and uncorrelated with leaf dry matter content while NDMI was only 

correlated with leaf dry matter content and uncorrelated with leaf water content. 

However, the performance of NDII/NDMI for the litter dataset was failed (Table 4-3), 

mainly due to the applied wavelength of 860 nm in NDII. Therefore, new types of 

indices need to be designed for FMC estimation for different fuels.  
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Leaf reflectance progressively increased and dry matter bands gradually appeared in 

association with the process of leaf dehydration, hence providing an opportunity to 

couple the spectral information of both leaf water and dry matter (Figures 4-1 and 

4-2). These increasing trends were also observed in other plant species in response to 

dehydration (Carter, 1991; Foley et al., 2006; Peñuelas et al., 1993; Seelig et al., 

2008). Our results revealed that the most evident positions that appeared as a result of 

dry matter wavebands in this study were near to 2100 and 2300 nm, which were 

similar to the dry matter bands such as cellulose, lignin, and proteins found by former 

studies (Cheng et al., 2011; Cheng et al., 2012; Romero et al., 2012). Most 

importantly, the reflectance changes from 1200 to 2500 nm of both green leaves and 

litter materials were similar during the entire dehydration (Figures 4-1 and 4-2), 

suggesting that FMC in both materials could be estimated by the same index in this 

wavelength range.  

 

In order to identify the most sensitive combinations of different wavelengths to FMC, 

four common types of indices based on either original reflectance or first derivative 

spectra were used in the current study. The dND (1900, 2095) was determined as the 

best index to estimate FMC for both green leaves and litters (Table 4-5), and was 

better than all published indices examined or the best performing indices based on 

original reflectance in this study (Table 4-4). Moreover, unlike that of SR 

(1300,1450),the correlation coefficient between dND (1900, 2095) and FMC was 

higher (R2=0.85) than that for EWT (R2=0.76), probably due to the high relationship 

between the d2095 and dry matter content, which changed from positive to negative 

due to the appearance of dry matter bands near 2100 nm (Figure 4-4).The variation of 

d1900 was largely caused by the decreasing depth of the water absorption band near 

1940 nm (Figures 4-1, 4-2, and 4-4). Therefore, dND (1900, 2095) has accurately 

coupled information reflecting both leaf water and dry matter. As a comparison, other 

reported indices such as SR (1300, 1450) were only correlated with EWT while ND 

(2305, 1495) was only correlated to LMA (Table 4-3). The synthetic index proposed 

65 
 



by Wang et al. (2013), the ratio of SR (1300, 1450) to ND (2305, 1495), was also 

tested for FMC estimation in this study. The smaller R2(=0.81) together with a larger 

RMSE (=35.38%) compared to those of dND(1900, 2095) for the pooled dataset 

(Figure 4-5) indicated that such a straightforward combination might not be the best, 

although both ratios were the best for individual parameters.  

 

However, the band of 1900 nm falls in atmospheric water vapor absorption windows, 

which limits the use of dND (1900, 2095) with airborne hyperspectral data. Even so, 

dND (1900, 2095) might principally incorporates the information of both leaf water 

and dry mass which the other reported indices usually have ignored. Considered the 

use for landscape scale, after removing the three noisy spectrum regions because of 

high absorption of atmospheric water vapor (1350-1450nm, 1800-1950 nm and 

2200-2500 nm), the best indices for FMC estimation with pooled dataset are ND 

(1630, 1680) (R2=0.79, RMSE = 37.69%) and dSR (1655, 1965) ( R2=0.80, RMSE = 

36.93%). Both indices probably could be extrapolated to the landscape scale, but the 

information of spectral wavelengths in both indices is unclear compared with dND 

(1900, 2095). 

 

Nevertheless, dND (1900, 2095) was failed in simulated dataset, suggesting that the 

simulations by PROSPECT were greatly different with litter measured-dataset (Table 

4-6), the model need to be improved before the use for FMC estimation in different 

fuel types. The Simulations of PROSPECT were probably suitable for parameter 

estimation of green leaf, because the water indices were significantly correlated with 

EWT based on green leaf dataset and simulated dataset, respectively, and the 

performances of NDII/NDMI between green leaf dataset and simulated dataset were 

similar (Table 4-3 and Table 4-6). Even so, compared with other indices among 

different datasets, index of dND(1900, 2095) was the best one for different fuel types. 
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Figure 4-4 Variations of first derivative spectraat 1900nm (d1900) and 2095 nm 

