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Introduction

Throughout this paper k is an algebraically closed field, and all vector spaces, algebras
and linear maps are assumed to be finite-dimensional k-vector spaces, finite-dimensional
k-algebras and k-linear maps, respectively. Further all modules over an algebra considered
here are assumed to be finite-dimensional modules. We denote the set of non-negative
integers by Nj.

0.1. Starting functions. We first define starting functions which are a key tool in
this paper. For a module X over an algebra A, we often identify the isocalss [X] of X
with X itself. In particular, the set I'y of varticies of the AR-quiver I' of A is identified
with a complete list of indecomposable A-modules.

DEFINITION 0.1. Let A be an algebra and I' the AR-quiver of A. Then for an inde-
composable A-module X, the starting function sx : I'o = Ny of X is defined by

sx(Y) := dimy Homy (X, Y)
forall Y € I'y.
Starting functions have the following property.
PROPOSITION 0.2. Let A be an algebra, I' the AR-quiver of A,
M,y

n\
27N

a mesh in I, and X an indecomposable A-module with X 2 N. Then we have
sx(N) = sx(M;) —sx(L).
i=1

Starting functions were introduced by Gabriel to compute AR-quivers in [6], and were
developed such as in [9],[10],[4],[3],[2, 6.6] and [1]. In this paper, we give two results
obtained by using starting functions.

0.2. The first result (Chapter 1). This part is a generalization of Hironobu
Suzuki’s Master thesis [11] that dealt with representation-finite self-injective algebras
of type A in a combinatorial way. Throughout Chapter 1 n is a positive integer, all al-
gebras considered here are assumed to be basic, connected, finite-dimensional associative
k-algebras and all modules are finite-dimensional right modules.
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6 INTRODUCTION

Let A be a Dynkin graph of type A, D, E with the set Ay := {1,...,n} of vertices.
By Riedtmann [10, 2.5] the computation of the Auslander-Reiten quiver (AR-quiver for
short) I'y of a representation-finite standard self-injective algebra A of type A is reduced
to that of stable AR-quiver ,I'y of A and the configuration Cy of A as the isomorphism
'y = (sI'a)c, shows. The stable AR-quiver ;I'y is given by the orbit category presentation
of A, namely if A = A/G for some tilted algebra A of type A, then [y = ZA/G.
Therefore to recover the AR-quiver I'y it suffices to compute the configuration C, by
using information of A. Set C(A) to be the set of configurations on the translation quiver
ZA (see Definition 1.6), and T(A) to be the set of isoclasses of tilted algebras of type A.
Bretscher, Laser and Riedtmann gave a bijection ¢: T(A) — C(A) in [4], which makes it
possible to compute Cy as the equivalence class of ¢(A). Hence we can compute I'y using
these data. But the map c is not given in a direct way, it needs a long computation of a
function on ZA. In this paper we will give an easier way to calculate the map ¢ by giving
a map sending each projective indecomposable A-module over a tilted algebra A in T(A)
to an element of the configuration ¢(A) in C(A).

We fix an orientation of each Dynkin graph A to have a quiver A as in the following
table.

A A, (n>1) D,, (n > 4) E, (n=6,7,8)
on on
& O O “ e 'e) O o T o) le) e T o
1 2 n |1 n—2 n—-1]1 n—-3 n—2 n-1
ma n 2n — 3 11, 17, 29, respectively

This orientation of A gives us a coordinate system on the set (ZA)g := Z x A of vertices
of ZA := ZA as presented in [4, fig. 1] and in [6, Fig. 13].

Let A be a tilted algebra of type A. Then by identifying A with the (0,0)-entry of
the repetitive category fl, the vertex set of AR-quiver I'4 is embedded into the vertex
set of the stable AR-quiver ,I'; (2 ZA) of A. Further the configuration C := ¢(A) of
ZA computed in [4] is given by the vertices of ZA corresponding to radicals of projective
indecomposable A-modules. Note that the configuration C has a period ma listed in the
table, thus C = 7™AZF for some subset F of C. By P = {(p(i),7) | i € Ao} we denote the
set of images of the projective vertices of I'4 in ZA and set

NP :={(m,i) € (ZA)y | p(i) < m,i € Ap}.

As is well-known, there exists the Nakayama permutation v on (ZA)g that is defined by
the isomorphism
K(ZA)(z,-) = DK(ZA)(- 7))

for all z € (ZA)y, where D is the k-dual functor Homg(-, k). The explicit formula of v is
given in [6, pp. 48-50]. (Note that it should be corrected as v(p,q) = (p+q + 2,6 — q)
if ¢ <5 when A = Ej4 as pointed out in [4, 1.1]). In this paper we will define a map
v': P — NP using supports of the functions dimy k(ZA)(z,-): NP — Z, so-called the
starting functions from x € NP (cf. [6, Fig. 15]). Then v/ has the following property.

LEMMA 0.3. Let x € P and P be the projective indecomposable A-module correspond-
ing to x. Then V'x corresponds to the simple module top P.
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In this paper, we make use of modules over the algebra

A0
b= [DA A}

to compute an F above (the configuration (see Definition 3.1) of B gives F.) We will
define a map v := vp from the set of isoclasses of simple A-modules to C, which coincides
with the restriction of the Nakayama permutation 2 if A is hereditary.

LEMMA 0.4. Assume that a vertex v € ZA corresponds to a simple A-module S and let
Q be the injective hull of S over A. Then v(x) corresponds to rad (), and hence v(z) € C.

Combining the lemmas above we obtain the following.

PRrOPOSITION 0.5. Ifx € P, then v(V'x) € C.

This leads us to the following definition.

DEFINITION 0.6. We define a map c4: P — C by ca(x) := v(v'z) for all z € P.

The image of the map c4 gives us an F above, namely we have the following.
THEOREM 0.7. The map c4 is an injection, and we have c(A) = 7™2%Im cy.
COROLLARY 0.8. If A is hereditary, then c4 = vV and we have c(A) = 722 Im /.

0.3. The second result (Chapter 2). Throughout Chapter 2 all modules over an
algebra considered here are assumed to be finite-dimensional left modules. Let A be an
algebra, £ a complete set of representatives of isoclasses of indecomposable A-modules.
Then the Krull-Schmidt theorem states the following. For each A-module M, there exists
a unique map dy;: £ — Ny such that

M = @ (@ (L)
Lel

which is called an indecomposable decomposition of M. Therefore, M = N if and only
if dy; = dy for all A-modules M and N, i.e., the map dj; is a complete invariant of M
under isomorphisms. Note that since M is finite-dimensional, the support supp(dy;) :=
{L € L|dy(L)# 0} of dy is a finite set. We call such a theory a decomposition theory
that computes the indecomposable decomposition of a module. The Auslander-Reiten
theory was developed since 1970s in representation theory of algebras. In many cases it
enabled us to compute the Auslander-Reiten quiver (AR-quiver for short) of A that is a
combinatorial description of the category of modules over A, the vertex set of which can
be identified with the list £, and which is constructed by gluing all meshes that is a visual
form of almost split sequences over A. Thus all information on almost split sequences over
A are encoded in the AR-quiver in a visual way. Namely, if 0 - X - Y — Z — 0 is an

(a:)

almost split sequence, and Y = @, Y, (n > 1) is an indecomposable decomposition
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of Y with Y, pairwise non-isomorphic and a; > 1 for all 7, then we express it by the quiver

a1 arer \3(11 arrows

an arrov& O; arrwos

with a broken line between X and Z (note here that also both X, Z are indecomposable
by definition of almost split sequences) The correspondence 7: Z — X is called the
AR-translation. For example, it has the forms

The purpose of Chapter 2 is to develope a decomposition theory by using the knowl-
edge of AR-quivers. Thus in the case that £ is already computed and all almost split
sequences are known, we aim to compute

(I) dys and

(IT) a finite set Sy such that supp(dy) € Sy C L
for all A-modules M. Note that (II) is needed to give a finite algorithm. If A is
representation-finite (i.e., if the set £ is finite), then the problem (II) is trivial because
we can take Sy = L.

In the topological data analysis, to analyse a point cloud C, a set of points in R?
for some fixed positive integer d, some important informations on C' are encoded in the
persistent homology M, which is just a module over the path algebra A, = k@, of a
quiver @,, of the form

1522 . 2y
of Dynkin type A,, for some positive integer n. Therefore to understand the point cloud C
we can use the knowledge of the map djy,,, which is nothing but the “persistence diagram”
of C, where usually the values of dy.(L) (L € L) is presented by colors on £, and £
is expressed by a set of lattice points in a triangle. More precisely, the list £ is given
by {M(b,d) | 1 <b < d < n} thanks to Gabriel’s theorem on representations of Dynkin
quivers, where M (b, d) is given by

0= =205k ks - S5k—>0—--—0

with k starting at the vertex b and stopping at d. Therefore there exists a 1-1 correspon-
dence between £ and the set {(b,d) | 1 < b < d < n}, which is a subset of Z? forming a
triangle (See for instance papers [21] and [16]). Note that this set of vertices together with
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horizontal and vertical edges connecting them can be regarded as the underlying graph of
the AR-quiver of A, (See Example 2.7). To analyse property of a set of point clouds, e.g.,
a motion of a point cloud, persistent homologies were generalized to persistence modules
M, which turn out to be modules over an algebra of the form A,, ®y A,,, where we allow
any orientation of ), and @),,, namely their underlying graphs have the form

1 2 l

of type A; for [ = m,n. Also in this case we need to compute the persistence diagram dj,
to investigate the set of point clouds. It was done in [18] for the case (m,n) = (2,3). Our
argument here can be applied to have a decomposition theory for persistence modules.

