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Introduction

Throughout this paper k is an algebraically closed field, and all vector spaces, algebras
and linear maps are assumed to be finite-dimensional k-vector spaces, finite-dimensional
k-algebras and k-linear maps, respectively. Further all modules over an algebra considered
here are assumed to be finite-dimensional modules. We denote the set of non-negative
integers by N0.

0.1. Starting functions. We first define starting functions which are a key tool in
this paper. For a module X over an algebra A, we often identify the isocalss [X] of X
with X itself. In particular, the set Γ0 of varticies of the AR-quiver Γ of A is identified
with a complete list of indecomposable A-modules.

Definition 0.1. Let A be an algebra and Γ the AR-quiver of A. Then for an inde-
composable A-module X, the starting function sX : Γ0 −→ N0 of X is defined by

sX(Y ) := dimkHomA(X,Y )

for all Y ∈ Γ0.

Starting functions have the following property.

Proposition 0.2. Let A be an algebra, Γ the AR-quiver of A,
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a mesh in Γ, and X an indecomposable A-module with X ̸∼= N . Then we have

sX(N) =
n∑

i=1

sX(Mi)− sX(L).

Starting functions were introduced by Gabriel to compute AR-quivers in [6], and were
developed such as in [9],[10],[4],[3],[2, 6.6] and [1]. In this paper, we give two results
obtained by using starting functions.

0.2. The first result (Chapter 1). This part is a generalization of Hironobu
Suzuki’s Master thesis [11] that dealt with representation-finite self-injective algebras
of type A in a combinatorial way. Throughout Chapter 1 n is a positive integer, all al-
gebras considered here are assumed to be basic, connected, finite-dimensional associative
k-algebras and all modules are finite-dimensional right modules.
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6 INTRODUCTION

Let ∆ be a Dynkin graph of type A, D, E with the set ∆0 := {1, . . . , n} of vertices.
By Riedtmann [10, 2.5] the computation of the Auslander-Reiten quiver (AR-quiver for
short) ΓΛ of a representation-finite standard self-injective algebra Λ of type ∆ is reduced
to that of stable AR-quiver sΓΛ of Λ and the configuration CΛ of Λ as the isomorphism
ΓΛ

∼= (sΓΛ)CΛ shows. The stable AR-quiver sΓΛ is given by the orbit category presentation

of Λ, namely if Λ ∼= Â/G for some tilted algebra A of type ∆, then sΓΛ
∼= Z∆/G.

Therefore to recover the AR-quiver ΓΛ it suffices to compute the configuration CΛ by
using information of A. Set C(∆) to be the set of configurations on the translation quiver
Z∆ (see Definition 1.6), and T(∆) to be the set of isoclasses of tilted algebras of type ∆.
Bretscher, Läser and Riedtmann gave a bijection c : T(∆) → C(∆) in [4], which makes it
possible to compute CΛ as the equivalence class of c(A). Hence we can compute ΓΛ using
these data. But the map c is not given in a direct way, it needs a long computation of a
function on Z∆. In this paper we will give an easier way to calculate the map c by giving
a map sending each projective indecomposable A-module over a tilted algebra A in T(∆)
to an element of the configuration c(A) in C(∆).

We fix an orientation of each Dynkin graph ∆ to have a quiver ∆⃗ as in the following
table.

∆ An (n ≥ 1) Dn (n ≥ 4) En (n = 6, 7, 8)

∆⃗ ◦ ◦ · · · ◦// // //
1 2 n

◦

◦ · · · ◦ ◦// // //

OO

1 n− 2 n− 1

n ◦

◦ · · · ◦ ◦ ◦// // // //

OO

1 n− 3 n− 2 n− 1

n

m∆ n 2n− 3 11, 17, 29, respectively

This orientation of ∆ gives us a coordinate system on the set (Z∆)0 := Z×∆0 of vertices

of Z∆ := Z∆⃗ as presented in [4, fig. 1] and in [6, Fig. 13].
Let A be a tilted algebra of type ∆. Then by identifying A with the (0, 0)-entry of

the repetitive category Â, the vertex set of AR-quiver ΓA is embedded into the vertex
set of the stable AR-quiver sΓÂ (∼= Z∆) of Â. Further the configuration C := c(A) of
Z∆ computed in [4] is given by the vertices of Z∆ corresponding to radicals of projective

indecomposable Â-modules. Note that the configuration C has a period m∆ listed in the
table, thus C = τm∆ZF for some subset F of C. By P = {(p(i), i) | i ∈ ∆0} we denote the
set of images of the projective vertices of ΓA in Z∆ and set

NP := {(m, i) ∈ (Z∆)0 | p(i) ≤ m, i ∈ ∆0}.
As is well-known, there exists the Nakayama permutation ν̂ on (Z∆)0 that is defined by
the isomorphism

k(Z∆)(x, -) ∼= D(k(Z∆)(-, ν̂x))

for all x ∈ (Z∆)0, where D is the k-dual functor Homk(-,k). The explicit formula of ν̂ is
given in [6, pp. 48–50]. (Note that it should be corrected as ν̂(p, q) = (p + q + 2, 6 − q)
if q ≤ 5 when ∆ = E6 as pointed out in [4, 1.1]). In this paper we will define a map
ν ′ : P → NP using supports of the functions dimk k(Z∆)(x, -) : NP → Z, so-called the
starting functions from x ∈ NP (cf. [6, Fig. 15]). Then ν ′ has the following property.

Lemma 0.3. Let x ∈ P and P be the projective indecomposable A-module correspond-
ing to x. Then ν ′x corresponds to the simple module topP .
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In this paper, we make use of modules over the algebra

B :=

[
A 0
DA A

]
to compute an F above (the configuration (see Definition 3.1) of B gives F .) We will
define a map ν := νB from the set of isoclasses of simple A-modules to C, which coincides
with the restriction of the Nakayama permutation ν̂ if A is hereditary.

Lemma 0.4. Assume that a vertex x ∈ Z∆ corresponds to a simple A-module S and let
Q be the injective hull of S over Â. Then ν(x) corresponds to radQ, and hence ν(x) ∈ C.

Combining the lemmas above we obtain the following.

Proposition 0.5. If x ∈ P, then ν(ν ′x) ∈ C.

This leads us to the following definition.

Definition 0.6. We define a map cA : P → C by cA(x) := ν(ν ′x) for all x ∈ P .

The image of the map cA gives us an F above, namely we have the following.

Theorem 0.7. The map cA is an injection, and we have c(A) = τm∆Z Im cA.

Corollary 0.8. If A is hereditary, then cA = ν̂ν ′ and we have c(A) = τm∆Z Im ν̂ν ′.

0.3. The second result (Chapter 2). Throughout Chapter 2 all modules over an
algebra considered here are assumed to be finite-dimensional left modules. Let A be an
algebra, L a complete set of representatives of isoclasses of indecomposable A-modules.
Then the Krull-Schmidt theorem states the following. For each A-moduleM , there exists
a unique map dM : L → N0 such that

M ∼=
⊕
L∈L

L(dM (L)),

which is called an indecomposable decomposition of M . Therefore, M ∼= N if and only
if dM = dN for all A-modules M and N , i.e., the map dM is a complete invariant of M
under isomorphisms. Note that since M is finite-dimensional, the support supp(dM) :=
{L ∈ L | dM(L) ̸= 0} of dM is a finite set. We call such a theory a decomposition theory
that computes the indecomposable decomposition of a module. The Auslander-Reiten
theory was developed since 1970s in representation theory of algebras. In many cases it
enabled us to compute the Auslander-Reiten quiver (AR-quiver for short) of A that is a
combinatorial description of the category of modules over A, the vertex set of which can
be identified with the list L, and which is constructed by gluing all meshes that is a visual
form of almost split sequences over A. Thus all information on almost split sequences over
A are encoded in the AR-quiver in a visual way. Namely, if 0 → X → Y → Z → 0 is an

almost split sequence, and Y =
⊕n

i=1 Y
(ai)
i (n ≥ 1) is an indecomposable decomposition
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of Y with Yi pairwise non-isomorphic and ai ≥ 1 for all i, then we express it by the quiver

Y1

X
... Z
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with a broken line between X and Z (note here that also both X,Z are indecomposable
by definition of almost split sequences). The correspondence τ : Z 7→ X is called the
AR-translation. For example, it has the forms
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if n = 2, a1 = a2 = 1, and

Y1
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if n = 1, a1 = 2.

The purpose of Chapter 2 is to develope a decomposition theory by using the knowl-
edge of AR-quivers. Thus in the case that L is already computed and all almost split
sequences are known, we aim to compute

(I) dM and
(II) a finite set SM such that supp(dM) ⊆ SM ⊆ L

for all A-modules M . Note that (II) is needed to give a finite algorithm. If A is
representation-finite (i.e., if the set L is finite), then the problem (II) is trivial because
we can take SM := L.

In the topological data analysis, to analyse a point cloud C, a set of points in Rd

for some fixed positive integer d, some important informations on C are encoded in the
persistent homology MC , which is just a module over the path algebra Λn = kQn of a
quiver Qn of the form

1
α1−→ 2

α2−→ · · · αn−1−−−→ n

of Dynkin type An for some positive integer n. Therefore to understand the point cloud C
we can use the knowledge of the map dMC

, which is nothing but the “persistence diagram”
of C, where usually the values of dMC

(L) (L ∈ L) is presented by colors on L, and L
is expressed by a set of lattice points in a triangle. More precisely, the list L is given
by {M(b, d) | 1 ≤ b ≤ d ≤ n} thanks to Gabriel’s theorem on representations of Dynkin
quivers, where M(b, d) is given by

0 −→ · · · −→ 0 −→ k 1−→ k 1−→ · · · 1−→ k −→ 0 −→ · · · −→ 0

with k starting at the vertex b and stopping at d. Therefore there exists a 1-1 correspon-
dence between L and the set {(b, d) | 1 ≤ b ≤ d ≤ n}, which is a subset of Z2 forming a
triangle (See for instance papers [21] and [16]). Note that this set of vertices together with
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horizontal and vertical edges connecting them can be regarded as the underlying graph of
the AR-quiver of Λn(See Example 2.7). To analyse property of a set of point clouds, e.g.,
a motion of a point cloud, persistent homologies were generalized to persistence modules
M , which turn out to be modules over an algebra of the form Λm ⊗k Λn, where we allow
any orientation of Qm and Qn, namely their underlying graphs have the form

1 2 · · · l

of type Al for l = m,n. Also in this case we need to compute the persistence diagram dM

to investigate the set of point clouds. It was done in [18] for the case (m,n) = (2, 3). Our
argument here can be applied to have a decomposition theory for persistence modules.

Example 0.9. The decomposition theory for polynomial algebras in one variable
A = k[x] is already well known. A finite-dimensional A-module is a pair (V, f) of a finite-
dimensional k-vector space V and an endomorphism f of V , and by fixing a basis of V
we may regard V = kd for d := dimV and f as a square matrix M of size d. In this way
we identify (V, f) with M . In this case we may have L = {Ji(λ) | i ≥ 1, λ ∈ k}, where
Ji(λ) is the Jordan cell of size i ≥ 1 with eigenvalue λ ∈ k. Let Λ be the set of all distinct
eigenvalues of M and set Mλ =M − λEd for λ ∈ Λ. Then the following is well known.