(d2095) with dehydration time 
 

4.4.2 Separately estimating FMC for different fuel types 

As the biochemical compositions differ greatly between green leaves and litters, it 

might be necessary to separate them from each other in reality and hence the approach 

of Wang et al. (2013) might be a good choice. The apparent difference in reflected 

spectra from 400 to 1200 nm could help to solve this issue. We therefore designed a 

synthetic index by combining the dND (1900, 2095) with NDVI (800,680), which is a 

vegetation index commonly used to estimate the degree of greenness (Carlson and 

Ripley, 1997). The result indicated that the synthetic index could decouple green 

leaves from litters in FVC estimation, with an R2 of 0.85 and an RMSE of 21.25% for 

the green leaf dataset and an R2 of 0.45 and an RMSE of 69.26% for litters (fitted by 

exponential curves, see Figure 4-6). The poorer performance of the litter dataset was 

caused by the different NDVI values of individual species, suggesting that the indices 

needed to be validated with more plant species and the state of litter decomposition 

also should be considered as the spectral properties of the leaves will continue to 

change as a function of litter age, and ultimately converge on a uniform spectrum 

representative of organic soil. For example, NDVI is usually strongly affected by the 

soil background when applied to green vegetation cover. Hence, although satisfactory 

results were obtained for the synthetic index in this study, it needs thorough 
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validations in future studies.  

 
 

Figure 4-5 Regressions of SR (1300, 1450) and EWT, ND (2305, 1495) and LMA, 
and SR (1300, 1450)/ND (2305, 1495) and FMC 
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Figure 4-6 Regressions of dND (1900, 2095) and FMC and 

(dND-NDVI)/(dND+NDVI) and FMC 
 

4.5 Conclusions 

In this study, four commonly used types of indices (R, D, SR and ND) and two 

treatments of reflectance (original reflectance and first derivative of reflectance) were 

used to estimate FMC for both green and litter fuels based on leaf dehydration 

experiments. dND(1900, 2095) was identified as the best index to estimate FMC 

although it was failed in simulated dataset by PROSPECT. The reason was that the 

two derivative wavelengths used by the index, d1900 nm and d2095 nm, were closely 

related to leaf water content and leaf dry matter content, respectively. Furthermore, by 

applying NDVI, which can indicate the differences between green leaves and litters, a 

synthetic index which normalized dND(1900, 2095) with NDVI had effectively 

separated green leaves from litters during FMC estimation. But NDVI was strongly 

affected by many in situ factors, and dND(1900, 2095) combined with other indices 

such as relative greenness index might help to improve estimation further and needs 

extensive research in future.  
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Chapter 5 Synthesis and further developments 

Widespread drought-induced forest mortality and forest fire have substantially 

affected the global hydrological cycle and carbon cycle, how to remotely and 

quantitatively monitor and assess the two disturbances have not been effectively 

addressed until now. Remote sensing approach has been recognized as a reliable and 

practical mean to estimate the distribution and risk of forest drought and fire by the 

retrieval of related biochemical and biophysical vegetation variables. Leaf water 

status, RWC and EWT, greatly varied when responding to drought, which can be used 

as the indicators for leaf water stress. Another leaf water state, FMC, can be used as 

the indicator for estimating the risk of forest fire. Photosynthetic status such as 

quantum yield of PSII is also substantially affected by drought, the detection of which 

can provide the function information related to drought. There are two common 

remote sensing approaches for estimating these indicators, model inversion and 

spectral indices. Hence, a simulated plant-mortality experiment, fresh leaf dehydration 

is designed to obtain the variations of reflectance spectra and physiological 

characteristics (chlorophyll fluorescence) and identify the best hyperspectral indices 

for RWC, EWT (chapter 2) and quantum yield of PSII (chapter 3) in this study. The 

other experiment, litter refreshing experiment is also conducted to identify the best 

index for estimating FMC in different fuel types with a combination of PROSPECT 

model (chapter 4).   

5.1 Remote retrieval of ecological indicators for forest drought 

detection 

In chapter 2, I selected five typical deciduous broadleaf species in Japan as the 

dehydration experiment materials which could obtain a relatively comprehensive 

dataset with the ranges of RWC and EWC that were difficult to obtain in field 

measurements. Moreover, five common types of hyperspectral indices [single 

70 
 



reflectance (R), wavelength difference (D), simple ratio (SR), normalized ratio (ND) 

and double difference (DDn)] and four treatments of reflectance (original reflectance, 

reflectance difference, reflectance sensitivity and first derivative reflectance) were 

applied to determine the best RWC and EWT indices.  

 

Both RWC and EWT dropped rapidly from the maximum to a near minimum within 

10 h after leaf cutting, particularly in the first 5 h. After 10 h, the values of RWC and 

EWT were maintained stably near zero for each species. The RWC or EWT ranges of 

the leaf dehydration dataset focus on much lower values (extreme drought) compared 

with other field sites. Values of original reflectance, reflectance difference and 

reflectance sensitivity increased significantly within all wavelengths with a decrease 

in leaf water, particularly the ranges of  350-700 nm and 1300-2500 nm. This feature 

suggested that a decrease in leaf water content was the most important reason for 

changes in leaf reflectance, offering the possibility in the assessment of leaf water 

content. However, ranges of 350-750 nm, 750-1300 nm and 2000-2500 nm were also 

evidently affected by pigments, leaf structure and dry matter. Hence, the most suitable 

range was 1300-2000 nm for estimating leaf water status with a leaf dehydration 

dataset. 