ExXAMPLE 0.9. The decomposition theory for polynomial algebras in one variable
A = k[z] is already well known. A finite-dimensional A-module is a pair (V, f) of a finite-
dimensional k-vector space V and an endomorphism f of V', and by fixing a basis of V'
we may regard V = k¢ for d := dimV and f as a square matrix M of size d. In this way
we identify (V, f) with M. In this case we may have £ = {J;(\) | i > 1, X € k}, where
Ji(\) is the Jordan cell of size i > 1 with eigenvalue A € k. Let A be the set of all distinct
eigenvalues of M and set My = M — AE, for A € A. Then the following is well known.

THEOREM 0.10. The problems (1) and (II) are solved as follows.
A solution to (I): Leti € N and A € A. Then

_ [ d+rank M? — 2rank M, if i = 1; and
dur(Ji(V) = { rank M§+1 + rank M;’l — 2rank Mj\ if 1> 2 (0.1)
(Note that by setting MY to be the identity matriz of size d, the first equality has

the same form as the second.)
A solution to (II): Sy ={J;(\) | i <d, X € A}

In this paper, we will solve the problem (I) in the decomposition theory for any finite-
dimensional algebra A. This turns out to be an extension of the result for A = k|z]

above. In particular, for the Kronecker algebra A = k@ with @ = (1 2), we will give
B
an explicit formula for the problem (I) and a solution to the problem (II).
Decomposition theory is based on the approach as follows. Let A be a directed algebra.
Then there is a complete set of isoclasses of indecomposable A-module { My, -- -, M, } such

that Hom 4 (M;, M;) # 0 implies ¢ < j. An example of this numbering is given as follows.

EXAMPLE 0.11.

¥\
Let (Q,1):= 2 o 3 and A:=Q/I.
N K



10 INTRODUCTION

Then the AR-quiver I' of A is as follows.

LNANLN
NSNS

Let M € mod A. Assume M = @7, M) where a; € Ny. Define b; := dim Hom 4 (M, M)
for each j € {1,...,n}. Then

b] = dim HOIﬂA(@ Mi(ai)7 M])

i=1

= Z a; - dim HOII]A(MZ‘, Mj)

i=1
=Y ai - sar (M)
i=1
san (M)
=(ay,...,ap) :
sar, (Mj)
Hense, we obtain
SM,y (Ml) Tt S (Mn)
(bl,...,bn):(al,...,an)
SMn(Ml) SMn(Mn)

We set Ur to be the matrix on the right hand side whose (3, j)-entry has the value sy, (M)
of starting function sy,. Since sy, (M;) # 0 implies ¢ < j, Up is an upper triangular
matrix, which is invertible because the diagonal entries are equal to 1. Thus, we obtain

(al,...,an) = (bl,...,bn)UrTl.

Hence, in order to realize the decomposition theory, we find it important to study U LIt
is very interesting to see that Un ' is given by the information of AR-quiver I' as follows.

DEFINITION 0.12 (AR-matrix). Let A be an algebra, I' the AR-quiver of A. Then the
AR-matriz Vi = [v;5];; of A is defined by

1 (] =1 or Mj = T_I(Mi))

vij =4 —¢ (M; —— M;inT)
0  (otherwise)
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PrRoPOSITION 0.13. Vr is the inverse of Ur.

REMARK 0.14. We gave three deferent proofs of this proposition. The first one calcu-
lated cofactor matrices, the second one checked the equality UrVr = F, and the third one
used the fact that Up is the Cartan matrix of the module category of A (cf. Remark0.16(1)
belows).

ExAMPLE 0.15. Let A and I" be as in Example 1.11. Then we hav
1 1 1 1. 01 0 0 0 0 0]
01 010111100
00111101010
00011112110
00001O0O01O0T10
Ur = [sp;(M;)];;=10 00 0 01 01 1 1 1|and
0 000O0OO0OT1T1TT1O00
0000O0OO0OO0OT1T1T1T1
0 000O0OO0OO0ODOT1TQO071
0 000O0OO0OO0ODOOT171
00000 O0O0O0O0O0 1
1 -1 -1 1 0 0 O O 0 0 07
o1 0 -1 1 O O 0O 0 0 O
o o0 1 -1 0 O 1 0 0 0 O
o o o 1 -1 -1 -1 1 0 0 0
o o0 o0 o 1 o0 o0 -1 1 0 O
VF = [Uij]i,j =10 0 0 0 0 1 0 —1 0 0 0
o o0 o0 o o o0 1 -1 0 1 O
o o o o o o o 1 -1 -1 1
o o0 o o o0 o o o 1 0 -1
o o0 o o o0 o o o0 o 1 -1
o o o o0 o o o0 o0 0 0 1]

It is easy to check UpVr = Eyy = VpUr.

REMARK 0.16. After submitting the paper we are pointed out by Emerson Escolor
and the referee that there was already a similar investigation [17] by Dowbor and Mréz
in the literature, which we did not know before. Thus this work was done independently.
We here list some relationships between their results and ours.

(1) They also have the same statement as Theorem 2.4 and its dual version, namely
a solution to (I). Their proof is similar to the first version of ours using a “Cartan
matrix” of the module category of an algebra A and an AR-matrix of A as its
inverse, but the proof presented here does not use them and is much simplified
by using the minimal projective resolutions of simple functors that are given
by almost split sequences and sink maps into indecomposable injective modules,
which also give the matrix Vi in Proposition 0.13 (Proposition 2.3).

(2) Our Theorem 3.3 gives an explicit way of computation of the map dy, for a
module M by using ranks of matrices constructed by the structure matrices of
M, while they did not give such formulas explicitly.
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(3) To solve the problem (II) we used traces and rejects, which are easily computed
and give us a decomposition of a module into the preprojective part, the prein-
jective part, the regular part with parameter oo, and the regular part without
parameter co. This together with Theorem 3.3 gives an effective computation of
the indecomposable decomposition of a module M. For instance, if the preprojec-
tive part or the preinjective part of M is zero, it avoids unnecessary computations
of the decomposition for those parts, in contrast, such computations are done in
their algorithm repeatedly.

(4) Proposition 4.4 in [17] gives another way to compute regular direct summands,
which seems to be interesting. .

(5) They investigated also the cases of general A-quivers and representation-finite
string algebras.
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CHAPTER 1

Tilted algebras and configurations of self-injective algebras of
Dynkin type

In this chapter, we give an easier way to calculate a bijection from the set of isoclasses
of tilted algebras of Dynkin type A to the set of configurations on the translation quiver
Z.A. Section 1 is devoted to preparations. In Section 2 we will give the complete list
of indecomposable projectives and indecomposable injectives over a triangular matrix
algebra B defined there. In Section 3 we state and prove the main results. Throughout
this chapter, all modules are assumed to be finite-dimensional right modules.

1. Preliminaries

1.1. Algebras and categories. A category C is called a k-category if the morphism
sets C(x,y) are k-vector spaces, and the compositions C(y,z) x C(z,y) — C(z,z) are
k-bilinear for all x,y,2z € Cy (Cy is the class of objects of C, we sometimes write x € C
for € Cpy). In the sequel all categories are assumed to be k-categories unless stated
otherwise.

To construct repetitive categories and to make use of a covering theory we need to
extend the range of considerations from algebras to categories. First we regard an algebra
as a special type of categories by constructing a category cat A from an algebra A as
follows.

(1) We fix a decomposition 1 = e; + - - - + ¢, of the identity element 1 of A as a sum
of orthogonal primitive idempotents.
(2) We set the object class of cat A to be the set {ey,...,e,}.
(3) For each pair (e;, e;) of objects, we set (cat A)(e;, e;) = e;jAe;.
(4) We define the composition of cat A by the multiplication of A.
The obtained category cat A is uniquely determined up to isomorphism not depending on

the decomposition of 1. The category C' = cat A is a small category having the following
three properties.

(1) Distinct objects are not isomorphic.
(2) For each object x of C the algebra C(x, ) is local.
(3) For each pair (z,y) of objects of C' the morphism space C(z, y) is finite-dimensional.

A small category with these three properties is called a spectroid' and its objects are
sometimes called points. A spectroid with only a finite number of points is called finite.
The category cat A is a finite spectroid. Conversely we can construct a matrix algebra

la terminology used in [7]

15



16 TILTED ALGEBRAS AND CONFIGURATIONS OF SELF-INJECTIVE ALGEBRAS OF DYNKIN TYPE

from a finite spectroid C' as follows.
alg C := {(myz)zyec | mys € C(z,y),Va,y € C}.

Here we have algcat A = A, catalg C' = C. Therefore we can identify the class of algebras
and the class of finite spectroids by using cat and alg.

A spectroid C' is called locally bounded if for each point x the set {y € C' | C(x,y) #
0 or C(y,z) # 0} is a finite set. Of course algebras ( = finite spectroids) are locally
bounded. In the range of locally bounded spectroids we can freely construct repetitive
categories or consider coverings.