Theorem 0.10. The problems (I) and (II) are solved as follows.

A solution to (I): Let i ∈ N and λ ∈ Λ. Then

dM(Ji(λ)) =

{
d+ rankM2

λ − 2 rankMλ if i = 1; and
rankM i+1

λ + rankM i−1
λ − 2 rankM i

λ if i ≥ 2;
(0.1)

(Note that by setting M0
λ to be the identity matrix of size d, the first equality has

the same form as the second.)
A solution to (II): SM = {Ji(λ) | i ≤ d, λ ∈ Λ}.

In this paper, we will solve the problem (I) in the decomposition theory for any finite-
dimensional algebra A. This turns out to be an extension of the result for A = k[x]

above. In particular, for the Kronecker algebra A = kQ with Q = (1
α

&&

β

882), we will give

an explicit formula for the problem (I) and a solution to the problem (II).
Decomposition theory is based on the approach as follows. Let A be a directed algebra.

Then there is a complete set of isoclasses of indecomposable A-module {M1, · · · ,Mn} such
that HomA(Mi,Mj) ̸= 0 implies i ≤ j. An example of this numbering is given as follows.

Example 0.11.

1
��9

9
����

⟳Let (Q, I) := 2
��9

9 3
����

and A := Q/I.
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Then the AR-quiver Γ of A is as follows.
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LetM ∈ modA. AssumeM ∼=
⊕n

i=1M
(ai)
i where ai ∈ N0. Define bj := dimHomA(M,Mj)

for each j ∈ {1, . . . , n}. Then

bj = dimHomA(
n⊕

i=1

M
(ai)
i ,Mj)

=
n∑

i=1

ai · dimHomA(Mi,Mj)

=
n∑

i=1

ai · sMi
(Mj)

= (a1, . . . , an)

sM1(Mj)
...

sMn(Mj)

 .

Hense, we obtain

(b1, . . . , bn) = (a1, . . . , an)

sM1(M1) · · · sM1(Mn)
...

. . .
...

sMn(M1) · · · sMn(Mn)

 .

We set UΓ to be the matrix on the right hand side whose (i, j)-entry has the value sMi
(Mj)

of starting function sMi
. Since sMi

(Mj) ̸= 0 implies i ≤ j, UΓ is an upper triangular
matrix, which is invertible because the diagonal entries are equal to 1. Thus, we obtain

(a1, . . . , an) = (b1, . . . , bn)U
−1
Γ .

Hence, in order to realize the decomposition theory, we find it important to study U−1
Γ . It

is very interesting to see that U−1
Γ is given by the information of AR-quiver Γ as follows.

Definition 0.12 (AR-matrix). Let A be an algebra, Γ the AR-quiver of A. Then the
AR-matrix VΓ = [vij]i,j of A is defined by

vij :=


1 (j = i or Mj

∼= τ−1(Mi))

−c (Mi
c arrows−−−−→Mj in Γ)

0 (otherwise)
.
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Proposition 0.13. VΓ is the inverse of UΓ.

Remark 0.14. We gave three deferent proofs of this proposition. The first one calcu-
lated cofactor matrices, the second one checked the equality UΓVΓ = E, and the third one
used the fact that UΓ is the Cartan matrix of the module category of A (cf. Remark0.16(1)
belows).

Example 0.15. Let A and Γ be as in Example 1.11. Then we have

UΓ = [sMi
(Mj)]i,j =



1 1 1 1 0 1 0 0 0 0 0
0 1 0 1 0 1 1 1 1 0 0
0 0 1 1 1 1 0 1 0 1 0
0 0 0 1 1 1 1 2 1 1 0
0 0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 1 0 1 1 1 1
0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1


and

VΓ = [vij]i,j =



1 −1 −1 1 0 0 0 0 0 0 0
0 1 0 −1 1 0 0 0 0 0 0
0 0 1 −1 0 0 1 0 0 0 0
0 0 0 1 −1 −1 −1 1 0 0 0
0 0 0 0 1 0 0 −1 1 0 0
0 0 0 0 0 1 0 −1 0 0 0
0 0 0 0 0 0 1 −1 0 1 0
0 0 0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 0 0 1


.

It is easy to check UΓVΓ = E11 = VΓUΓ.

Remark 0.16. After submitting the paper we are pointed out by Emerson Escolor
and the referee that there was already a similar investigation [17] by Dowbor and Mróz
in the literature, which we did not know before. Thus this work was done independently.
We here list some relationships between their results and ours.

(1) They also have the same statement as Theorem 2.4 and its dual version, namely
a solution to (I). Their proof is similar to the first version of ours using a “Cartan
matrix” of the module category of an algebra A and an AR-matrix of A as its
inverse, but the proof presented here does not use them and is much simplified
by using the minimal projective resolutions of simple functors that are given
by almost split sequences and sink maps into indecomposable injective modules,
which also give the matrix VΓ in Proposition 0.13 (Proposition 2.3).

(2) Our Theorem 3.3 gives an explicit way of computation of the map dM for a
module M by using ranks of matrices constructed by the structure matrices of
M , while they did not give such formulas explicitly.
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(3) To solve the problem (II) we used traces and rejects, which are easily computed
and give us a decomposition of a module into the preprojective part, the prein-
jective part, the regular part with parameter ∞, and the regular part without
parameter ∞. This together with Theorem 3.3 gives an effective computation of
the indecomposable decomposition of a moduleM . For instance, if the preprojec-
tive part or the preinjective part ofM is zero, it avoids unnecessary computations
of the decomposition for those parts, in contrast, such computations are done in
their algorithm repeatedly.

(4) Proposition 4.4 in [17] gives another way to compute regular direct summands,
which seems to be interesting.

(5) They investigated also the cases of general Ã-quivers and representation-finite
string algebras.
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CHAPTER 1

Tilted algebras and configurations of self-injective algebras of
Dynkin type

In this chapter, we give an easier way to calculate a bijection from the set of isoclasses
of tilted algebras of Dynkin type ∆ to the set of configurations on the translation quiver
Z∆. Section 1 is devoted to preparations. In Section 2 we will give the complete list
of indecomposable projectives and indecomposable injectives over a triangular matrix
algebra B defined there. In Section 3 we state and prove the main results. Throughout
this chapter, all modules are assumed to be finite-dimensional right modules.

1. Preliminaries

1.1. Algebras and categories. A category C is called a k-category if the morphism
sets C(x, y) are k-vector spaces, and the compositions C(y, z) × C(x, y) → C(x, z) are
k-bilinear for all x, y, z ∈ C0 (C0 is the class of objects of C, we sometimes write x ∈ C
for x ∈ C0). In the sequel all categories are assumed to be k-categories unless stated
otherwise.

To construct repetitive categories and to make use of a covering theory we need to
extend the range of considerations from algebras to categories. First we regard an algebra
as a special type of categories by constructing a category catA from an algebra A as
follows.

(1) We fix a decomposition 1 = e1 + · · ·+ en of the identity element 1 of A as a sum
of orthogonal primitive idempotents.

(2) We set the object class of catA to be the set {e1, . . . , en}.
(3) For each pair (ei, ej) of objects, we set (catA)(ei, ej) := ejAei.
(4) We define the composition of catA by the multiplication of A.

The obtained category catA is uniquely determined up to isomorphism not depending on
the decomposition of 1. The category C = catA is a small category having the following
three properties.

(1) Distinct objects are not isomorphic.
(2) For each object x of C the algebra C(x, x) is local.
(3) For each pair (x, y) of objects of C the morphism space C(x, y) is finite-dimensional.

A small category with these three properties is called a spectroid1 and its objects are
sometimes called points. A spectroid with only a finite number of points is called finite.
The category catA is a finite spectroid. Conversely we can construct a matrix algebra

1a terminology used in [7]

15



161. TILTED ALGEBRAS AND CONFIGURATIONS OF SELF-INJECTIVE ALGEBRAS OF DYNKIN TYPE

from a finite spectroid C as follows.

algC := {(myx)x,y∈C | myx ∈ C(x, y),∀x, y ∈ C}.
Here we have alg catA ∼= A, cat algC ∼= C. Therefore we can identify the class of algebras
and the class of finite spectroids by using cat and alg.

A spectroid C is called locally bounded if for each point x the set {y ∈ C | C(x, y) ̸=
0 or C(y, x) ̸= 0} is a finite set. Of course algebras ( = finite spectroids) are locally
bounded. In the range of locally bounded spectroids we can freely construct repetitive
categories or consider coverings.

Remark 1.1. We can construct the “path-category” kQ from a locally finite quiver
Q in the same way as in the definition of the path-algebra. The only difference is in
the following definition of compositions: For paths µ, ν with2 s(µ) ̸= t(ν), it was defined
as µν = 0 in the path-algebra, but in contrast the composition µν is not defined in the
path-category.

A locally bounded spectroid C is also presented as the form kQ/I for some locally
finite quiver Q and for some ideal I of the path-category kQ such that I is included in
the ideal of kQ generated by the set of paths of length 2. Here the quiver Q is uniquely
determined by C up to isomorphism. This Q is called the quiver of C.

A (right) module over a spectroid C is a contravariant functor C → Mod k. From a
usual (right) module over an algebra A we can construct a contravariant functor catA→
Mod k by the correspondence ei 7→ Mei for each point ei in catA, and f 7→ (·f : Mej →
Mei) for each f ∈ ejAei = (catA)(ei, ej). Conversely, from a contravariant functor
F : catA → Mod k we can construct an A-module

⊕n
i=1 F (ei); and these constructions

are inverse to each other. In this way we can identify A-modules and modules over catA.
The set of projective indecomposable modules over a spectroid C is given by {C(-, x)}x∈C

up to isomorphism, and finitely generated projective C-modules are nothing but finite di-
rect sums of these. Using this we can define finitely generated modules or finitely presented
modules over C by the same way as those over algebras. By modC we denote the full
subcategory of ModC consisting of finitely generated C-modules.

The dimension of a C-moduleM is defined to be the dimension of
⊕

x∈C M(x). When
C is locally bounded, a C-module is finitely presented if and only if it is finitely generated
if and only if it is finite-dimensional.

1.2. Repetitive category.

Definition 1.2. Let A be an algebra with a basic set of local idempotents {e1, . . . , en}.
(1) The repetitive category Â of A is a spectroid defined as follows.

Objects: Â0 := {x[i] := (x, i) | x ∈ {e1, . . . , en}, i ∈ Z}.
Morphisms: Let x[i], y[j] ∈ Â0. Then we set

Â(x[i], y[j]) :=


{f [i] := (f, i) | f ∈ A(x, y)} (j = i)

{φ[i] := (φ, i) | φ ∈ DA(y, x)} (j = i+ 1)

0 otherwise．
2Here s(µ) and t(ν) stand for the source of µ and the target of ν and compositions are written from

the right to the left.
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Compositions: The composition Â(y[j], z[k]) × Â(x[i], y[j]) → Â(x[i], z[k]) is
defined as follows.