 

The identified best indices for RWC and EWT, when all the species were considered 

together, were the first derivative reflectance based ND type index of dND (1415, 

1530) and SR type index of dSR (1530, 1895), with R2 values of 0.95(p < 0.001) and 

0.97 (p < 0.001), respectively, better than previously published indices [WI, SR (1300, 

1450), NDWI, SRWI, NDII and DDn (1530, 525)]. The recommend indices provide a 

means to monitor drought-induced plant mortality in temperate climate regions. 

 

In chapter 3, ΔF/F'm was retrieved using the same leaf reflectance dataset and method 

in chapter 2. However, the range of reflectance only focused on 400-800 nm because 

leaf water content and dry mater content had minimal impact on these bands. Results 

showed that values of ΔF/F'm for different plant species were rapidly decreasing in 
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the first 5 h since leaf cutting. At the time of around 12 h, ΔF/F'm of each species 

were near zero, meaning that all leaf samples were almost totally died. The changes of 

ΔF/F'm could not be traced by the published indices of NDVI and PRI. There were no 

significant correlations between ΔF/F'm and between ΔF/F'm and NDVI when all 

species were considered. The identified best indices for estimating ΔF/F'm was dND 

(533, 686) across different type of indices, with an R2 of 0.88 and an RMSE of 0.11. 

The band of 533 nm was near the carotenoid absorption region and 686 nm was 

affected by chlorophyll fluorescence emission. Thus, the selected dND (533, 686) 

could provide a remote mean to track the variation of photosynthetic status for plants 

under drought. 

5.2 Remote retrieval of ecological indicator for wildfire detection 

In chapter 4, two fuel materials, green live leaves and fallen litter, were used for the 

leaf dehydration experiment and litter refreshing experiment, respectively. The plant 

species were same with that in chapter 2 and 3. Moreover, a simulated dataset was 

built using PROSPECT model, including 5000 simulations with a wide range of input 

parameters. Five water indices [WI, SR (1300, 1450), SRWI, NDWI, and NDII], four 

dry matter indices [NDMI, ND (2309, 1495), LCA, and CAI], and NDII/NDMI 

reported in previous studies were selected to test their performance in monitoring 

FMC. Totally, there datasets of green leaf dataset, litter dataset and simulated dataset 

were used to determine the best FMC indices.  

 

The reflectance from 400 to 1200 nm were quite different between green live leaves 

and fallen litters, while the changes from 1200 to 2500 nm were similar with the 

decreasing FMC. Meanwhile, dry matter bands were gradually appeared. Five water 

indices were all significantly correlated with FMC in the green leaf dataset, but except 

for SR (1300, 1450), these correlations were very weak for the litter and simulated 

datasets. In contrast to water indices, dry matter indices had smaller correlations with 

FMC for all datasets. NDII/NDMI was significantly correlated with FMC in both the 
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green leaf dataset and simulated dataset, but also failed in litter dataset.  

 

The identified best index for FMC in both fuel types was dND(1900, 2095), with an 

R2 of 0.85 and an RMSE of 32%, although it was failed in simulated dataset by 

PROSPECT. The reason was that the two derivative wavelengths used by the index, 

d1900 nm and d2095 nm, were closely related to leaf water content and leaf dry 

matter content, respectively. Furthermore, by applying NDVI, which could indicate 

the differences between green leaves and litters, a synthetic index which normalized 

dND(1900, 2095) with NDVI had effectively separated green leaves from litters 

during FMC estimation.  

5.3 Future works  

The detection of forest drought and fire is often based on the changes in leaf water 

status and photosynthetic status since leaf is the most vulnerable component and it 

directly links to optical observations by satellite. However, the distributions of the two 

disturbances had spread worldwide in different ecosystems. Hence, several potential 

future research works are needed and listed as follows: 

 

(1) Leaf scale reflectance is greatly affected by leaf structure and plant species, one of 

the future works is to extend the methods used and developed in this study to 

more different plant species, including shrubs, grass and coniferous plants. After 

then, the applications of forecast and mapping to large scales (canopy, regional 

and global) of the selected indices need to be put into practice which is depended 

on the development of hyperspectral space-borne sensors. 

 

(2) More information of mechanism of function degradation of plant mortality caused 

by drought is required because it will obstacle the research on the relationship 

between leaf spectra and physiological processes. It also makes how to distinguish 

drought and fire from the other types of disturbance is difficult. Moreover, the 
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spectral responses of different materials or physiological processes should be 

extended to exploit the attribution and discern different types of disturbance. 
 

(3) The differences between simulations of PROSPECT and measured-litter 

reflectance are evident, new models are required to determine the universal 

indices for various vegetation biochemical and biophysical parameters of different 

martials at different scales.  
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