REMARK 1.1. We can construct the “path-category” k@) from a locally finite quiver
(@ in the same way as in the definition of the path-algebra. The only difference is in
the following definition of compositions: For paths u, v with? s(u) # t(v), it was defined
as pv = 0 in the path-algebra, but in contrast the composition pr is not defined in the
path-category.

A locally bounded spectroid C' is also presented as the form k@ /I for some locally
finite quiver @) and for some ideal I of the path-category k@ such that [ is included in
the ideal of k() generated by the set of paths of length 2. Here the quiver () is uniquely
determined by C' up to isomorphism. This @) is called the quiver of C.

A (right) module over a spectroid C' is a contravariant functor C' — Modk. From a
usual (right) module over an algebra A we can construct a contravariant functor cat A —
Modk by the correspondence e; — Me; for each point e; in cat A, and f — (-f: Me; —
Me;) for each f € ejAe; = (cat A)(e;,ej). Conversely, from a contravariant functor
F: cat A — Modk we can construct an A-module @;_, F(e;); and these constructions
are inverse to each other. In this way we can identify A-modules and modules over cat A.

The set of projective indecomposable modules over a spectroid C'is given by {C'(-, z) } rec
up to isomorphism, and finitely generated projective C'-modules are nothing but finite di-
rect sums of these. Using this we can define finitely generated modules or finitely presented
modules over C' by the same way as those over algebras. By mod C' we denote the full
subcategory of Mod C' consisting of finitely generated C'-modules.

The dimension of a C-module M is defined to be the dimension of @, . M (x). When
C is locally bounded, a C-module is finitely presented if and only if it is finitely generated
if and only if it is finite-dimensional.

1.2. Repetitive category.

DEFINITION 1.2. Let A be an algebra with a basic set of local idempotents {e1, ..., e,}.

(1) The repetitive category A of A is a spectroid defined as follows.
Objects: Ay = {20! .= (z,i) | v € {e1,...,e,},i € Z}.

A

Morphisms: Let 2, 3yl € Aj. Then we set
(U= fe Ay} (=)
A ) = {{ol) = (,0) | ¢ € DA(y,2)} (j=i+1)

0 otherwise.

2Here s(u) and t(v) stand for the source of y and the target of v and compositions are written from
the right to the left.
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Compositions: The composition A(y], 2y x A(zll 401y — A(zll 24 is
defined as follows.
(i) If j =4,k = 7, then we use the composition of A:
Ay, 2) x Az, y) — Az, 2).
(i) If j = i,k = 7+ 1, then we use the right A-module structure of
DA(-,7):
DA(z,y) x A(z,y) = DA(z,x).
(iii) If j =i+1, k = j, then we use the left A-module structure of DA(-,?):
Ay, z) x DA(y,z) — DA(z,x).
(iv) Otherwise the composition is zero.
(2) For each i € Z, we denote by ALl the full subcategory of A whose object class is
{22 € {er,... en}}.

(3) We define the Nakayama automorphism v, of A as follows: for eachi € Z,z,y €
Aa f S A(Jf7y) and ¢ € DA(y,l’),

VA(x[i]) — :c[””,uA(f[i]) — f[i+1]7VA((p[i}) = 1,

REMARK 1.3. (1) The repetitive category of an algebra A is locally bounded. (2)
The set of all Z x Z-matrices with only a finite number of nonzero entries whose diagonal
entries belong to A, (7 + 1,4) entries belong to DA for all i € Z, and other entries are
zero forms an infinite-dimensional algebra without identity element, which is called the
repetitive algebra of A. The repetitive category Ais nothing but this repetitive algebra
regarded as a spectroid in a similar way. This is not an algebra (= a finite spectroid) any
more, but a locally bounded spectroid.

DEFINITION 1.4 (Gabriel [5]). Let C be a locally bounded spectroid with a free® action
of a group G. Then we define the orbit category C'/G of C by G as follows.

(1) The objects of C/G are the G-orbits Gz of objects x of C.
(2) For each pair Gz, Gy of objects of C'/G we set

(C/G)(Gx,Gy) = Gf)ane [ Clab)

(a,b)eGzxGy

g fga = 90 fa), forall g € G

(3) The composition is defined by

(dhc>c,d . (bfa)a,b = <Z dhb : bfa) .

beGy
for all (,fu)ap € (C/G)(Gx,GY), (4dhe)ea € (C/G)(Gy, Gz). Note that each entry
of the right hand side is a finite sum because C' is locally bounded.

A functor F': C — (' is called a Galois covering with group G if it is isomorphic to
the canonical functor 7: C' — C/G, namely if there exists an isomorphism H: C'/G — C’
such that F' = H.

314 g€ @, z e Cyimplies gz # z
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REMARK 1.5. Recall that a spectroid C' is said to be self-injective in case C(-,x) is
injective in mod C' and C(x,-) is injective in mod C°? for all z € Cy. If A is an algebra
and a group G acts freely on the category A, then /1/ G turns out to be a self-injective
spectroid. In particular, when A /G is a finite spectroid, it becomes a self-injective algebra.
In this way we can construct a great number of self-injective algebras.

DEFINITION 1.6. From a quiver () we can construct a translation quiver Z() as follows.

® (ZQ)o :==Z x Qo,
b (Z’Q)l =17 X Ql U {(7:70/) | (&S Z,Oé € Ql}a
e We define the sources and the targets of arrows by

(i,a): (i,s(a)) = (i, t(a)), (i,0): (i, t(e)) = (i + 1, 5(c))
for all (i,a) € Z x Q1.
e We take the bijection 7: (ZQ)o — (ZQ)o, (i,x) — (i — 1, x) as the translation.
In addition, we can define a polarization by (i + 1,a) — (i,a'), (i,a') — (i,«). Note
that by construction the translation quiver Z() does not have any projective or injective

vertices.
For example,
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REMARK 1.7. When @ is a Dynkin quiver with the underlying graph A, the isoclass
of Z() does not depend on orientations of A, therefore we set ZA := ZQ).

2. Triangular Matrix Algebras

In this section we will give the complete list of indecomposable projectives and inde-
composable injectives over a triangular matrix algebra B defined in (2.1) below.

DEFINITION 2.1. Let R and S be algebras, M be an S-R-bimodule. We define a
category C = C(R, S, M) as follows.

Objects: Cy := {(X,Y, f) | Xgr € mod R, Ys € mod S, f € Homg(Y ®g M, X)}.
Morphisms: Let (X,Y, f), (X", Y, f’) € Cy. Then we set

Y @s ML X
C((X,Y,f), (X/,Y,,f,)) = (¢0,¢1) S HOIHR(X, X’) X HOIIlS(Y, Y/) ¢1®1]M\L O l%
Y' ®g M f/—>X’

Compositions: Let (X,Y, f), (X", Y, f), (X", Y" f") € Cy and let
(¢, ¢1) € C(U(X, Y, £), (XY, f), (95, 01) € CUXT, Y7, ), (X7, Y7, 7).
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Then we set

(¢67¢/1)(¢07¢1) = (¢6¢0’¢,1¢1> S C((Xv Y7 f)7 (XH7Y”7 f”))'

Then the following is well known.

PROPOSITION 2.2. Let R and S be algebras, M be an S-R-bimodule, and set T =

lﬁ g . Then

modT ~ C(R, S, M).

Recall that an equivalence F': modT — C(R, S, M) is given as follows.
Objects: For each L € (modT)o,

F(L) = (Ley, Les, f1),

where ¢, = [16% 8},52 = [8 10} and fr: Les ®g M — Le; is defined by
s

fr(lea @ m) =1 L?% 8 for all l € L and m € M.
Morphisms: For each o € Homy(L, L'),
F(a) = (a |L61’a |L€2)'

Let A be a tilted algebra of type A, and set
A 0
B = {DA A} , C:=C(A A DA). (2.1)

Then we have mod B ~ C by Proposition 2.2. By this equivalence, we identify mod B
with C.

Let {e1,...,e,} be a complete set of orthogonal local idempotents of A. Then as is
easily seen {6[10], e ,eg?], 6[11], e ,eg]} is a complete set of orthogonal local idempotents of

B, where we regard the objects el[-o} of A% (resp. egl} of All) as the elements l%z 8} (resp.

lg 2}) of Bforallie {1,...,n}. Hence {e[lo]B, . ,e,[?]B, e[ll]B, . ,eg]B} is a complete
set of isoclasses of projective indecomposable B-modules.
ProPOSITION 2.3. For eacht=1,...,n, we have
F(e"B) = (:4,0,0).
F(e"B) = (e;(DA), e;A, can).
PROOF.

F(GEO]B) = (GEO}B{fl’eEO}B€2’fe[O]B) = (|:610A 8:| ) |:8 8:| 70) = (eiA7070)7

0 0 0 0
F(GEHB) = (egl}Bgla e£1}8827 fegl]B>’ = <|:€<DA) 0:| ) |i0 €A:| 7fe£1]B) = (61<DA), e,L'A, Can),
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where
f
0 0 e 0 0
{o lA} ®a DA LZ(DA) 0]
J/Z S ll
e A®a DA~ - - - — - —>¢;(DA)

O

In addition {D(Be[lo}), . ,D(Be,[?]),D(Be[ll]), ce D(Beg])} is a complete set of iso-

classes of injective indecomposable B-modules.