(i) If j = i, k = j, then we use the composition of A:

A(y, z)× A(x, y) → A(x, z).

(ii) If j = i, k = j + 1, then we use the right A-module structure of
DA(-, ?):

DA(z, y)× A(x, y) → DA(z, x).

(iii) If j = i+1, k = j, then we use the left A-module structure of DA(-, ?):

A(y, z)×DA(y, x) → DA(z, x).

(iv) Otherwise the composition is zero.

(2) For each i ∈ Z, we denote by A[i] the full subcategory of Â whose object class is
{x[i] | x ∈ {e1, . . . , en}}.

(3) We define the Nakayama automorphism νA of Â as follows: for each i ∈ Z, x, y ∈
A, f ∈ A(x, y) and ϕ ∈ DA(y, x)，

νA(x
[i]) := x[i+1], νA(f

[i]) := f [i+1], νA(φ
[i]) := φ[i+1].

Remark 1.3. (1) The repetitive category of an algebra A is locally bounded. (2)
The set of all Z×Z-matrices with only a finite number of nonzero entries whose diagonal
entries belong to A, (i + 1, i) entries belong to DA for all i ∈ Z, and other entries are
zero forms an infinite-dimensional algebra without identity element, which is called the
repetitive algebra of A. The repetitive category Â is nothing but this repetitive algebra
regarded as a spectroid in a similar way. This is not an algebra (= a finite spectroid) any
more, but a locally bounded spectroid.

Definition 1.4 (Gabriel [5]). Let C be a locally bounded spectroid with a free3 action
of a group G. Then we define the orbit category C/G of C by G as follows.

(1) The objects of C/G are the G-orbits Gx of objects x of C.
(2) For each pair Gx,Gy of objects of C/G we set

(C/G)(Gx,Gy) :=

(bfa)a,b ∈
∏

(a,b)∈Gx×Gy

C(a, b)
∣∣∣ gbfga = g(bfa), for all g ∈ G

 .

(3) The composition is defined by

(dhc)c,d · (bfa)a,b :=

(∑
b∈Gy

dhb · bfa

)
a,d

.

for all (bfa)a,b ∈ (C/G)(Gx,Gy), (dhc)c,d ∈ (C/G)(Gy,Gz). Note that each entry
of the right hand side is a finite sum because C is locally bounded.

A functor F : C → C ′ is called a Galois covering with group G if it is isomorphic to
the canonical functor π : C → C/G, namely if there exists an isomorphism H : C/G→ C ′

such that F = Hπ.

31 ̸= g ∈ G, x ∈ C0 implies gx ̸= x
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Remark 1.5. Recall that a spectroid C is said to be self-injective in case C(-, x) is
injective in modC and C(x, -) is injective in modCop for all x ∈ C0. If A is an algebra

and a group G acts freely on the category Â, then Â/G turns out to be a self-injective

spectroid. In particular, when Â/G is a finite spectroid, it becomes a self-injective algebra.
In this way we can construct a great number of self-injective algebras.

Definition 1.6. From a quiver Q we can construct a translation quiver ZQ as follows.

• (ZQ)0 := Z×Q0,
• (ZQ)1 := Z×Q1 ∪ {(i, α′) | i ∈ Z, α ∈ Q1},
• We define the sources and the targets of arrows by

(i, α) : (i, s(α)) → (i, t(α)), (i, α′) : (i, t(α)) → (i+ 1, s(α))

for all (i, α) ∈ Z×Q1.
• We take the bijection τ : (ZQ)0 → (ZQ)0, (i, x) 7→ (i− 1, x) as the translation.

In addition, we can define a polarization by (i + 1, α) 7→ (i, α′), (i, α′) 7→ (i, α). Note
that by construction the translation quiver ZQ does not have any projective or injective
vertices.

For example,

Q =

1

2

3

α
>>||||||

β   B
BB

BB
B gives ZQ =

· · · (−1, 1) (0, 1) (1, 1) · · ·

· · · (−1, 2) (0, 2) (1, 2) · · ·

· · · (−1, 3) (0, 3) (1, 3) · · ·

(−1,α)
;;wwwwww

(−1,β) ##G
GG

GG
G

(0,α)
= ={{{{{{

(0,β) !!C
CC

CC
C

(1,α)
=={{{{{{

(1,β) !!C
CC

CC
C

(−1,α′)
EE

""E
E

(−1,β′)yy

<<yy

(0,α′)

CC

!!C
C

(0,β′){{

=={{

______ _____ _____ __

__ ______ _____ _____

______ _____ _____ __

.

Remark 1.7. When Q is a Dynkin quiver with the underlying graph ∆, the isoclass
of ZQ does not depend on orientations of ∆, therefore we set Z∆ := ZQ.

2. Triangular Matrix Algebras

In this section we will give the complete list of indecomposable projectives and inde-
composable injectives over a triangular matrix algebra B defined in (2.1) below.

Definition 2.1. Let R and S be algebras, M be an S-R-bimodule. We define a
category C = C(R,S,M) as follows.

Objects: C0 := {(X,Y, f) | XR ∈ modR, YS ∈ modS, f ∈ HomR(Y ⊗S M,X)}.
Morphisms: Let (X,Y, f), (X ′, Y ′, f ′) ∈ C0. Then we set

C((X,Y, f), (X ′, Y ′, f ′)) :=

(ϕ0, ϕ1) ∈ HomR(X,X
′)× HomS(Y, Y

′)

∣∣∣∣∣∣∣∣∣∣
Y ⊗S M

⟳

X

Y ′ ⊗S M X ′

ϕ1⊗1M
��

f ′
//

f //

ϕ0

��

 .

Compositions: Let (X,Y, f), (X ′, Y ′, f ′), (X ′′, Y ′′, f ′′) ∈ C0 and let

(ϕ0, ϕ1) ∈ C((X,Y, f), (X ′, Y ′, f ′)), (ϕ′
0, ϕ

′
1) ∈ C((X ′, Y ′, f ′), (X ′′, Y ′′, f ′′)).
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Then we set

(ϕ′
0, ϕ

′
1)(ϕ0, ϕ1) := (ϕ′

0ϕ0, ϕ
′
1ϕ1) ∈ C((X,Y, f), (X ′′, Y ′′, f ′′)).

Then the following is well known.

Proposition 2.2. Let R and S be algebras, M be an S-R-bimodule, and set T :=[
R 0
M S

]
. Then

modT ≃ C(R,S,M).

Recall that an equivalence F : modT → C(R,S,M) is given as follows.

Objects: For each L ∈ (modT )0,

F (L) := (Lε1, Lε2, fL),

where ε1 :=

[
1R 0
0 0

]
, ε2 :=

[
0 0
0 1S

]
and fL : Lε2 ⊗S M → Lε1 is defined by

fL(lε2 ⊗m) := l

[
0 0
m 0

]
for all l ∈ L and m ∈M .

Morphisms: For each α ∈ HomT (L,L
′),

F (α) := (α |Lε1 , α |Lε2).

Let A be a tilted algebra of type ∆, and set

B :=

[
A 0
DA A

]
, C := C(A,A,DA). (2.1)

Then we have modB ≃ C by Proposition 2.2. By this equivalence, we identify modB
with C.

Let {e1, . . . , en} be a complete set of orthogonal local idempotents of A. Then as is

easily seen {e[0]1 , . . . , e
[0]
n , e

[1]
1 , . . . , e

[1]
n } is a complete set of orthogonal local idempotents of

B, where we regard the objects e
[0]
i of A[0] (resp. e

[1]
i of A[1]) as the elements

[
ei 0
0 0

]
(resp.[

0 0
0 ei

]
) of B for all i ∈ {1, . . . , n}. Hence {e[0]1 B, . . . , e

[0]
n B, e

[1]
1 B, . . . , e

[1]
n B} is a complete

set of isoclasses of projective indecomposable B-modules.

Proposition 2.3. For each i = 1, . . . , n, we have

F (e
[0]
i B) ∼= (eiA, 0, 0),

F (e
[1]
i B) ∼= (ei(DA), eiA, can).

Proof.

F (e
[0]
i B) = (e

[0]
i Bε1, e

[0]
i Bε2, fe[0]i B

) =

([
eiA 0
0 0

]
,

[
0 0
0 0

]
, 0

)
∼= (eiA, 0, 0),

F (e
[1]
i B) = (e

[1]
i Bε1, e

[1]
i Bε2, fe[1]i B

),=

([
0 0

ei(DA) 0

]
,

[
0 0
0 eiA

]
, f

e
[1]
i B

)
∼= (ei(DA), eiA, can),
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where [
0 0
0 eiA

]
⊗A DA

⟳

[
0 0

ei(DA) 0

]

eiA⊗A DA ei(DA).

≀

��

can
//________

f
e
[1]
i

B
//

≀

��

□
In addition {D(Be

[0]
1 ), . . . , D(Be

[0]
n ), D(Be

[1]
1 ), . . . , D(Be

[1]
n )} is a complete set of iso-

classes of injective indecomposable B-modules.

Lemma 2.4. For each i = 1, . . . , n, we have

(1) D

[
Aei 0

(DA)ei 0

]
∼=
[

0 0
D(Aei) eiA

]
, and

(2) D

[
0 0
0 Aei

]
∼=
[
0 0
0 D(Aei)

]
.

Proof. (1) Define a map ϕ :

[
0 0

D(Aei) eiA

]
→ D

[
Aei 0

(DA)ei 0

]
by[

0 0
α a

]
7→ (

[
b 0
β 0

]
7→ α(b) + β(a))

for all a ∈ eiA,α ∈ D(Aei), b ∈ Aei and β ∈ (DA)ei. Then it is easy to check that ϕ is
a homomorphism of right B-modules and that ϕ is injective. Since the dimensions of the
left hand side and the right hand side are equal, ϕ is an isomorphism.

(2) Define a map ψ :

[
0 0
0 D(Aei)

]
→ D

[
0 0
0 Aei

]
by[

0 0
0 α

]
7→ (

[
0 0
0 a

]
7→ α(a)),

which is easily seen to be an isomorphism. □
Proposition 2.5. For each i = 1, . . . , n, we have

F (D(Be
[0]
i )) ∼= (ei(DA), eiA, can) ∼= e

[1]
i B,

F (D(Be
[1]
i )) ∼= (0, ei(DA), 0).

Proof. Since Be
[0]
i =

[
A 0
DA A

] [
ei 0
0 0

]
=

[
Aei 0

(DA)ei 0

]
, we have

D(Be
[0]
i ) = D

[
Aei 0

(DA)ei 0

]
∼=
[

0 0
D(Aei) eiA

]
by Lemma 2.4(1). Hence

F (D(Be
[0]
i )) ∼= F

[
0 0

D(Aei) eiA

]
∼= (ei(DA), eiA, can) ∼= e

[1]
i B.
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Since Be
[1]
i =

[
A 0
DA A

] [
0 0
0 ei

]
=

[
0 0
0 Aei

]
, we have

D(Be
[1]
i ) = D

[
0 0
0 Aei

]
∼=
[
0 0
0 D(Aei)

]
by Lemma 2.4(2). Hence F (D(Be

[1]
i )) = F

[
0 0
0 D(Aei)

]
∼= (0, ei(DA), 0). □

3. Configurations

Throughout the rest of this paper Λ is a standard representation-finite self-injective
algebra. If a module M is both projective and injective, we say that M is projective-
injective for short.