LEMMA 2.4. For eachi=1,...,n, we have

(1) D [(543@@- 8} = {D(Slei) e?A}’ and

@000 a =0 b

0 0 Ae; 0
PROOF. (1) Define a map ¢: [D(Aei) eiA} — D {(DA)eZ- 0] by

ool o) e s

for all a € e;A,a € D(Ae;),b € Ae; and B € (DA)e;. Then it is easy to check that ¢ is
a homomorphism of right B-modules and that ¢ is injective. Since the dimensions of the
left hand side and the right hand side are equal, ¢ is an isomorphism.

0 0 0 0
(2) Define a map ¢: [0 D(Aei)] - P {0 A@J b

o oo o) et

which is easily seen to be an isomorphism. 0

PROPOSITION 2.5. For each i =1,...,n, we have
F(D (Be[o) = (e;(DA),e;A, can) = HB
F(D(Be}")) = (0, e:(DA), 0).

)
) =
0 Ae; 0
PROOF. Since Be = [DA A] [ } [ (DA)e; 0], we have

D(Be?}):D{(zSéfﬁei 8] = {D(Elei) e?A]

=
S
&
S(T)B
I
!
S
=}
]
I

(e;(DA),e;A, can) = el[-l]B.
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Since Begl} = {A O} [0 0} = [0 y }, we have

DA A| |0 e 0 Ae;
)y 0 0|0 0

0 0

Ny _
by Lemma 2.4(2). Hence F(D(Be;")) = F [0 D(Ae;)

3. Configurations

Throughout the rest of this paper A is a standard representation-finite self-injective
algebra. If a module M is both projective and injective, we say that M is projective-
injective for short.

3.1. Recover of AR-quivers from stable AR-quivers and configurations.

DEFINITION 3.1. Let C be a locally bounded spectroid with the AR-quiver I'c. Then
the set

Cc :={[rad P] € T'¢ | P : projective-injective C-module}
is called the configuration of C'.

In this section we compute the configuration of A.

DEFINITION 3.2. Let I' be a stable translation quiver, and C a subset of I'y. Then we
define a translation quiver I'¢ by

(FC>O = FO L {px | xr € C},
(Te)y =T U{z = ps, Dz — Tﬁlx},

where the translation of I'¢ is the same as that of I'. In particular, p, are projective-
injective vertices for all x € C.

REMARK 3.3. (1) Let C be a self-injective locally bounded spectroid. Then the quiver
of the stable category mod C' of mod C' is the full subquiver ,I'¢ of I'¢ with

(sCc)o :={x | x is a stable vertex of I'c}

(namely ;['c is obtained from I'c by removing all projective vertices), which is a stable
translation quiver.
(2) It holds that Cy C (sI'y)o, and by Riedtmann [10, 2.5] we have

(SFA)CA =T\ (31)
Thus we can recover the AR-quiver from the stable AR-quiver by using configurations.

THEOREM 3.4. Let A be a standard representation-finite self-injective algebra and A
the Dynkin type of A. Then the following hold.
(1) (Waschbiisch [8, 12]) There exist a tilted algebra A of type A and an automor-
phism ¢ of A without fized vertices such that A = A/{¢).
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(2) (Riedtmann [9]) There is an isomorphism f: I ; — ZA. Denote also by ¢ the
automorphism of I' ; induced from ¢ canonically, and define an automorphism
@' of ZA by the following commutative diagram:

I, —l-zA
L)
Then we have JT'n = I 3 /(¢) = ZA/(¢').
By the formula (3.1) to compute 'y it is enough to solve the following problem.

PROBLEM 1. Let A be a standard representation-finite self-injective algebra, which
has the form A/(¢) for some tilted algebra A of Dynkin type and an automorphism ¢ of
A by Theorem 3.4. Then compute Cy from A.

REMARK 3.5. Let f': ;I'y — ZA/(¢') be an isomorphism, and set C := f’(Cy). Then
we have

Pa = (Ta)ey = (ZA/())e-
Thus we can compute I'y by Theorem 3.4(2) if we can obtain the set C.

THEOREM 3.6 (Gabriel [5, Theorem 3.6]). Let R be a locally representation-finite and
locally bounded k-category, and G a group consisting of automorphisms of R such that G
acts freely on R. Then the AR-quiver I'r of R has an induced G-action, and we have
FR/G = FR/G'

~ COROLLARY 3.7. Let A be a tilted algebra of Dynkin type, and ¢ an automorphism of
A without fized vertices. Then we have

Ca/{9) = Ca.
Therefore to solve Problem 1 it is enough to consider the following.
PROBLEM 2. In the same setting as in Problem 1, compute C; from A.

Throughout the rest of this section

(1) let A be a tilted algebra of Dynkin type A, and set
A 0
5= )

By (1), I'4 has a section § whose underlying graph is isomorphic to A.

3.2. Relationships between A, B and A. We set as follows:
Loy = (el |iez\{0,1},j € {1,...,n}),
L= (" iez\{0},5e{1,...,n}),
L= iez\{1}.5e{1,....n}).
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Then A/Iyy = B, A/Iy = A= A) and A/I, = AM(= A). We also have

0 0
o 0] 5 ALl
B/{DA 1,4 w Al

We have the following surjective algebra homomorphisms

Al0]

_

A== B — A0 x Al

<

which induce the following embeddings of categories

mod A <7 Omod B

S

mod Al

We regard mod A C mod B by the embedding mod A = mod A® —>mod B. The em-
beddings above give us the following embeddings of vertex sets of AR~quivers:

)AL?])O = (Ta)o
I's)o
(L' 41 )o-

We define an ideal k(ZA)™ of the mesh category k(ZA) as follows:
K(ZA)Y" = ((ZA), + Iza),

where Iza is the mesh ideal of the translation quiver ZA. Then the values of ma =
min{m € N | (k(ZA)")" = 0,Vi > m} are known to be as follows:

Al

(T 4)o —(

(n (A=A,
2n—3 (A =D,)
ma =4 11 (A = Ey) .
17 (A = Ex)
(20 (A= Ey)

We see that the following two propositions hold by [4, Sect. 2].
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PROPOSITION 3.8. Let1=0,1.
(1) The full subquiver S][;] of U'p with the vertex set 0;,(Sp) forms a section of I'p.
(2) The full subquiver SE] of I' 4 with the vertex set 00;(Sp) forms a section of ;I ;.
REMARK 3.9. A quiver () without oriented cycles will be regarded as a poset by the
order defined as follows:

For each z,y € QQy,x = y :<there is a path in @) from x to y.

DEFINITION 3.10. (1) We set Hp to be the full subquiver of I'g defined by the
set

(Hp)o:={x € (I'p)o | a 2 x <X b for some a € (S}?})O,b € (SE])O}

of vertices.
(2) We set 7—[[2’1] to be the full subquiver of I' ; defined by the set

(7—[[2’1])0 ={r € (T 4)o|a=x=bforsomea € (SE])O,b € (SE})O}
of vertices.

PROPOSITION 3.11. (1) The {ncﬁp o: (I's)o = (T'4)o is uniquely extended to a
0,1

q

(2) We have Sg] = T‘mASE]. We set SI[;] = T_"mASI[g} for alln € Z.

(3) Set HEZ’"H] =T ma ("HE{’”) for all n € Z. Then for each i = 0,1

quiver isomorphism Hg — H

(T )i = (JH);

ne”L

n+1 n,n+1 n+1,n+2
(S5 = (i (g,
Roughly speaking, I' ; is obtained by connecting infinite copies of Hp on both sides.

EXAMPLE 3.12. Let A be the path algebra of the following quiver.
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o A 0 A0 o],
Therefore A is a tilted algebra of type A3. Moreover B = [DA A] = {(DA)[O] A |18

an algebra given by following quiver with relations.

100l 5 9l0) ___, 3[0]

Ao A

10— o), g[1]

Then I'p is given as follows (elements of Cp are encircled).

101]
[ 200 )3
100]

ol1]
[ 1013007 ] ]
2[0]

In the above, Hp is given by the full subquiver consisting of vertices between the left
section and the right section. A is given by the following quiver with relations.
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Then I'; is as follows (each element of C; is encircled by a broken or solid line, in
particular solid circles present elements of Cg). In this case we have ma = 3.

112]
(| 2011
1(1]

ol1]
{10130l
2[0]

The following is immediate from Proposition 3.11.
COROLLARY 3.13. We have C; = 7720 (Cp).
By this corollary, Problem 2 is reduced to the following.

PROBLEM 3. Let A be a tilted algebra of Dynkin type A, and B as above. Then give
the configuration Cp from A.

3.3. Configuration of B. The purpose of this subsection is to solve Problem 3.

DEFINITION 3.14. (1) We define an ideal PZ of mod B as follows and set mod B :=
(mod B)/PZ. For each X,Y € (mod B),

PL(X,Y) :={f € Homp(X,Y) |f factors through a projective-injective B-module }
Let (?): mod B — mod B be the canonical functor and set
Homp(X,Y) := (mod B)(X,Y)

for all X,Y € mod B. Thus X = X for all X € (mod B), and f = f + PZ(X,Y) for all
f € Homp(X,Y).

(2) We denote by modpz B the full subcategory of mod B consisting of B-modules
without projective-injective direct summands.

(3) Let X and Y € modpz B. Then it is well known that PZ(X,Y) C radg(X,Y).
We set radg(X,Y) :=radg(X,Y)/PZ(X,Y).
DEFINITION 3.15. We define the full translation subquiver r g of I'g by
(T'p)o :={X € (I'p)o | X is not projective-injective. }.

Moreover we set 3
supp(sx) :={Y € (I'p)o | sx(Y) # 0},
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where the map sy (T'B)o — Zsg is defined by sx (V) := dimﬁSI/nB(f(,f/) (Y € (I's)o)
for all X € (I'g)o.

DEFINITION 3.16. Let P be a projective indecomposable A-module, and rad P =
@::1 R; with R; indecomposable for all 7. Then we define a full subquiver Rp of I'g by

(Rp)o := supp(sp) (U supp(s, ) -

DEFINITION 3.17. We regard the subquiver Rp as a poset by Remark 3.9. For a
projective indecomposable A-module P if min Rp exists, we define

V'(P) := minRp,
otherwise we do not define the notation v/(P).

ExXAMPLE 3.18. In the following figure, the vertices inside broken lines form supp(sp)
and those inside doted lines form (|J;_, supp(sg,)). Therefore the subquiver Rp consists
of the vertices inside solid lines, and v/(P) is the minimum element of Rp. Projective
vertices are presented by white circles o.

/N

\/\/\/\/
. /\/\/\/\

/\/\/\/\

Y4

PROPOSITION 3.19. Let P be a projective indecomposable A-module. Then V'(P) is
always defined and V' (P) = top P.

ProOOF. We set J := rad A. We have P = ¢;A for some i. It is enough to show
that top P is the minimum element of the poset Rp. First we show that top P € Rp,
equivalently that top P € supp(sp) but top P & [J;_, supp(sg;).

(i) top P € supp(sp). Let m: P — top P be the canonical epimorphism in mod A. It is
enough to show that 7 # 0. Assume 7 = 0. Then 7 factors through a projective-injective
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B-module @ in mod B, namely there is (a, 8) € Hompg(P, Q) x Hompg(Q, top P) such that
™= fa.

P

z top P
\ 0 /
@ B
Q
Since 7 is an epimorphism, so is . Moreover

prad Q) = f(Qrad B) = f(Q)rad B = (top P)(rad B) =0

because top P is simple.

0 ——rad Q¢ Q top@ ——=0

By the universality of cokernel, there is a unique v € Homp(top @, top P) such that the
above diagram is commutative. Since 3 is an epimorphism, so is 7. Then we have an
exact sequence

0 — Ker~y < top @ = top P — 0.
Since () is a projective-injective B-module, top ) has the form @?:l(egl]B / egl] rad B)™
for some (m;); € Z™"\{(0),} by Propositions 2.3 and 2.5. Further since top () is semisimple,
the exact sequence above splits, namely top P is a direct summand of top ). But top P =
eEO]B / ez[o] rad B, a contradiction. Hence we must have 7 # 0.
(i) top P ¢ U, supp(sr,)-
Assume top P € [J;_, supp(sg,) (= supp(rad P)). Then %B(rad P, top P) # 0, and
there is an f € Homgpg(rad P, top P) such that f # 0. Since top P is simple, f is an

epimorphism. Taking the following diagram into account, we see that top P is a direct
summand of top(rad P) by the same argument as above.

0 — rad(rad P)~—— rad P — top(rad P) — 0

A
A Y

tbp P
Since we have
top P = e;A/e;J, top(rad P) = e;J/e;J?,

e;Aje;J is a direct summand of e;J/e;J%. Then we have e;Je;/e;J%e; # 0 because 0 #
e;Ae;fe;Je; — e;Je;/e;J%e;. Thus there is a loop at the vertex i in the quiver of A. But
it is impossible because A is a tilted algebra. Hence top P € Rp.

(iii) top P is the minimum element in Rp. It is enough to show that I/{SEB(top P X) #
0 for all X € Rp. Since X € supp(sp) and X ¢ (J;_, supp(sg, ), we have I:ISI/nB(P, X)#0
and Homp(rad P, X) = Homp(@_, R;, X) = @_, Homp(R;, X) = 0. We take o €
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Homp (P, X) such that & # 0. Since ﬁSElB(rad P, X) = 0, there is a projective-injective
B-module @ such that ac = hg for some g and h below.

0 ——=rad P2~ P T topP —=0
!
gl O J/oz
Y
Q- - X
Since () is injective, there is some ¢ € Hompg(P, Q) such that g = to.
0 —=rad P2~ P " topP —=0
O Ve
gl s g \La
st
ya
Q——=X
Since o = hg = hto, we have (o — ht)o = 0. By the universality of the cokernel, there
is a unique « € Homp(top P, X) such that a — ht = o/7.
0 —>rad P“2— P "> topP ——=0

""""" oo
a—ht 7

X

Ve ’
L«

Here o is nonzero in mod B. Indeed, if o/ factors through a projective-injective B-module
@', then o/ = h'¢’ for some ¢’ and b’ in the following diagram.

0—>radPe?— P "o topP ——>0

""""" oo 7
ahtl - g

/
Since o — ht = 0/7]' = h/g/ﬂ', we have o = h/g/ﬂ- -+ ht = |:h// hi| |:g 7T:| .

t
= X
o

e

P

Thus & = 0, a contradiction. Hence &' # 0 and I‘/IEI’TIB(JEOP P, X) #0. O

We will give an alternative definition of the map v/ below, which is easier to compute
than the first one.

DEFINITION 3.20. Let P € mod B be projective.
(1) Let Pp be the full subcategory of mod B consisting of projective modules @) such
that P is not a direct summand of Q).
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(2) We define an ideal Zp of mod B and the factor category mod” B := mod B/Zp of
mod B by setting

Zp(X,Y) :={f € Homp(X,Y) |f factors through an object in Pp },
and set
Hom%(X,Y) := Homp(X,Y)/Zp(X,Y)

for all X,Y € mod B. Let Q mod B — mod” B be the canonical functor. Thus X = X
for all X € (mod B)g and f = f 4+ Zp(X,Y) for all f € Homp(X,Y).

Let

supp(sp) == {X € (I'p)o | sp(X) # 0} C (I'p)o

where the map sp: (Tp)o — Zso is defined by s»(X) := dim Hom%5 (P, X) (X € (T'p)o)
for all P € (I'g)o.

LEMMA 3.21. Let QQ and X be inmod B. If Q) is projective and there is an epimorphism
Q — X, then the projective cover of X is a direct summand of Q.

PROOF. By composing an epimorphism () — X and the canonical epimorphism X —
top X, we obtain a nonzero morphism ¢ — top X, which induced a retraction top Q) —
top X. By taking projective covers, we have a retraction Q — P(top X) = P(X), where
P(Y') denotes the projective cover of a B-module Y. 0

LEMMA 3.22. If f: X — top P is nonzero in mod B, then f # 0.

PROOF. Since top P is simple, f is an epimorphism. Assume that f = 0. Then there

is a @ € Pp such that f factor through @, namely there is a pair (a, ) € Homp(X, Q) X
Homp(Q, top P) such that f = fa.

X

! top P
O
Q

Since () is projective and S is an epimorphism, P is a direct summand of () by Lemma
3.21, a contradiction. O

PROPOSITION 3.23. Let P be a projective indecomposable A-module. Then the poset
supp(sp) has the maximum element and we have

max supp(sp) = top P.
Thus v'(P) = max supp(sp).
PROOF. It is enough to show that top P is the maximum element of the poset supp(s’s).
(i) First we show that top P € supp(s’), equivalently that Hom® (P, top P) # 0.
Let 7 € Hompg(P, top P) be the canonical epimorphism. Then since 7 is nonzero, we

have w # 0 by Lemma 3.22.
(ii) Next we show that Hom% (X, top P) # 0 for all X € supp(s}).



3. CONFIGURATIONS 31

Take arbitrary X € supp(sp). Then there is an f € Homp(P, X) such that f # 0.
Let P(X) be a projective cover of X. Since P is projective, there is g € Homp (P, P(X))
such that f = mg.

Since f # 0, we have P(X) & Pp. Thus P is a direct summand of P(X). Then top P is
a direct summand of top P(X) = top X. By composing the canonical epimorphism X —
top X and a retraction top X — top P, we obtain a nonzero morphism h: X — top P.
By Lemma 3.22, we have h # 0.

O

Next we define a map sending a simple A-module to an element of the configuration.

LEMMA 3.24. Let S be a szmple A-module, and @) the injective hull of S in mod B.
Then the left (mod B)-module HomB(S -) has a simple socle, and

—_~—

soc Homp(S,-) = ﬁgr/ng(rad Q, —)/r/avdB(rad Q,-).

PRrROOF. Note that @) is projective-injective by Proposition 2.5. Since soc %B(S, -)
is a semisimple mod B-module, it has the form

soc HomB @ top HomB i) (3.2)

for some indecomposable B-modules Y; (i € {1,. d}) Let ¢ € {1,...,d} and put
Y ;=Y. Then (soc Homp(S,-))(Y) # 0. Since (soc HomB(S -)(Y) # 0, we can take an

element f € Homp(S,Y) such that f # 0 but af = 0 for all & € radB(Y Z). Consider
the following diagram in mod B.
{ /
p O v
/

radQ

g
/
4 /
¥

Q

Then f is a monomorphism because S is simple and f # 0. Since @ is injective, there is
a homomorphism g € Hompg(Y, Q) such that op = ¢gf. If g is an epimorphism, then g is
a retraction because (@) is projective. Thus @) is a direct summand of the indecomposable
module Y, and hence Y = Q. Then f = 0, a contradiction. Therefore ¢ cannot be an
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epimorphism.
!