3.1. Recover of AR-quivers from stable AR-quivers and configurations.

Definition 3.1. Let C be a locally bounded spectroid with the AR-quiver ΓC . Then
the set

CC := {[radP ] ∈ ΓC | P : projective-injective C-module}
is called the configuration of C.

In this section we compute the configuration of Λ.

Definition 3.2. Let Γ be a stable translation quiver, and C a subset of Γ0. Then we
define a translation quiver ΓC by

(ΓC)0 := Γ0 ⊔ {px | x ∈ C},
(ΓC)1 := Γ1 ⊔ {x→ px, px → τ−1x},

where the translation of ΓC is the same as that of Γ. In particular, px are projective-
injective vertices for all x ∈ C.

Remark 3.3. (1) Let C be a self-injective locally bounded spectroid. Then the quiver
of the stable category modC of modC is the full subquiver sΓC of ΓC with

(sΓC)0 := {x | x is a stable vertex of ΓC}

(namely sΓC is obtained from ΓC by removing all projective vertices), which is a stable
translation quiver.

(2) It holds that CΛ ⊆ (sΓΛ)0, and by Riedtmann [10, 2.5] we have

(sΓΛ)CΛ
∼= ΓΛ. (3.1)

Thus we can recover the AR-quiver from the stable AR-quiver by using configurations.

Theorem 3.4. Let Λ be a standard representation-finite self-injective algebra and ∆
the Dynkin type of Λ. Then the following hold.

(1) (Waschbüsch [8, 12]) There exist a tilted algebra A of type ∆ and an automor-

phism ϕ of Â without fixed vertices such that Λ ∼= Â/⟨ϕ⟩.
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(2) (Riedtmann [9]) There is an isomorphism f : sΓÂ → Z∆. Denote also by ϕ the
automorphism of sΓÂ induced from ϕ canonically, and define an automorphism
ϕ′ of Z∆ by the following commutative diagram:

sΓÂ

⟳

f //

ϕ

��

Z∆

ϕ′

��
sΓÂ f

// Z∆.

Then we have sΓΛ
∼= sΓÂ/⟨ϕ⟩ ∼= Z∆/⟨ϕ′⟩.

By the formula (3.1) to compute ΓΛ it is enough to solve the following problem.

Problem 1. Let Λ be a standard representation-finite self-injective algebra, which
has the form Â/⟨ϕ⟩ for some tilted algebra A of Dynkin type and an automorphism ϕ of

Â by Theorem 3.4. Then compute CΛ from A.

Remark 3.5. Let f ′ : sΓΛ → Z∆/⟨ϕ′⟩ be an isomorphism, and set C := f ′(CΛ). Then
we have

ΓΛ
∼= (sΓΛ)CΛ

∼= (Z∆/⟨ϕ′⟩)C.
Thus we can compute ΓΛ by Theorem 3.4(2) if we can obtain the set C.

Theorem 3.6 (Gabriel [5, Theorem 3.6]). Let R be a locally representation-finite and
locally bounded k-category, and G a group consisting of automorphisms of R such that G
acts freely on R. Then the AR-quiver ΓR of R has an induced G-action, and we have
ΓR/G ∼= ΓR/G.

Corollary 3.7. Let A be a tilted algebra of Dynkin type, and ϕ an automorphism of
Â without fixed vertices. Then we have

CÂ/⟨ϕ⟩ ∼= CΛ.

Therefore to solve Problem 1 it is enough to consider the following.

Problem 2. In the same setting as in Problem 1, compute CÂ from A.

Throughout the rest of this section

(1) let A be a tilted algebra of Dynkin type ∆, and set

(2) B :=

[
A 0
DA A

]
.

By (1), ΓA has a section S whose underlying graph is isomorphic to ∆.

3.2. Relationships between Â, B and A. We set as follows:

I0,1 = ⟨e[i]j | i ∈ Z \ {0, 1}, j ∈ {1, . . . , n}⟩,

I0 = ⟨e[i]j | i ∈ Z \ {0}, j ∈ {1, . . . , n}⟩,

I1 = ⟨e[i]j | i ∈ Z \ {1}, j ∈ {1, . . . , n}⟩.
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Then Â/I0,1 ∼= B, Â/I0 ∼= A[0](∼= A) and Â/I1 ∼= A[1](∼= A). We also have

B
/[

0 0
DA 0

]
∼= A[0] × A[1].

We have the following surjective algebra homomorphisms

A[0]

Â

33 33ggggggggggggggggggggggggggggggg // //

++ ++WWWW
WWWWW

WWWWW
WWWWW

WWWWW
WWWWW

WW B // // A[0] × A[1]

99 99ssssssssss

%% %%JJ
JJ

JJ
JJ

JJ

A[1],

which induce the following embeddings of categories

modA[0]

mod Â o σ ? _modB
x

K krrrrrrrrrrr

f

3 SLLL
LLL

LLL
L

modA[1].

We regard modA ⊆ modB by the embedding modA = modA[0] � � //modB . The em-
beddings above give us the following embeddings of vertex sets of AR-quivers:

(ΓA[0])0 = (ΓA)0

(ΓÂ)0
o σ ? _(ΓB)0

w

σ0

J jooooooooooo

g
σ1

4 TOOO
OOO

OOO
OO

(ΓA[1])0.

We define an ideal k(Z∆)+ of the mesh category k(Z∆) as follows:

k(Z∆)+ := ⟨(Z∆)1 + IZ∆⟩,
where IZ∆ is the mesh ideal of the translation quiver Z∆. Then the values of m∆ :=
min{m ∈ N | (k(Z∆)+)i = 0,∀i ≥ m} are known to be as follows:

m∆ =



n (∆ = An)

2n− 3 (∆ = Dn)

11 (∆ = E6)

17 (∆ = E7)

29 (∆ = E8)

.

We see that the following two propositions hold by [4, Sect. 2].
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Proposition 3.8. Let i = 0, 1.

(1) The full subquiver S [i]
B of ΓB with the vertex set σi(S0) forms a section of sΓB.

(2) The full subquiver S [i]

Â
of ΓÂ with the vertex set σσi(S0) forms a section of sΓÂ.

Remark 3.9. A quiver Q without oriented cycles will be regarded as a poset by the
order defined as follows:

For each x, y ∈ Q0, x ⪯ y :⇔there is a path in Q from x to y.

Definition 3.10. (1) We set HB to be the full subquiver of ΓB defined by the
set

(HB)0 := {x ∈ (ΓB)0 | a ⪯ x ⪯ b for some a ∈ (S [0]
B )0, b ∈ (S [1]

B )0}

of vertices.
(2) We set H[0,1]

Â
to be the full subquiver of ΓÂ defined by the set

(H[0,1]

Â
)0 := {x ∈ (ΓÂ)0 | a ⪯ x ⪯ b for some a ∈ (S [0]

Â
)0, b ∈ (S [1]

Â
)0}

of vertices.

Proposition 3.11. (1) The map σ : (ΓB)0 → (ΓÂ)0 is uniquely extended to a

quiver isomorphism HB → H[0,1]

Â
.

(2) We have S [1]

Â
= τ−m∆S [0]

Â
. We set S [n]

Â
:= τ−nm∆S [0]

Â
for all n ∈ Z.

(3) Set H[n,n+1]

Â
:= τ−nm∆(H[0,1]

Â
) for all n ∈ Z. Then for each i = 0, 1

(ΓÂ)i =
∪
n∈Z

(H[n,n+1]

Â
)i

(S [n+1]

Â
)i = (H[n,n+1]

Â
)i ∩ (H[n+1,n+2]

Â
)i

Roughly speaking, ΓÂ is obtained by connecting infinite copies of HB on both sides.

Example 3.12. Let A be the path algebra of the following quiver.

1[0] // 2[0] // 3[0]

Then ΓA is given as follows (double arrows represent a section).

[

(
2[0]

1[0]

)
]

�"
<<

<<
<<

<<

[
(
1[0]

)
@@���� (

2[0]
)

�"
<<

<<
<<

<<

(
3[0]

)
]

[

(
3[0]

2[0]

)
]

@@����
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Therefore A is a tilted algebra of type A3. Moreover B =

[
A 0
DA A

]
=

[
A[0] 0

(DA)[0] A[1]

]
is

an algebra given by following quiver with relations.

1[0] // 2[0]

⟳
}}||
||
||
||

// 3[0]

}}||
||
||
||

1[1] // 2[1] // 3[1]

Then ΓB is given as follows (elements of CB are encircled).

[

1[1]

2[0]

1[0]

]

��6
66
66
6

[

 2[1]

1[1]3[0]

2[0]

]

��.
..
..
..
..
..
..
..
..gfed`abc[

(
2[0]

1[0]

)
BB�����

�!
;;

;;
;;

;

;;
;;

;;
;

(
1[1]

2[0]

)

��:
::

::
:

(
3[0]

)

��=
==

==
==

==

(
2[1]

1[1]

)
]

� 
::

::
::

::

::
::

::
::

[
(
1[0]

)
CC������� (

2[0]
)

CC��������

��
66

66
66

6

66
66

66
6

gfed`abc(
1[1]3[0]

2[0]

)

GG����������������

??~~~~~~~~~

��@
@@

@@
@@

@@

(
2[1]

1[1]3[0]

)
AA�������

��<
<<

<<
<

(
2[1]

)

��
66

66
66

6

66
66

66
6

(
3[1]

)
]

[

(
3[0]

2[0]

)
AA������� (

1[1]
)

@@��������� gfed`abc(
2[1]

3[0]

)
BB�������

��9
99

99

(
3[1]

2[1]

)
]

EE��������

[

3[1]

2[1]

3[0]

]

DD������

In the above, HB is given by the full subquiver consisting of vertices between the left
section and the right section. Â is given by the following quiver with relations.

�
�
�

�
�
�

�
�
�

1[−1] // 2[−1]

⟳
||xx
xx
xx
xx
x

// 3[−1]

||xx
xx
xx
xx
x

1[0] // 2[0]

⟳
||xx
xx
xx
xx
x

// 3[0]

||xx
xx
xx
xx
x

1[1] // 2[1] // 3[1]�
�
�

�
�
�

�
�
�
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Then ΓÂ is as follows (each element of CÂ is encircled by a broken or solid line, in
particular solid circles present elements of CB). In this case we have m∆ = 3.
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The following is immediate from Proposition 3.11.

Corollary 3.13. We have CÂ = τZm∆σ(CB).

By this corollary, Problem 2 is reduced to the following.

Problem 3. Let A be a tilted algebra of Dynkin type ∆, and B as above. Then give
the configuration CB from A.

3.3. Configuration of B. The purpose of this subsection is to solve Problem 3.

Definition 3.14. (1) We define an ideal PI of modB as follows and set m̃odB :=
(modB)/PI. For each X,Y ∈ (modB)0

PI(X,Y ) := {f ∈ HomB(X,Y ) |f factors through a projective-injective B-module}

Let ˜(?) : modB → m̃odB be the canonical functor and set

H̃omB(X̃, Ỹ ) := (m̃odB)(X̃, Ỹ )

for all X,Y ∈ modB. Thus X̃ = X for all X ∈ (modB)0 and f̃ = f + PI(X,Y ) for all
f ∈ HomB(X,Y ).