S -
-
[ h ~
p -
~

rad @)
[o
Q
Hence there is a homomorphism h € Hompg(Y,rad Q) such that g = oh. Then op = ohf,
and we have p = hf because ¢ is a monomorphism.

Assume that Y is not isomorphic to rad@. Then h € radg(Y,rad @), and h e

rfe\LaB(Y, rad Q), we have p = hf = 0. Therefore there is a projective-injective B-module
P such that p = fa for some o € Homp(S, P) and § € Homp(P,rad Q).

Y

g

g—= Q

;/ﬁP

rad )

Since P is injective, there is a morphism v € Hompg(Q, P) such that « = vyop. Thus
we have p = [yop. Since 7y is not a monomorphism, (5v)(S) = 0, that is, p =
Byop = 0, a contradiction. Hence we must have ¥ = rad(@). Then by (3.2) we

have soc Hompg(S,-) = (top ﬁSElB(rad Q,-)) . Since rad @ is indecomposable, we have
Endg(rad @)/ rad Endg(rad Q) = k. Then

[soc Homp(S,-)](rad Q) = (Endp(rad Q)/ rad Ends(rad Q)@
>~ (Endg(rad Q)/rad Endg(rad Q)@ = k@,
Here we have d = 1 because
1<d= dim(socﬁ(;;lB(S,—))(rad Q) < dimﬁSElB(S, rad Q)
< dim Homp(S,rad Q) = dim Homp(S, S) = 1.

Thus soc ﬁai/nB(S,—) is simple, and soc ﬁ(;r/nB(S, -) ﬁo\r?lg(rad Q,-)/rja\aB(rad Q,-).
0

It follows by the lemma above that the poset supp(sg) has the maximum element for
each simple A-module S. We then set vg(.S) to be the maximum element. The following
is immediate.

PROPOSITION 3.25. Let S be a simple A-module, and Q) the injective hull of S in
mod B. Then we have vg(S) = rad Q).

We finally obtain the following by Propositions 3.23 and 3.25.
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THEOREM 3.26. Let P be a complete set of representatives of isoclasses of indecom-
posable projective A-modules. Then we have

Cs = vg(V'(P)).
Hence as is stated before, C, is obtained as follows.

THEOREM 3.27.

Ca = Ca/(0) = (r""20(CB))/(¢) = (T""2ovpV/(P))/{$).






CHAPTER 2

Decomposition theory of modules: the case of Kronecker
algebra

In this chapter, we give a general formula that computes the indecomposable de-
composition of any finite-dimensional module over any finite-dimensional algebra. We
presented two problems (I) and (II), and explained why decomposition theory is required
in Introduction. We give a general solution of the problem (I) in Section 2, and apply
it to the Kronecker algebra in Section 3. Moreover, We consider problem (II) for the
Kronecker algebra in Section 4. Fundamental facts on the Kronecker algebra are collected
in Section 1. Throughout this chapter, all modules are assumed to be finite-dimensional
left modules.

1. Kronecker algebra

Let m,n be non-negative integers. Then we denote by Mat m,n the vector space of
m x n matrices over k, and by E, the identity matrix of size n (for n > 1). By the
isomorphism Mat m,n — Homy (k™ k™) sending each M € Matm,n to the linear map
given by the left multiplication by M we identify Mat m, n with Homy (k™, k™), and regard
each M € Matm, n as the corresponding linear map k™ — k™. If m or n is zero, we denote
the matrices corresponding to the zero maps k™ — k™ by J,, ,, respectively and call them

empty matrices.
(6%

The Kronecker algebra A is a path algebra of the quiver Q = (1___2), and the cate-

N7

B
gory mod A of finite-dimensional A-modules is equivalent to the category rep @ of finite-
dimensional representations of () over k. We usually identify these categories. Recall that
M(a)
a representation M of @) is a diagram M (1) M (2) of vector spaces and linear maps,
M(B)
and the dimension vector of M is defined to be the pair dim M := (dim M (1), dim M (2)).
When dim M = (dy, ds), without loss of generality we may set M (i) = k% for i = 1,2 and
M (), M(B) € Mat dy, d;. We denote M by the pair of matrices (M («), M(f)).
We here list well known facts on the Kronecker algebra (see Ringel [20, 3.2] for in-
stance).

THEOREM 1.1. For the Kronecker algebra A the following statements hold.
(1) The list L of indecomposables is given as follows.
t
Preprojective indecomposables: P := {Pn = ([Etnol} , {EO ]) n > 1},
n—1

Preingective indecomposables: T := {1, := ([En-1,0],[0, E,,1]) | n > 1},
35
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Regular indecomposables:
R :={R,(A\) := (En, Ju(N)), Ry(00) := (J,(0), E,) | n > 1, X € k},
where 0 is the n X 1 matrix with all entries 0. Note that
dim P, = (n — 1,n),dim I, = (n,n — 1),dim R,(\) = (n,n)

for alln € N and A € P}(k) =k U {oo}.
(2) The Auslander-Reiten quiver (AR-quiver for short) of A has the following form:

R

P{OP\ . .

P - — -

N
A

Ny

In the above the rectangle part R is given as the disjoint union of a family
(Ra)aepry of “homogeneous tubes” Ry that has the form

f

(A

1

R

(A)

4
Rs
\

2
1
\
1

>y~ o

Ri(A)

where dotted loops mean that for all n € N the Auslander-Reiten translation T
sends R,(\) to itself: TR,(\) = R,()).
(3) Let X, Y € L. If Homyu(X,Y) # 0, then X is “on the left” of Y, i.e., one of the
following occurs:
(i) X 2 P,,Y = P, withm <n,
(i) X e P,Y e RUZ,
(i) X =2 Rn(N),Y = R, (u) with A = p,
(iv) X e R, Y €T, or
(v) X =2 1,,Y =1, withm > n.

REMARK 1.2. (1) Let m,n € Z with m < n. Then we note that there exists a
monomorphism P,, — P, and an epimorphism I,, — I,,.

(2) Now for (a1, as), (by,by) € Z* we define (a1, az) < (b1, by) if and only if a; < b; for
i =1 and 2. Then if there exists a monomorphism 7" — U (or an epimorphism U — T))
in mod A, we have dim 7T < dim U.

2. Simple functors: a solution to the problem (I) in general

In this section we give a solution to the problem (I) by using Auslander-Reiten theory
for an arbitrary algebra A.
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DEFINITION 2.1. For an indecomposable A-module L we set
Sy := Homy(L,-)/ rad Hom(L,-) : mod A — modk.
It is well-known that Sy, is a simple functor.

LEMMA 2.2. Let M be an A-module. Then for any indecomposable A-module L we
have

dy (L) = dim Sy (M).

PROOF. Since L is indecomposable, End4(L) is a local algebra. Therefore Si,(L) =
Enda(L)/rad(Enda(L)) is a finite-dimensional skew field over the algebraically closed
field k, and hence Sp(L) = k. If X 2 L, then End4(L) = rad(End4 (L)), and S.(X) = 0.
Thus

~ |k itX=L
Se(X) :{ 0 if X 2L

for all indecomposable A-modules X. Therefore, the indecomposable decomposition
M = @ I,(@n (L))
Lel
of M gives us
Sp(M) = KB,

which shows the assertion. O

Recall the following fundamental statement in the Auslander-Reiten theory (see Auslander-
Reiten [15] or Assem-Simson-Skowronski [14, IV, 6.11.]):

PROPOSITION 2.3. Let L be an indecomposable A-module. When L is non-injective,

let 0 — L -1 @ XX Ly =1L — 0 be an almost split sequence starting at L with
XeJg
J, C Landa(X)>1(X € J). When L is injective, let f: L — L/socL = @ X@X)
XeJg
be the canonical epimorphism (note that J;, = 0 if L is simple injective). Then the simple
functor S;, has a minimal projective resolution

0 — Homyu(77'L,-) Homalg-), @ Hom 4 (X, -)@X)) Homa/), Homu(L,-) &% Sp — 0,
XedJyg,
where g =0 and 771L = 0 if L is injective.
Proposition 2.3 together with Lemma 2.2 readily gives us the following.

THEOREM 2.4. Let M be an A-module. Then for any indecomposable A-module L we
have
dy (L) = dimHoma(L, M) — Z a(X) dim Hom 4 (X, M) + dim Hom 4 (7 'L, M).
XeJg

REMARK 2.5. When an algebra A is of the form k@ /I for some quiver () and some
ideal I of k@, it is possible to compute dim Hom4(H, M) for every H, M € mod A by
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using the rank of a suitable matrix as follows, and thus dj;(L) in Theorem 2.4 is com-
putable. First regard A-modules H and M as representations (H (i), H())icQo.acq, and
(M(3), M(@))ieqo.acq, of @, respectively. Then by definition we have

Hom(H, M) = {(f)ieq, € | [ Homu(H (), M(3)) | M()fi = fiH(a),Vor: i — j in Q1 }.