(2) We denote by modPI B the full subcategory of modB consisting of B-modules
without projective-injective direct summands.

(3) Let X and Y ∈ modPI B. Then it is well known that PI(X,Y ) ⊆ radB(X,Y ).

We set r̃adB(X,Y ) := radB(X,Y )/PI(X,Y ).

Definition 3.15. We define the full translation subquiver Γ̃B of ΓB by

(Γ̃B)0 := {X ∈ (ΓB)0 | X is not projective-injective. }.
Moreover we set

supp(sX) := {Y ∈ (Γ̃B)0 | sX(Y ) ̸= 0},
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where the map sX : (Γ̃B)0 → Z≥0 is defined by sX(Y ) := dim H̃omB(X̃, Ỹ ) (Y ∈ (Γ̃B)0)

for all X ∈ (Γ̃B)0.

Definition 3.16. Let P be a projective indecomposable A-module, and radP =⊕r
i=1Ri with Ri indecomposable for all i. Then we define a full subquiver RP of Γ̃B by

(RP )0 := supp(sP ) \

(
r∪

i=1

supp(sRi
)

)
.

Definition 3.17. We regard the subquiver RP as a poset by Remark 3.9. For a
projective indecomposable A-module P if minRP exists, we define

ν ′(P ) := minRP ,

otherwise we do not define the notation ν ′(P ).

Example 3.18. In the following figure, the vertices inside broken lines form supp(sP )
and those inside doted lines form (

∪r
i=1 supp(sRi

)). Therefore the subquiver RP consists
of the vertices inside solid lines, and ν ′(P ) is the minimum element of RP . Projective
vertices are presented by white circles ◦.

◦
��@

@@
@@

·
��>

>>
>>

·
��=

==
==

·
��=

==
==

·

◦

??~~~~~

��@
@@

@@
·

@@�����

��=
==

==
·

@@�����

��=
==

==
·

@@�����

��=
==

==

◦
R1

��@
@@

@@
·

??~~~~~

��@
@@

@@
·

??�����

��>
>>

>>
·

@@�����

��=
==

==
·

@@�����

��=
==

==
·

◦P

??~~~~~

��@
@@

@@
·

??~~~~~

��@
@@

@@
·

@@�����

��=
==

==
·

@@�����

��=
==

==
·

@@�����

��=
==

==

◦
R2

??~~~~~

��@
@@

@@
·

??~~~~~

��@
@@

@@
· ν′(P )

??�����

��>
>>

>>
·

@@�����

��=
==

==
·

@@�����

��=
==

==
·

◦

??~~~~~
·

??~~~~~ ·

??~~~~~

��@
@@

@@
·

@@�����

��=
==

==
·

@@�����

��=
==

==
·

@@�����

��=
==

==

◦

??�����

��>
>>

>>
·

@@�����

��=
==

==
·

@@�����

��=
==

==
·

◦

??~~~~~

��@
@@

@@
·

@@�����

��=
==

==
·

@@�����

��=
==

==
·

@@�����

��=
==

==

◦

??~~~~~
·

??�����
·

@@�����
·

@@�����
·

~
~

~
~

~
~

~
~

~
~

~
~

~
~

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=

�
�
�
�
�
�
�
�
�
�
�
�
�

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

������������������

==
==

==
==

==
==

==
==

==
==

==
==

=

��
��
��
��
��
��
��
��
��

=========================

Proposition 3.19. Let P be a projective indecomposable A-module. Then ν ′(P ) is
always defined and ν ′(P ) ∼= topP .

Proof. We set J := radA. We have P ∼= eiA for some i. It is enough to show
that topP is the minimum element of the poset RP . First we show that topP ∈ RP ,
equivalently that topP ∈ supp(sP ) but topP /∈

∪r
j=1 supp(sRj

).

(i) topP ∈ supp(sP ). Let π : P → topP be the canonical epimorphism in modA. It is
enough to show that π̃ ̸= 0. Assume π̃ = 0. Then π factors through a projective-injective
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B-module Q in modB, namely there is (α, β) ∈ HomB(P,Q)×HomB(Q, topP ) such that
π = βα.

P

α
��>

>>
>>

>>
>

π // //

⟳

topP

Q
β

<< <<zzzzzzzzz

Since π is an epimorphism, so is β. Moreover

β(radQ) = β(Q radB) = β(Q) radB ∼= (topP )(radB) = 0

because topP is simple.

0 // radQ � � / Q // //

β
����

⟳
topQ //

γzzzz

0

topP

By the universality of cokernel, there is a unique γ ∈ HomB(topQ, topP ) such that the
above diagram is commutative. Since β is an epimorphism, so is γ. Then we have an
exact sequence

0 → Ker γ ↪→ topQ
γ−→ topP → 0.

Since Q is a projective-injective B-module, topQ has the form
⊕n

j=1(e
[1]
j B/e

[1]
j radB)mj

for some (mj)j ∈ Zn\{(0)j} by Propositions 2.3 and 2.5. Further since topQ is semisimple,
the exact sequence above splits, namely topP is a direct summand of topQ. But topP ∼=
e
[0]
i B/e

[0]
i radB, a contradiction. Hence we must have π̃ ̸= 0.

(ii) topP /∈
∪r

j=1 supp(sRj
).

Assume topP ∈
∪r

j=1 supp(sRj
) (= supp(radP )). Then H̃omB(radP, topP ) ̸= 0, and

there is an f ∈ HomB(radP, topP ) such that f̃ ̸= 0. Since topP is simple, f is an
epimorphism. Taking the following diagram into account, we see that topP is a direct
summand of top(radP ) by the same argument as above.

0 // rad(radP ) �
� / radP // //

f
����

⟳
top(radP ) //

γ′xxxx

0

topP

Since we have

topP = eiA/eiJ, top(radP ) = eiJ/eiJ
2,

eiA/eiJ is a direct summand of eiJ/eiJ
2. Then we have eiJei/eiJ

2ei ̸= 0 because 0 ̸=
eiAei/eiJei ↪→ eiJei/eiJ

2ei. Thus there is a loop at the vertex i in the quiver of A. But
it is impossible because A is a tilted algebra. Hence topP ∈ RP .

(iii) topP is the minimum element in RP . It is enough to show that H̃omB(topP,X) ̸=
0 for all X ∈ RP . Since X ∈ supp(sP ) and X /∈

∪r
j=1 supp(sRj

), we have H̃omB(P,X) ̸= 0

and H̃omB(radP,X) = H̃omB(
⊕r

j=1Rj, X) =
⊕r

j=1 H̃omB(Rj, X) = 0. We take α ∈
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HomB(P,X) such that α̃ ̸= 0. Since H̃omB(radP,X) = 0, there is a projective-injective
B-module Q such that ασ = hg for some g and h below.

0 // radP � � σ /

g

���
�
�

⟳

P
π // //

α

��

topP // 0

Q
h

//____ X

Since Q is injective, there is some t ∈ HomB(P,Q) such that g = tσ.

0 // radP � � σ /

g

��

⟳
P

π // //

α

��t
||y
y
y
y
y

topP // 0

Q
h

// X

Since ασ = hg = htσ, we have (α − ht)σ = 0. By the universality of the cokernel, there
is a unique α′ ∈ HomB(topP,X) such that α− ht = α′π.

0 // radP � � σ / P
π // //

α−ht
��

⟳
topP //

α′
||y
y
y
y

0

X

Here α′ is nonzero in m̃odB. Indeed, if α′ factors through a projective-injective B-module
Q′, then α′ = h′g′ for some g′ and h′ in the following diagram.

0 // radP � � σ / P
π // //

α−ht
��

⟳

⟳

topP //

α′

||z
z
z
z
z

g′

���
�
�

0

X Q′
h′

oo_ _ _ _

Since α− ht = α′π = h′g′π, we have α = h′g′π + ht =
[
h′ h

] [g′π
t

]
.

P

g′π
t

 ##G
GG

GG
GG

GG
α //

⟳

X

Q′ ⊕Q

[
h′ h

]
;;wwwwwwwww

Thus α̃ = 0, a contradiction. Hence α̃′ ̸= 0 and H̃omB(topP,X) ̸= 0. □

We will give an alternative definition of the map ν ′ below, which is easier to compute
than the first one.

Definition 3.20. Let P ∈ modB be projective.
(1) Let PP be the full subcategory of modB consisting of projective modules Q such

that P is not a direct summand of Q.
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(2) We define an ideal IP of modB and the factor category modP B := modB/IP of
modB by setting

IP (X,Y ) := {f ∈ HomB(X,Y ) |f factors through an object in PP } ,

and set

HomP
B(X,Y ) := HomB(X,Y )/IP (X,Y )

for all X,Y ∈ modB. Let (?) : modB → modP B be the canonical functor. Thus X = X

for all X ∈ (modB)0 and f = f + IP (X,Y ) for all f ∈ HomB(X,Y ).

Let

supp(s′P ) := {X ∈ (Γ̃B)0 | s′P (X) ̸= 0} ⊆ (Γ̃B)0

where the map s′P : (Γ̃B)0 → Z≥0 is defined by s′P (X) := dimHomP
B(P,X) (X ∈ (Γ̃B)0)

for all P ∈ (Γ̃B)0.

Lemma 3.21. Let Q and X be in modB. If Q is projective and there is an epimorphism
Q→ X, then the projective cover of X is a direct summand of Q.

Proof. By composing an epimorphism Q→ X and the canonical epimorphism X →
topX, we obtain a nonzero morphism Q → topX, which induced a retraction topQ →
topX. By taking projective covers, we have a retraction Q → P (topX) = P (X), where
P (Y ) denotes the projective cover of a B-module Y . □

Lemma 3.22. If f : X → topP is nonzero in modB, then f ̸= 0.

Proof. Since topP is simple, f is an epimorphism. Assume that f = 0. Then there
is a Q ∈ PP such that f factor through Q, namely there is a pair (α, β) ∈ HomB(X,Q)×
HomB(Q, topP ) such that f = βα.

X

α
��?

??
??

??
?

f // //

⟳

topP

Q
β

<< <<zzzzzzzzz

Since Q is projective and β is an epimorphism, P is a direct summand of Q by Lemma
3.21, a contradiction. □

Proposition 3.23. Let P be a projective indecomposable A-module. Then the poset
supp(s′P ) has the maximum element and we have

max supp(s′P )
∼= topP.

Thus ν ′(P ) = max supp(s′P ).

Proof. It is enough to show that topP is the maximum element of the poset supp(s′P ).
(i) First we show that topP ∈ supp(s′P ), equivalently that HomP

B(P, topP ) ̸= 0.
Let π ∈ HomB(P, topP ) be the canonical epimorphism. Then since π is nonzero, we

have π ̸= 0 by Lemma 3.22.
(ii) Next we show that HomP

B(X, topP ) ̸= 0 for all X ∈ supp(s′P ).
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Take arbitrary X ∈ supp(s′P ). Then there is an f ∈ HomB(P,X) such that f ̸= 0.
Let P (X) be a projective cover of X. Since P is projective, there is g ∈ HomB(P, P (X))
such that f = πg.