1€Qo
(2.1)
Therefore
Homy (H, M) = {x € k" | Bx = 0},
where N := %, o dim H (i) dim M (i) and B is a [@1| x N-matrix given as the coefficient

matrix of the homogeneous system of linear equations M («) f; — f;H(a) = 0 for f;. Hence
we obtain the equality:

dim Homu(H, M) = N — rank B.

EXAMPLE 2.6. Let A := k|z] be the polynomial algebra in one variable. Although it
is an infinite-dimensional algebra, the category mod A of finite-dimensional A-modules is
well understood because k[z] is a principal ideal domain, and we can apply Auslander-
Reiten theory to mod A. It is easy to give all almost split sequences over k[z|. Namely,
they are given as follows:

0— Ji(A) = J2(A) = J1(N\) = 0,

for all ¢+ > 2 and A € k. This is verified by the similar argument used in the Nakayama
algebra case (cf. [14, 4.1 Theorem]). The reader may notice a similarity between (0.1)

and (2.2), which will become clear now. Let M = (k", M) be an A-module. Then we
have

dim Hom 4 (J;(A), M) = n — rank Mj, (2.3)
which together with Theorem 2.4 and the formula (2.2) yields the formula (0.1).
Indeed, let X € Matn, i, and put X, to be the j-th column of X (j =1,...,7). Then
by (2.1) X € Homa(J;(A), M) if MX = XJ;(\) = X(AE; + J;(0)) = A\X + X J;(0) iff
M)\X = XJl(O) iff M)\(Xl, c. ,X,L> = (O,Xl, c. 7Xi71> iff M)\ maps Xj’S as follows

Xi—Xi4—= =X =0

Hence the correspondence X — X; yields the isomorphism (the inverse is given by the
correspondence v — [Mi v, ..., Myv,v])

Hom 4 (J;(\), M) = {v € k" | Mjv = 0} = Ker M},
which shows the equality (2.3).

EXAMPLE 2.7. Let n be a positive integer and set A := k@), where @) is a Dynkin

quiver 1 <5 2 2% ... 275 o of type A,. Decomposition Theory for modules over this

algebra has important applications in the topological data analysis (See Introduction).

Let M = (M), = (k@) Ay o) My Mot k(@) be a representation of Q
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(i.e. an A-module). Then the morphism space Hom4(M (b, d), M) is the set of sequences
(fi - M(b,d)(i) — k@)™, that make the following diagram commutative:

0 0 o 0 0 0 ]1{ 1 o 1 k 0 O 0 0

O\L O O O\L O fbl O O fdl O D\L O O Ol/
k@) o .0 s klas—1) o elae) o o k(ed) s klaav) o ... o k(an)
M, My_2 My M, Mg—1 My Mgy1 My 1 ’

k (b<i<d)

/.. In particular, if d = n (namely M (b, d) is projec-
0 (otherwise)

where M (b,d)(i) := {
tive), then

Homa (M (b,n), M) = {(fi)izy | Myfs = fosr - Mooy far = fu} =K@,
and if d <n — 1, then

Homu (M (b,d), M) = {(fi)y | Myfo = for1,-- s Ma—1fa—1 = fa, Mafs =0}
= {f, € k™ | MyMy_; - M, f, = 0}.

Hence we obtain
dim Homa (M (b, d), M) = a, — rank(M My - - - M), (2.4)

where we set M,, := 0. Since the AR~quiver I'4 of A is of the following form:

/N N\

M(3,m) M(2,n —1) " M(1,n — 2)

INONEN

M(n —2,n) "UUUTC T M(1,3)

/\/ ! NN

M(n —1,n) " M(n —2,n—1) " M(2,3) " Tt M(1, 2)

NSNS NN

"""" M(n —1) T T = = = = ot M(3,3) Tt M(2,2) M(1,1),

the formula (2.4) and Theorem 2.4 give us the formula

dar(M(b,d)) = R(b— 1.d) — R(b, d),



40 2. DECOMPOSITION THEORY OF MODULES: THE CASE OF KRONECKER ALGEBRA
where we set M, := 0 and M,, := 0 and
rank(My -+ - M) — rank(My_q - - - M, b<d
R(b,d)::{ (Mg - - - My) (Ma-y b) (b <d)

I‘&Ilk(Md"'Mb> — Qp (b: d)
for each (b,d) € {(i,7) € Z* |1 <i < j <n}.

3. Solution to the problem (I) for the Kronecker algebra

Throughout the rest of this paper A is the Kronecker algebra. To apply Theorem 2.4
we compute the dimensions of the spaces Homu (L, M) for all L € £ and M € mod A
following Remark 2.5.

DEFINITION 3.1. Let M be an A-module. We first define the following matrices with
n > 1, A € k (note that Py (M) = Jy, is an empty matrix).

nbi(zcks
- M(B) M(«a) 0 0 0 1)
0 M(B) M) 0 ' :
Po(M) = 0 0 M@PB) M . 0 n — 1 blocks,
0
L 0 0 0 MB) M(a)d)
nblgcks
CM(B) 0 0 0 1)
M(a) M(B) 0
I,(M) = 0 Mfa) M(B) 0 n + 1 blocks,
0 0 M) 0
: ' M(p3)
0 0 0 M(a) )
n bl(\)cks
- My (o, B) 0 0 0 1)
M<Oé) M)\(Oé7 B) 0 .
R,(\ M) := 0 M(a) My(a,B) - 0 n blocks, and
. : : : 0
i 0 0 M(a) My(a,B) 1)
nbl(:cks
- M() 0 0 0 73
—M(B) M(«a) 0 :
Rn(OO,M) = 0 _M(5> M(a) 0 n blocks,
L 0 0 —M(B) M(a) 1)
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where we put M, («, 5) :== AM («a) — M(B), and we define the following numbers.
p1(M) := 0,pn(M) := rank P,(M) (n > 2),
io(M) :=0,i,(M) :=rank I,,(M) (n > 1),
rn(A, M) :=rank R, (\, M) (n > 1, € P'(k)).

Using the data above we can compute the dimensions of Hom spaces Homa (L, M)
with L indecomposable as follows.

PROPOSITION 3.2. Let M be an A-module. Then we have the following formulas:

(n—1)di — pns(M) (0 =2)

da (n=1)
dim Homu (1, M) = ndy — i,(M) (n>1)

dim Homy (R, (\), M) = ndy — r,(A\, M) (n>1,X € P'(k))

dim Homa(P,, M) = {

PROOF. Assume that n > 2. Let (X,Y) € Matd;,n — 1 x Matds,n, and put X;
(resp. Y;) to be i-th column of X (i =1,...,n—1) (resp. Y (i =1,...,n)). Then by (2.1)
(X,Y) € Homy(P,, M) iff

M@)X =Y En , MB)X=Y 0
0 Enfl
iff
M(Oé)Xl = 3/1, M(OZ)XQ = YQ, ey M(Oé)Xn_l = Yn—l
M(ﬁ)‘)(l = 5/27 M(ﬁ)XQ = Y:% ceey M(B)Xn,1 = Yn
iff n—lEocks n bl(\)cks
B rM(oc) B r*EdQ 0 A
M () —Eq, 0 r Xy
X2
n—1 blocks .
M) —Eaq, 0 Xyiil Ly
M(B) 0 —Eq W
n—1 blocks M(B) 0 —Eay .
i : - L v, .
B M(B) 0 —Eqy |

Let B be the coefficient matrix of this equation. Then a direct calculation shows that B
is equivalent to P, 1(M) @ Eyq,. Therefore rank B = ndsy + p,_1(M), which shows that
dimHomu(P,, M) = (n — 1)d; + ndy —rank B = (n — 1)dy — p,—1(M), as desired. The
remaining formulas are proved similarly. 0

Propositions 3.2 and Theorem 2.4 give us a solution to the problem (I) for the Kro-
necker algebra as follows.
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THEOREM 3.3. Let M be an A-module. Then we have the following formulas:

(M) = puct(M) = pua (M) (n > 2)

) = {d2 ~ (M) (n=1),

iy (M) — in(M) — in_s(M) (n>2)

dai(In) = {dl — (M) (n=1),

Tno1 (A, M) + 1y (A, M) = 2r,(A, M) (n > 2)

dM(Rn()‘)) = {TQ()\,M) _ 2741()\’M) (TL = 1)

Here we note that dpy(Py) and dp(11) have obvious menanings that dy(Py) = dim Coker[M (5) M ()]

and dy (1) = dim Ker Hﬁgﬂ .