P
g

wwo o o o o o o

⟳ f
��

P (X) π
// // X

Since f ̸= 0, we have P (X) ̸∈ PP . Thus P is a direct summand of P (X). Then topP is
a direct summand of topP (X) ∼= topX. By composing the canonical epimorphism X →
topX and a retraction topX → topP , we obtain a nonzero morphism h : X → topP .
By Lemma 3.22, we have h ̸= 0.

□

Next we define a map sending a simple A-module to an element of the configuration.

Lemma 3.24. Let S be a simple A-module, and Q the injective hull of S in modB.

Then the left (m̃odB)-module H̃omB(S, -) has a simple socle, and

soc H̃omB(S, -) ∼= H̃omB(radQ, -)/r̃adB(radQ, -).

Proof. Note that Q is projective-injective by Proposition 2.5. Since soc H̃omB(S, -)

is a semisimple m̃odB-module, it has the form

soc H̃omB(S, -) ∼=
d⊕

i=1

top H̃omB(Yi, -) (3.2)

for some indecomposable B-modules Yi (i ∈ {1, . . . , d}). Let i ∈ {1, . . . , d} and put

Y := Yi. Then (soc H̃omB(S, -))(Y ) ̸= 0. Since (soc H̃omB(S, -))(Y ) ̸= 0, we can take an

element f ∈ HomB(S, Y ) such that f̃ ̸= 0 but α̃f̃ = 0 for all α̃ ∈ r̃adB(Y, Z). Consider
the following diagram in modB.

S // f //
� _

ρ

�
⟳

Y

g

���
�
�
�
�
�
�
�

radQ� _
σ

�
Q

Then f is a monomorphism because S is simple and f ̸= 0. Since Q is injective, there is
a homomorphism g ∈ HomB(Y,Q) such that σρ = gf . If g is an epimorphism, then g is
a retraction because Q is projective. Thus Q is a direct summand of the indecomposable
module Y , and hence Y ∼= Q. Then f̃ = 0, a contradiction. Therefore g cannot be an
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epimorphism.

S // f //
� _

ρ

�

Y

g

����
��
��
��
��
��
��
��h

||y
y
y
y

radQ� _
σ

�

⟳

Q

Hence there is a homomorphism h ∈ HomB(Y, radQ) such that g = σh. Then σρ = σhf ,
and we have ρ = hf because σ is a monomorphism.

Assume that Y is not isomorphic to radQ. Then h ∈ radB(Y, radQ), and h̃ ∈
r̃adB(Y, radQ), we have ρ̃ = h̃f̃ = 0. Therefore there is a projective-injective B-module
P such that ρ = βα for some α ∈ HomB(S, P ) and β ∈ HomB(P, radQ).

S � � σρ /
� _

ρ

�

α

""E
EE

EE
EE

EE

⟳

Q

γ���
�
�
�

⟳ P

β||yy
yy
yy
yy

radQ

Since P is injective, there is a morphism γ ∈ HomB(Q,P ) such that α = γσρ. Thus
we have ρ = βγσρ. Since βγ is not a monomorphism, (βγ)(S) = 0, that is, ρ =
βγσρ = 0, a contradiction. Hence we must have Y ∼= radQ. Then by (3.2) we

have soc H̃omB(S, -) ∼= (top H̃omB(radQ, -))
(d). Since radQ is indecomposable, we have

EndB(radQ)/ radEndB(radQ) ∼= k. Then

[soc H̃omB(S, -)](radQ) ∼= (ẼndB(radQ)/ rad ẼndB(radQ))
(d)

∼= (EndB(radQ)/ radEndB(radQ))
(d) ∼= k(d).

Here we have d = 1 because

1 ≤ d = dim(soc H̃omB(S, -))(radQ) ≤ dim H̃omB(S, radQ)

≤ dimHomB(S, radQ) = dimHomB(S, S) = 1.

Thus soc H̃omB(S, -) is simple, and soc H̃omB(S, -) ∼= H̃omB(radQ, -)/r̃adB(radQ, -).
□

It follows by the lemma above that the poset supp(sS) has the maximum element for
each simple A-module S. We then set νB(S) to be the maximum element. The following
is immediate.

Proposition 3.25. Let S be a simple A-module, and Q the injective hull of S in
modB. Then we have νB(S) ∼= radQ.

We finally obtain the following by Propositions 3.23 and 3.25.
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Theorem 3.26. Let P be a complete set of representatives of isoclasses of indecom-
posable projective A-modules. Then we have

CB = νB(ν
′(P)).

Hence as is stated before, CΛ is obtained as follows.

Theorem 3.27.

CΛ = CÂ/⟨ϕ⟩ = (τZm∆σ(CB))/⟨ϕ⟩ = (τZm∆σνBν
′(P))/⟨ϕ⟩.





CHAPTER 2

Decomposition theory of modules: the case of Kronecker
algebra

In this chapter, we give a general formula that computes the indecomposable de-
composition of any finite-dimensional module over any finite-dimensional algebra. We
presented two problems (I) and (II), and explained why decomposition theory is required
in Introduction. We give a general solution of the problem (I) in Section 2, and apply
it to the Kronecker algebra in Section 3. Moreover, We consider problem (II) for the
Kronecker algebra in Section 4. Fundamental facts on the Kronecker algebra are collected
in Section 1. Throughout this chapter, all modules are assumed to be finite-dimensional
left modules.

1. Kronecker algebra

Let m,n be non-negative integers. Then we denote by Matm,n the vector space of
m × n matrices over k, and by En the identity matrix of size n (for n ≥ 1). By the
isomorphism Matm,n → Homk(kn,km) sending each M ∈ Matm,n to the linear map
given by the left multiplication byM we identify Matm,n with Homk(kn,km), and regard
eachM ∈ Matm,n as the corresponding linear map kn → km. Ifm or n is zero, we denote
the matrices corresponding to the zero maps kn → km by Jm,n, respectively and call them
empty matrices.

The Kronecker algebra A is a path algebra of the quiver Q = (1
α

&&

β

882), and the cate-

gory modA of finite-dimensional A-modules is equivalent to the category repQ of finite-
dimensional representations of Q over k. We usually identify these categories. Recall that

a representation M of Q is a diagram M(1)
M(α)

,,

M(β)

22M(2) of vector spaces and linear maps,

and the dimension vector of M is defined to be the pair dimM := (dimM(1), dimM(2)).
When dimM = (d1, d2), without loss of generality we may set M(i) = kdi for i = 1, 2 and
M(α),M(β) ∈ Mat d2, d1. We denote M by the pair of matrices (M(α),M(β)).

We here list well known facts on the Kronecker algebra (see Ringel [20, 3.2] for in-
stance).

Theorem 1.1. For the Kronecker algebra A the following statements hold.

(1) The list L of indecomposables is given as follows.

Preprojective indecomposables: P :=

{
Pn :=

([
En−1
t0

]
,

[
t0
En−1

])∣∣∣∣n ≥ 1

}
,

Preinjective indecomposables: I := {In := ([En−1,0], [0, En−1]) |n ≥ 1},
35
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Regular indecomposables:

R := {Rn(λ) := (En, Jn(λ)), Rn(∞) := (Jn(0), En) | n ≥ 1, λ ∈ k},
where 0 is the n× 1 matrix with all entries 0. Note that

dimPn = (n− 1, n), dim In = (n, n− 1), dimRn(λ) = (n, n)

for all n ∈ N and λ ∈ P1(k) = k ∪ {∞}.
(2) The Auslander-Reiten quiver (AR-quiver for short) of A has the following form:

P2 P4 · · · · · · I3 I1.

P1 P3 · · · · · · I4 I2

66 GG

____
��

((

____ 66 GG

____

_____

��
''

____77
GG

____

77 GG

____

_____

_ _ _ _ _

_ _ _ _

R

In the above the rectangle part R is given as the disjoint union of a family
(Rλ)λ∈P1(k) of “homogeneous tubes” Rλ that has the form

...

R3(λ)

R2(λ)

R1(λ)

JJ


 


JJ


 


II





where dotted loops mean that for all n ∈ N the Auslander-Reiten translation τ
sends Rn(λ) to itself: τRn(λ) = Rn(λ).

(3) Let X,Y ∈ L. If HomA(X,Y ) ̸= 0, then X is “on the left” of Y , i.e., one of the
following occurs:
(i) X ∼= Pm, Y ∼= Pn with m ≤ n,
(ii) X ∈ P , Y ∈ R ∪ I,
(iii) X ∼= Rm(λ), Y ∼= Rn(µ) with λ = µ,
(iv) X ∈ R, Y ∈ I, or
(v) X ∼= Im, Y ∼= In with m ≥ n.

Remark 1.2. (1) Let m,n ∈ Z with m ≤ n. Then we note that there exists a
monomorphism Pm → Pn and an epimorphism In → Im.

(2) Now for (a1, a2), (b1, b2) ∈ Z2 we define (a1, a2) ≤ (b1, b2) if and only if ai ≤ bi for
i = 1 and 2. Then if there exists a monomorphism T → U (or an epimorphism U → T )
in modA, we have dimT ≤ dimU .

2. Simple functors: a solution to the problem (I) in general

In this section we give a solution to the problem (I) by using Auslander-Reiten theory
for an arbitrary algebra A.
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Definition 2.1. For an indecomposable A-module L we set

SL := HomA(L, -)/ radHomA(L, -) : modA→ mod k.

It is well-known that SL is a simple functor.

Lemma 2.2. Let M be an A-module. Then for any indecomposable A-module L we
have

dM(L) = dimSL(M).

Proof. Since L is indecomposable, EndA(L) is a local algebra. Therefore SL(L) =
EndA(L)/ rad(EndA(L)) is a finite-dimensional skew field over the algebraically closed
field k, and hence SL(L) ∼= k. If X ̸∼= L, then EndA(L) = rad(EndA(L)), and SL(X) = 0.
Thus

SL(X) ∼=
{

k if X ∼= L
0 if X ̸∼= L

for all indecomposable A-modules X. Therefore, the indecomposable decomposition

M ∼=
⊕
L∈L

L(dM (L))

of M gives us

SL(M) ∼= k(dM (L)),

which shows the assertion. □

Recall the following fundamental statement in the Auslander-Reiten theory (see Auslander-
Reiten [15] or Assem-Simson-Skowroński [14, IV, 6.11.]):

Proposition 2.3. Let L be an indecomposable A-module. When L is non-injective,

let 0 → L
f−−→

⊕
X∈JL

X(a(X)) g−−→ τ−1L → 0 be an almost split sequence starting at L with

JL ⊆ L and a(X) ≥ 1 (X ∈ JL). When L is injective, let f : L→ L/ socL =
⊕

X∈JL
X(a(X))

be the canonical epimorphism (note that JL = ∅ if L is simple injective). Then the simple
functor SL has a minimal projective resolution

0 → HomA(τ
−1L, -)

HomA(g,-)−−−−−−→
⊕
X∈JL

HomA(X, -)
(a(X)) HomA(f,-)−−−−−−→ HomA(L, -)

can−−→ SL → 0,

where g = 0 and τ−1L = 0 if L is injective.

Proposition 2.3 together with Lemma 2.2 readily gives us the following.

Theorem 2.4. Let M be an A-module. Then for any indecomposable A-module L we
have

dM(L) = dimHomA(L,M)−
∑
X∈JL

a(X) dimHomA(X,M) + dimHomA(τ
−1L,M).

Remark 2.5. When an algebra A is of the form kQ/I for some quiver Q and some
ideal I of kQ, it is possible to compute dimHomA(H,M) for every H,M ∈ modA by
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using the rank of a suitable matrix as follows, and thus dM(L) in Theorem 2.4 is com-
putable. First regard A-modules H and M as representations (H(i), H(α))i∈Q0,α∈Q1 and
(M(i),M(α))i∈Q0,α∈Q1 of Q, respectively. Then by definition we have

HomA(H,M) = {(fi)i∈Q0 ∈
∏
i∈Q0

Homk(H(i),M(i)) |M(α)fi = fjH(α),∀α : i→ j in Q1}.

(2.1)

Therefore

HomA(H,M) ∼= {x ∈ kN | Bx = 0},
where N :=

∑
i∈Q0

dimH(i) dimM(i) and B is a |Q1| ×N -matrix given as the coefficient

matrix of the homogeneous system of linear equationsM(α)fi−fjH(α) = 0 for fi. Hence
we obtain the equality:

dimHomA(H,M) = N − rankB.

Example 2.6. Let A := k[x] be the polynomial algebra in one variable. Although it
is an infinite-dimensional algebra, the category modA of finite-dimensional A-modules is
well understood because k[x] is a principal ideal domain, and we can apply Auslander-
Reiten theory to modA. It is easy to give all almost split sequences over k[x]. Namely,
they are given as follows:

0 → J1(λ) → J2(λ) → J1(λ) → 0,

0 → Ji(λ) → Ji−1(λ)⊕ Ji+1(λ) → Ji(λ) → 0
(2.2)

for all i ≥ 2 and λ ∈ k. This is verified by the similar argument used in the Nakayama
algebra case (cf. [14, 4.1 Theorem]). The reader may notice a similarity between (0.1)
and (2.2), which will become clear now. Let M = (kn,M) be an A-module. Then we
have

dimHomA(Ji(λ),M) = n− rankM i
λ, (2.3)

which together with Theorem 2.4 and the formula (2.2) yields the formula (0.1).
Indeed, let X ∈ Matn, i, and put Xj to be the j-th column of X (j = 1, . . . , i). Then

by (2.1) X ∈ HomA(Ji(λ),M) iff MX = XJi(λ) = X(λEi + Ji(0)) = λX + XJi(0) iff
MλX = XJi(0) iff Mλ(X1, . . . , Xi) = (0, X1, . . . , Xi−1) iff Mλ maps Xj’s as follows

Xi 7→ Xi−1 7→ · · · 7→ X1 7→ 0.

Hence the correspondence X 7→ Xi yields the isomorphism (the inverse is given by the
correspondence v 7→ [M i−1

λ v, . . . ,Mλv, v])

HomA(Ji(λ),M) ∼= {v ∈ kn |M i
λv = 0} = KerM i

λ,

which shows the equality (2.3).

Example 2.7. Let n be a positive integer and set A := kQ, where Q is a Dynkin

quiver 1
α1−→ 2

α2−→ · · · αn−1−−−→ n of type An. Decomposition Theory for modules over this
algebra has important applications in the topological data analysis (See Introduction).

Let M := (Mi)
n
i=1 := (k(a1) M1−−→ k(a2) M2−−→ · · · Mn−1−−−→ k(an)) be a representation of Q
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(i.e. an A-module). Then the morphism space HomA(M(b, d),M) is the set of sequences
(fi :M(b, d)(i) −→ k(ai))ni=1 that make the following diagram commutative:

0 · · · 0 k · · · k 0 · · · 0

k(a1) · · · k(ab−1) k(ab) · · · k(ad) k(ad+1) · · · k(an),

0 // 0 // 0 // 1 // 1 // 0 // 0 // 0 //

0 �� 0 ��
fb ��

fd �� 0 �� 0 ��

M1

//
Mb−2

//
Mb−1

//
Mb

//
Md−1

//
Md

//
Md+1

//
Mn−1

//

⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳

where M(b, d)(i) :=

{
k (b ≤ i ≤ d)

0 (otherwise)
. In particular, if d = n (namely M(b, d) is projec-

tive), then

HomA(M(b, n),M) ∼= {(fi)ni=b |Mbfb = fb+1, . . . ,Mn−1fn−1 = fn} ∼= k(ab),

and if d ≤ n− 1, then

HomA(M(b, d),M) ∼= {(fi)di=b |Mbfb = fb+1, . . . ,Md−1fd−1 = fd,Mdfd = 0}
∼= {fb ∈ k(ab) |MdMd−1 · · ·Mbfb = 0}.

Hence we obtain

dimHomA(M(b, d),M) = ab − rank(MdMd−1 · · ·Mb), (2.4)

where we set Mn := 0. Since the AR-quiver ΓA of A is of the following form:

M(1, n)

M(2, n) M(1, n − 1)

M(3, n) M(2, n − 1) M(1, n − 2)

M(n − 2, n) M(1, 3)

M(n − 1, n) M(n − 2, n − 1) M(2, 3) M(1, 2)

M(n, n) M(n − 1, n − 1) M(n − 2, n − 2) M(3, 3) M(2, 2) M(1, 1),
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the formula (2.4) and Theorem 2.4 give us the formula

dM(M(b, d)) = R(b− 1, d)−R(b, d),
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where we set M0 := 0 and Mn := 0 and

R(b, d) :=

{
rank(Md · · ·Mb)− rank(Md−1 · · ·Mb) (b < d)

rank(Md · · ·Mb)− ab (b = d)

for each (b, d) ∈ {(i, j) ∈ Z2 | 1 ≤ i ≤ j ≤ n}.

3. Solution to the problem (I) for the Kronecker algebra

Throughout the rest of this paper A is the Kronecker algebra. To apply Theorem 2.4
we compute the dimensions of the spaces HomA(L,M) for all L ∈ L and M ∈ modA
following Remark 2.5.

Definition 3.1. Let M be an A-module. We first define the following matrices with
n ≥ 1, λ ∈ k (note that P1(M) = J0,1 is an empty matrix).

Pn(M) :=



n blocks︷ ︸︸ ︷
M(β) M(α) 0 0 · · · 0

0 M(β) M(α) 0
. . .

...

0 0 M(β) M(α)
. . . 0

...
...

. . . . . . . . . 0
0 0 · · · 0 M(β) M(α)




n− 1 blocks,

In(M) :=



n blocks︷ ︸︸ ︷
M(β) 0 0 · · · 0

M(α) M(β) 0
. . .

...

0 M(α) M(β)
. . . 0

0 0 M(α)
. . . 0

...
...

. . . . . . M(β)
0 0 · · · 0 M(α)




n+ 1 blocks,

Rn(λ,M) :=



n blocks︷ ︸︸ ︷
Mλ(α, β) 0 0 · · · 0

M(α) Mλ(α, β) 0
. . .

...

0 M(α) Mλ(α, β)
. . . 0

...
. . . . . . . . . 0

0 · · · 0 M(α) Mλ(α, β)




n blocks, and

Rn(∞,M) :=



n blocks︷ ︸︸ ︷
M(α) 0 0 · · · 0

−M(β) M(α) 0
. . .

...

0 −M(β) M(α)
. . . 0

...
. . . . . . . . . 0

0 · · · 0 −M(β) M(α)




n blocks,
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where we put Mλ(α, β) := λM(α)−M(β), and we define the following numbers.

p1(M) := 0, pn(M) := rankPn(M) (n ≥ 2),

i0(M) := 0, in(M) := rank In(M) (n ≥ 1),

rn(λ,M) := rankRn(λ,M) (n ≥ 1, λ ∈ P1(k)).

Using the data above we can compute the dimensions of Hom spaces HomA(L,M)
with L indecomposable as follows.

Proposition 3.2. Let M be an A-module. Then we have the following formulas:

dimHomA(Pn,M) =

{
(n− 1)d1 − pn−1(M) (n ≥ 2)

d2 (n = 1)

dimHomA(In,M) = nd1 − in(M) (n ≥ 1)

dimHomA(Rn(λ),M) = nd1 − rn(λ,M) (n ≥ 1, λ ∈ P1(k))

Proof. Assume that n ≥ 2. Let (X,Y ) ∈ Mat d1, n− 1 × Mat d2, n, and put Xi

(resp. Yi) to be i-th column of X (i = 1, . . . , n−1) (resp. Y (i = 1, . . . , n)). Then by (2.1)
(X,Y ) ∈ HomA(Pn,M) iff

M(α)X = Y

[
En−1

0

]
, M(β)X = Y

[
0

En−1

]
iff {

M(α)X1 = Y1,M(α)X2 = Y2, . . . ,M(α)Xn−1 = Yn−1

M(β)X1 = Y2,M(β)X2 = Y3, . . . ,M(β)Xn−1 = Yn

iff

n−1 blocks


n−1 blocks





n−1 blocks︷ ︸︸ ︷
M(α)

M(α)

...
M(α)

n blocks︷ ︸︸ ︷
−Ed2

0

−Ed2
0

...
...

−Ed2
0

M(β)
M(β)

...
M(β)

0 −Ed2
0 −Ed2

...
...

0 −Ed2




X1
X2

...
Xn−1

Y1
Y2

...
Yn

 = 0

Let B be the coefficient matrix of this equation. Then a direct calculation shows that B
is equivalent to Pn−1(M) ⊕ End2 . Therefore rankB = nd2 + pn−1(M), which shows that
dimHomA(Pn,M) = (n − 1)d1 + nd2 − rankB = (n − 1)d1 − pn−1(M), as desired. The
remaining formulas are proved similarly. □

Propositions 3.2 and Theorem 2.4 give us a solution to the problem (I) for the Kro-
necker algebra as follows.
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Theorem 3.3. Let M be an A-module. Then we have the following formulas:

dM(Pn) =

{
2pn(M)− pn−1(M)− pn+1(M) (n ≥ 2)

d2 − p2(M) (n = 1),

dM(In) =

{
2in−1(M)− in(M)− in−2(M) (n ≥ 2)

d1 − i1(M) (n = 1),

dM(Rn(λ)) =

{
rn−1(λ,M) + rn+1(λ,M)− 2rn(λ,M) (n ≥ 2)

r2(λ,M)− 2r1(λ,M) (n = 1).

Here we note that dM(P1) and dM(I1) have obvious menanings that dM(P1) = dimCoker[M(β)M(α)]

and dM(I1) = dimKer

[
M(β)
M(α)

]
.