PROOF. Note that by Theorem 1.1(2) we know all the almost split sequences for the
Kronecker algebra. Therefor we can apply Theorem 2.4. We first compute dy;(P;) and
dy(I;). Noting that dim Homy (P, M) = di — p1(M) = d; the almost split sequence
starting at P, that is given by the mesh starting at P; in the AR-quiver shows that

dy(P) = dim Homy (P, M) — 2dim Homy (Ps, M) 4+ dim Hom 4 (Ps, M)
= dy — 2dy + 2dy — po(M) = dy — p2(M)
= dy — rank[M(p) M(«)] = dim Coker[M(B) M («)].
Now since I; is simple and injective, we have I;/soc[; = 0 and 7711, = 0. Hence

dy () = dimHomu(I1, M) = dy — iy (M)

- e Y] i 27

Next we compute dy/(P,) for n > 2.

dy(P,) = dimHomu(P,, M) — 2dim Hom4 (P, 1, M) + dim Hom 4 (P, 42, M)
= (n—1)di = pp—1(M) = 2(ndy — pu(M)) + (n + 1)di — pnt1(M)
= 2pn(M) - pn—l(M) _pn+1(M)7

as desired. The remaining cases are proved similarly. 0

4. Solution to the problem (II) for the Kronecker algebra
Let F': @, , L9 ) — M be an isomorphism. Then we have
M = Py @ Ry @ I,

where Py, Ry and I,y are the images of @, ., L@ () @, . L@(E) and @, _, Ll D)
by F, respectively. To compute P, Ry, and I, we here use the trace and reject in a
module of a class of modules (see Anderson-Fuller [13] for details). Let U be a class of
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modules in mod A and M € mod A. Recall that the trace Try (U) of U in M and the
reject Rej, (U) of U in M are defined by

Try(U) = Z{Imf | f € Homu (U, M) for some U € U}, and
Rejy (U) = ﬂ{Kerf | f € Homa(M,U) for some U € U}.

When U = {U} is a singleton, we set Try (U) := Try(U) and Rej,, (U) := Rej,, (U). We
cite the following from [13, 8.18 Proposition].

LEMMA 4.1. Let (M;);er be a family of A-modules indezed by a set I and U a class of
modules in mod A. Then we have

Trg,, mU) =P Tra, (1)  and Reig, , ar, (U) = P Rejy, ).
iel iel
PROPOSITION 4.2 (Calculation of Ry @®1nr). If {f1,-.., fa} is a basis of Homu (M, Py,),
then we have

ﬂKerfi =Ry ® Iy and hence Py = M/ (ﬂKeer) )
i=1

i=1

PROOF. By assumption it is obvious that (;i_, Ker f; = Rej,;(Ps,). Therefore, it is
enough to show that

By Lemma 4.1 we have

ReJM(PdQ) = RejP]M@RIM@IM(Pd2) - RejP[w(PdQ) @ Re.iju(PdZ) @ Re.jI]\/[(PdQ)'

By Theorem 1.1(3) we have Homy(Ryy, Py,) = 0 and Homy (I, Py,) = 0, which shows
that
RejRM<Pd2) = RM and RejIM (PdQ) = [M

If a preprojective indecomposable module P; is a direct summand of M, then it follows
from (i—1,i) = dim P; < dim M = (dy, ds) that i < dy (see Remark 1.2(2)). Therefore, we
have Py = @fil Pi(‘“) for some a; > 0 (we identify P; with F'(F;)), and then Rejp (Py,) =
D%, (Rej p.(P1,)) ). Now if i < dp, then by Remark 1.2(1) we have a monomorphism
P, — P,,, which shows that Rejp (Py,) = 0 for all i < dy, and therefore

RejPM (sz) - O
Hence the equality (4.1) holds. O
ProrosITION 4.3 (Calculation of Ips). If {g1,...,gv} is a basis of Homu(Ia, Ry @

Iyr), then we have
b
i=1

PROOF. By assumption it is obvious that ZLI Im g; = Trg,,er1,, (14, ). Therefore it is
enough to show that

TrRMGBIM (Idl) = In. (42)
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By Lemma 4.1 we have
TrRMGBIM (]d1> = TrRM <]d1) D TrIM (‘[dl)'
By Theorem 1.1(3) we have Hom (I, , Rys) = 0, which shows that
TI’RM (Idl) =0.

If a preinjective indecomposable module I; is a direct summand of M, then it follows from
(i,i —1) = dim [; < dim M = (dy, ds) that i < d;. Therefore we have I,; = @™, I for

i=1"1
some b; > 0 (we identify I; with F(I;)), and then Try,, (Ip,) = @™, (Trr,(11,))®). Now
if i < dy, then we have an epimorphism I;, — I;, which shows that Tr,(I;,) = I; for all

1 < dy, and therefore
TI’[M (Idl) = IM
Hence the equality (4.2) holds. O

By Propositions 4.2 and 4.3 we have the following.

PROPOSITION 4.4 (Calculation of Ryy). Let {fi,..., fo} a basis of Homa(M, P,,) and
{91,--., 90} a basis of Homy (14, (i, Ker fi). Then we have

Ry = (ﬂ Kerfi> / (Z Imgi> )

By this isomorphism we identify Ry, with the right hand side. Since Ry, = (Rys (), Ra(5))

is the direct sum of regular indecomposable modules, both Ry («) and Ry (/) are square
matrices, say of size d. Put R(c0) := Trg,,(R4(00)). Note that Trg,, (Ra(c0)) = TrRM(GBZZI R, (c0))
because there exists an epimorphism R,,(c0) — R,,(00) forn > m. Then Ry = R(c0)® R’

for some A-submodule R’ = (X', Y”’) of Ry such that R’ has no direct summand of the

form R, (oc0) for any n by Theorem 1.1(3)(iii). [Decompose Ry, into indecomposables of

the form R, (\) with n > 1, A € P!(k). Then R’ is given by the direct sum of those direct
summands of the form R, (\) with A\ # oo because R(o0) is given by the direct sum of
summands of the form R, (00).] Since the matrix X’ is invertible, we have

R = (B, (X))

for some [ < d. Therefore, the set A of eigenvalues of (X')~'Y" is finite.
Then by Propositions 4.2, 4.3 and 4.4, we obtain the following.

THEOREM 4.5. Set
Sy =A{P,I;, R(\) |1 <i<dp,1 <j<dy,1<k<d \eAU{oo}}.
Then this gives a solution to the problem (I1) for the Kronecker algebra.
REMARK 4.6. Note that if R(co) = 0, then we can replace Sy, by
{P 1, Ri(N) |1 <i<dy,1 <j<dy,1 <k <d,Ne A}
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5. Examples for the Kronecker algebra

10 00
(1) For a preprojective module M = Py = | |0 1|, |1 0| | with dim M = (2,3),
0 0 01
we will compute p, (M) (n € N) and then we will give dj/(P,) (n € N). By Definition 3.1

we have p (M) =0,

0 0/1 O
po(M) =rank [ M(B) | M(a) | =rank | 1 0|0 1 | =3,
0 1/0 0
[0 0|1 0 |
1 010 1
p3(M) = rank Méﬁ)%gg§M<)}:rank 01 8 8 0 =0,
1 0]0 1
0 1/0 0
0 0|1 O T
1 0]0 1
0 1/0 0
M) | M(a)| 0 0 0 0[L 0
ps(M) = rank 0 |MB) | Ml@]| 0 = rank 1 010 1 =38,
0 0 [M(B)| M) 0 1/0 0
0 0|1 O
1 0]0 1
| 0 1[0 0]
and
M) | M(a)| 0 0 0
0 | MB) | M« 0 0
ps(M) = rank | — (()> Mggi M(a)| 0
0 0 0 [ M(B) | M(a)
0 0|1 O 1
1 0]0 1
0 1/0 0
0 0/1 O
1 0]0 1
0 1/0 0
= rank 0 01T 0 = 10.
1 0]0 1
0 1|0 O
0 0]1 O
1 0]0 1
I 0 1[0 0]
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Similarly, we have p,, (M) = 2n for n > 3. Hence by Theorem 3.3 we have

dy(P1) =3 —pa(M) =0,
dM(P2)=2 ( ) —p1(M) —ps(M)=6-0-6=0,
d(Ps) = 2p3(M) — po(M) — ps(M) =12 =3 -8 =1,

and for n > 4,
dy(P,) =2p,(M) —pp1(M) —ppi(M)=2-2n—-2(n—1)—2(n+1) =0.
Thus we can confirm d/(P3) = 1 and dy(P,) = 0 for n # 3.

(2) For a module M = ({? 8] ,0272) = P @& Ri(1) ® I with dim M = (2,2), we

will compute Rej, () and Trrej,, (p,)(L2). Recall that P, = ([(ﬂ ) {ﬂ) If (X,Y) e

Homa (M, Py), then we have X = 0,5, = for some a,b € k, and we can take

a 0

b 0
10 0 0 .

{fl = (01,2, [0 0]) Jfo= (01,2, {1 0] >} as a basis of Hom (M, P»). Hence we have

Reju(P2) = Ker fy NKer fo = ([1 0],012) = Ri(1) @ Iy

with dim Rej,,(P2) = (2,1) and have M/Rej,,(P;) = P,. Moreover, recall that I, =
0 0

([ 0],[0 1]). If (X,Y) € Homu(Is,Rej;;(F)), then we have X = . d] Y =01,

for some ¢, d € k, and we can also take {91 = <{(1) 81 ,01,1> ,go = ({8 ﬂ ,0171) } as a

basis of Hom4 (15, Rej,;(P,)). Therefore, we have

T"RejM(Pz)(IZ) =Img; +Imgy = (JO,lv Jo,l) =1

with di_mTrRejM(IJQ)(Ig) = (1,0), and RejM(Pg)/TrRejM(IJQ)([z) = Rl(].) Thus we can
confirm the process to get Sy = { Py, P, I1, I, R1(1)} in Section 4.
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