Proof. Note that by Theorem 1.1(2) we know all the almost split sequences for the
Kronecker algebra. Therefor we can apply Theorem 2.4. We first compute dM(P1) and
dM(I1). Noting that dimHomA(P2,M) = d1 − p1(M) = d1 the almost split sequence
starting at P1 that is given by the mesh starting at P1 in the AR-quiver shows that

dM(P1) = dimHomA(P1,M)− 2 dimHomA(P2,M) + dimHomA(P3,M)

= d2 − 2d1 + 2d1 − p2(M) = d2 − p2(M)

= d2 − rank[M(β) M(α)] = dimCoker[M(β) M(α)].

Now since I1 is simple and injective, we have I1/ soc I1 = 0 and τ−1I1 = 0. Hence

dM(I1) = dimHomA(I1,M) = d1 − i1(M)

= d1 − rank

[
M(β)
M(α)

]
= dimKer

[
M(β)
M(α)

]
.

Next we compute dM(Pn) for n ≥ 2.

dM(Pn) = dimHomA(Pn,M)− 2 dimHomA(Pn+1,M) + dimHomA(Pn+2,M)

= (n− 1)d1 − pn−1(M)− 2(nd1 − pn(M)) + (n+ 1)d1 − pn+1(M)

= 2pn(M)− pn−1(M)− pn+1(M),

as desired. The remaining cases are proved similarly. □

4. Solution to the problem (II) for the Kronecker algebra

Let F :
⊕

L∈L L
(dM (L)) →M be an isomorphism. Then we have

M = PM ⊕RM ⊕ IM ,

where PM , RM and IM are the images of
⊕

L∈P L
(dM (L)),

⊕
L∈R L

(dM (L)) and
⊕

L∈I L
(dM (L))

by F , respectively. To compute PM , RM and IM we here use the trace and reject in a
module of a class of modules (see Anderson–Fuller [13] for details). Let U be a class of
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modules in modA and M ∈ modA. Recall that the trace TrM(U) of U in M and the
reject RejM(U) of U in M are defined by

TrM(U) :=
∑

{Im f | f ∈ HomA(U,M) for some U ∈ U}, and

RejM(U) :=
∩

{Ker f | f ∈ HomA(M,U) for some U ∈ U}.

When U = {U} is a singleton, we set TrM(U) := TrM(U) and RejM(U) := RejM(U). We
cite the following from [13, 8.18 Proposition].

Lemma 4.1. Let (Mi)i∈I be a family of A-modules indexed by a set I and U a class of
modules in modA. Then we have

Tr⊕
i∈I Mi

(U) =
⊕
i∈I

TrMi
(U) and Rej⊕

i∈I Mi
(U) =

⊕
i∈I

RejMi
(U).

Proposition 4.2 (Calculation ofRM⊕IM). If {f1, . . . , fa} is a basis of HomA(M,Pd2),
then we have

a∩
i=1

Ker fi = RM ⊕ IM and hence PM
∼= M/

(
a∩

i=1

Ker fi

)
.

Proof. By assumption it is obvious that
∩a

i=1Ker fi = RejM(Pd2). Therefore, it is
enough to show that

RejM(Pd2) = RM ⊕ IM . (4.1)

By Lemma 4.1 we have

RejM(Pd2) = RejPM⊕RM⊕IM
(Pd2) = RejPM

(Pd2)⊕ RejRM
(Pd2)⊕ RejIM (Pd2).

By Theorem 1.1(3) we have HomA(RM , Pd2) = 0 and HomA(IM , Pd2) = 0, which shows
that

RejRM
(Pd2) = RM and RejIM (Pd2) = IM .

If a preprojective indecomposable module Pi is a direct summand of M , then it follows
from (i−1, i) = dimPi ≤ dimM = (d1, d2) that i ≤ d2 (see Remark 1.2(2)). Therefore, we

have PM =
⊕d2

i=1 P
(ai)
i for some ai ≥ 0 (we identify Pi with F (Pi)), and then RejPM

(Pd2) =⊕d2
i=1(RejPi

(Pd2))
(ai). Now if i ≤ d2, then by Remark 1.2(1) we have a monomorphism

Pi → Pd2 , which shows that RejPi
(Pd2) = 0 for all i ≤ d2, and therefore

RejPM
(Pd2) = 0.

Hence the equality (4.1) holds. □
Proposition 4.3 (Calculation of IM). If {g1, . . . , gb} is a basis of HomA(Id1 , RM ⊕

IM), then we have
b∑

i=1

Im gi = IM .

Proof. By assumption it is obvious that
∑b

i=1 Im gi = TrRM⊕IM (Id1). Therefore it is
enough to show that

TrRM⊕IM (Id1) = IM . (4.2)
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By Lemma 4.1 we have

TrRM⊕IM (Id1) = TrRM
(Id1)⊕ TrIM (Id1).

By Theorem 1.1(3) we have HomA(Id1 , RM) = 0, which shows that

TrRM
(Id1) = 0.

If a preinjective indecomposable module Ii is a direct summand ofM , then it follows from

(i, i− 1) = dim Ii ≤ dimM = (d1, d2) that i ≤ d1. Therefore we have IM =
⊕d1

i=1 I
(bi)
i for

some bi ≥ 0 (we identify Ii with F (Ii)), and then TrIM (Id1) =
⊕d1

i=1(TrIi(Id1))
(bi). Now

if i ≤ d1, then we have an epimorphism Id1 → Ii, which shows that TrIi(Id1) = Ii for all
i ≤ d1, and therefore

TrIM (Id1) = IM .

Hence the equality (4.2) holds. □

By Propositions 4.2 and 4.3 we have the following.

Proposition 4.4 (Calculation of RM). Let {f1, . . . , fa} a basis of HomA(M,Pd2) and
{g1, . . . , gb} a basis of HomA(Id1 ,

∩a
i=1 Ker fi). Then we have

RM
∼=

(
a∩

i=1

Ker fi

)
/

(
b∑

i=1

Im gi

)
.

By this isomorphism we identifyRM with the right hand side. SinceRM = (RM(α), RM(β))
is the direct sum of regular indecomposable modules, both RM(α) and RM(β) are square

matrices, say of size d. PutR(∞) := TrRM
(Rd(∞)). Note that TrRM

(Rd(∞)) = TrRM
(
⊕d

n=1Rn(∞))
because there exists an epimorphism Rn(∞) → Rm(∞) for n ≥ m. Then RM = R(∞)⊕R′

for some A-submodule R′ = (X ′, Y ′) of RM such that R′ has no direct summand of the
form Rn(∞) for any n by Theorem 1.1(3)(iii). [Decompose RM into indecomposables of
the form Rn(λ) with n ≥ 1, λ ∈ P1(k). Then R′ is given by the direct sum of those direct
summands of the form Rn(λ) with λ ̸= ∞ because R(∞) is given by the direct sum of
summands of the form Rn(∞).] Since the matrix X ′ is invertible, we have

R′ ∼= (El, (X
′)−1Y ′)

for some l ≤ d. Therefore, the set Λ of eigenvalues of (X ′)−1Y ′ is finite.
Then by Propositions 4.2, 4.3 and 4.4, we obtain the following.

Theorem 4.5. Set

SM := {Pi, Ij, Rk(λ) | 1 ≤ i ≤ d2, 1 ≤ j ≤ d1, 1 ≤ k ≤ d, λ ∈ Λ ∪ {∞}}.

Then this gives a solution to the problem (II) for the Kronecker algebra.

Remark 4.6. Note that if R(∞) = 0, then we can replace SM by

{Pi, Ij, Rk(λ) | 1 ≤ i ≤ d2, 1 ≤ j ≤ d1, 1 ≤ k ≤ d, λ ∈ Λ}.
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5. Examples for the Kronecker algebra

(1) For a preprojective module M = P3 =

1 0
0 1
0 0

 ,
0 0
1 0
0 1

 with dimM = (2, 3),

we will compute pn(M) (n ∈ N) and then we will give dM(Pn) (n ∈ N). By Definition 3.1
we have p1(M) = 0,

p2(M) = rank
[
M(β) M(α)

]
= rank

 0 0 1 0
1 0 0 1
0 1 0 0

 = 3,

p3(M) = rank

[
M(β) M(α) 0
0 M(β) M(α)

]
= rank


0 0
1 0
0 1

1 0
0 1
0 0
0 0
1 0
0 1

1 0
0 1
0 0

 = 6,

p4(M) = rank

 M(β) M(α) 0 0
0 M(β) M(α) 0
0 0 M(β) M(α)

 = rank



0 0
1 0
0 1

1 0
0 1
0 0
0 0
1 0
0 1

1 0
0 1
0 0
0 0
1 0
0 1

1 0
0 1
0 0


= 8,

and

p5(M) = rank


M(β) M(α) 0 0 0
0 M(β) M(α) 0 0
0 0 M(β) M(α) 0
0 0 0 M(β) M(α)



= rank



0 0
1 0
0 1

1 0
0 1
0 0
0 0
1 0
0 1

1 0
0 1
0 0
0 0
1 0
0 1

1 0
0 1
0 0
0 0
1 0
0 1

1 0
0 1
0 0



= 10.
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Similarly, we have pn(M) = 2n for n ≥ 3. Hence by Theorem 3.3 we have

dM(P1) = 3− p2(M) = 0,
dM(P2) = 2p2(M)− p1(M)− p3(M) = 6− 0− 6 = 0,
dM(P3) = 2p3(M)− p2(M)− p4(M) = 12− 3− 8 = 1,

and for n ≥ 4,

dM(Pn) = 2pn(M)− pn−1(M)− pn+1(M) = 2 · 2n− 2(n− 1)− 2(n+ 1) = 0.

Thus we can confirm dM(P3) = 1 and dM(Pn) = 0 for n ̸= 3.

(2) For a module M =

([
0 0
1 0

]
, 02,2

)
= P1 ⊕ R1(1) ⊕ I1 with dimM = (2, 2), we

will compute RejM(P2) and TrRejM (P2)(I2). Recall that P2 =

([
1
0

]
,

[
0
1

])
. If (X,Y ) ∈

HomA(M,P2), then we have X = 01,2, Y =

[
a 0
b 0

]
for some a, b ∈ k, and we can take{

f1 =

(
01,2,

[
1 0
0 0

])
, f2 =

(
01,2,

[
0 0
1 0

])}
as a basis of HomA(M,P2). Hence we have

RejM(P2) = Ker f1 ∩Ker f2 =
([
1 0

]
, 01,2

)
= R1(1)⊕ I1

with dimRejM(P2) = (2, 1) and have M/RejM(P2) ∼= P1. Moreover, recall that I2 =([
1 0

]
,
[
0 1

])
. If (X,Y ) ∈ HomA(I2,RejM(P2)), then we have X =

[
0 0
c d

]
, Y = 01,1

for some c, d ∈ k, and we can also take

{
g1 =

([
0 0
1 0

]
, 01,1

)
, g2 =

([
0 0
0 1

]
, 01,1

)}
as a

basis of HomA(I2,RejM(P2)). Therefore, we have

TrRejM (P2)(I2) = Im g1 + Im g2 = (J0,1, J0,1) = I1

with dimTrRejM (P2)(I2) = (1, 0), and RejM(P2)/TrRejM (P2)(I2)
∼= R1(1). Thus we can

confirm the process to get SM = {P1, P2, I1, I2, R1(1)} in Section 4.
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