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Mapping crop cover using multi-temporal Landsat 8 OLI imagery 

Crop classification maps are useful for estimating amounts of crops harvested, 

which could help address challenges in food security. Remote sensing techniques 

are useful tools for generating crop maps. Optical remote sensing is one of the 

most attractive options because it offers vegetation indices with frequent revisits, 

adequate spatial and spectral resolution and some data has been distributed free 

of charge. However, sufficient consideration has not been given to the potential 

of vegetation indices calculated from Landsat 8 Operational Land Imager (OLI) 

data. This paper describes the use of Landsat 8 OLI data for the classification of 

crops in Hokkaido, Japan. In addition to reflectance, vegetation indices calculated 

from simple formulas that consisted of combinations of two or more reflectance 

wavebands were evaluated, as well as the six components of the Kauth-Thomas 

transform. The vegetation indices based on shortwave infrared bands (bands 6 or 

7) improved classification accuracy and using a combination of all derived data 

from Landsat 8 OLI data resulted in an overall accuracy of 94.5% (allocation 

disagreement=4.492 and quantity disagreement=1.017). 

Keywords: Bayesian optimisation; crop; Kauth-Thomas transform; Landsat-8; 

random forests; vegetation indices. 

 

1. Introduction 

Agricultural fields are developed and managed through a variety of social actions or 

policies, which can hugely impact biogeochemical and hydrologic cycles, climate, 



ecosystem functions, the economy and human health (Wardlow and Egbert, 2008). 

Therefore, mapping cropland is needed to carry out social policies as well as estimating 

the amount and type of crops harvested in a certain area. In Japan, some local 

governments are documenting field properties including crop types and locations by site 

investigations. Reducing labour costs and developing easier methods such as the 

techniques based on satellite remote sensing are required due to high cost of existing 

methods.  

 Many studies have focused on land use and land cover classification based on 

remote sensing techniques. The Landsat series data are suitable for land characterisation 

activities, owing in large part to the spatial, spectral and radiometric qualities of the data 

(Wulder et al., 2008, Vogelmann et al., 2016). The data acquired from Landsat satellites 

are also useful for assessing the condition of vegetation. Vegetation indices (VIs) 

derived from reflectance data acquired from optical sensors have been widely used to 

assess variations in the physiological state and biophysical properties of vegetation 

(Bankestad and Wik, 2016, de Klerk et al., 2016, Sonobe and Wang, 2017).  

 VIs are calculated from simple formulas that consist of a combination of two or 

more reflectance wavebands calculated from various satellite data. Specifically, the 

Normalized Difference Vegetation Index (NDVI), calculated from Landsat data, has 

been applied for monitoring vegetation systems or ecological responses to 



environmental change (Holden and Woodcock, 2016). The Soil-Adjusted Vegetation 

Index (SAVI) (Huete, 1988), Enhanced Vegetation Index (EVI) (Huete et al., 2002) and 

Ratio Vegetation Index (RVI) (Tucker, 1979, Sellers, 1985) have also been used to 

evaluate the abilities of monitoring vegetation (She et al., 2015, Karan et al., 2016). 

However, few indices have considered the abilities of shortwave infrared bands, which 

are mostly influenced by plant constituents including pigments, leaf water content and 

biochemicals, such as lignin and cellulose (Asner, 1998). In this study, indices based on 

differences (D), simple ratios (SR) and normalised differences (ND) were considered 

and all possible combinations of bands for the index types were evaluated for their 

contributions to classifications. Furthermore, the Kauth-Thomas (KT) transform is a 

useful tool for understanding crop development in spectral space (Kauth and Thomas, 

1976) and it was for modified for Landsat 8 Operational Land Imager (OLI) (Baig et al., 

2014). In this study, the use of VIs and KT components were evaluated for identifying 

crop species as well as reflectance acquired from Landsat 8 OLI data. 

 Continued algorithm development has led to improved classification accuracy 

and reduced computational cost for land cover classifications,, and machine learning 

approaches have been widely used in image classification over the past two decades 

(Pal et al., 2013). Some earlier studies using optical imagery showed that random 

forests (RF) was superior to the maximum likelihood classifier for classification 



(Rodriguez-Galiano et al., 2012). Furthermore, it can efficiently handle large sample 

sizes, run with a vast numbers of input variables, quantify each input variable based on 

an importance measure, and is robust with irregular samples, such as outliers and noise 

(Breiman, 2001, Cutler et al., 2007). In this study, RF modified by Ishwaran (Ishwaran 

and Kogalur, 2007, Ishwaran et al., 2008) was used for classification since it is useful 

for evaluating the variable importance (VIMP), which is calculated from training data 

(Ishwaran, 2007). 

 The main targets of this study were to (1) evaluate the accuracy of crop 

classification using Landsat 8 OLI data and (2) identify the best combination of the 

information derived from Landsat 8 OLI data. 

2. Materials and Methods 

2.1. Study area 

The study area is located in the western Tokachi plain, Hokkaido, Japan (Figure 1, 

142°55′12″ to 143°05′51″ E, 42°52′48″ to 43°02′42″ N)(Sonobe et al., 2015b). The area 

has a humid continental climate characterised by warm summers and cold winters, with 

an average annual temperature of 6°C and an annual precipitation of 920 mm. The 

dominant crops are beans, beets, grasses, maize, potatoes and winter wheat.  

<Figure 1> 



Winter wheat was seeded in September, beets and potatoes were seeded or 

transplanted in late April to early May and maize and beans were seeded in mid-May. 

The harvesting periods were late July to early August for winter wheat, late August to 

September for potatoes and maize, late September to early November for beans and 

November for beets. Grasses were harvested twice a year; the first harvest was in late 

June to early July and the second was in late August. 

2.2. Satellite data 

The characteristics of the satellite images used in this study are shown in Table 1. The 

Landsat-8 OLI data were acquired on 20 May, 7 July and 24 August 2016. The data, 

which had been spatially orthorectified by the U.S. Geological Survey, were 

downloaded from EarthExplorer (http://earthexplorer.usgs.gov/). To correct the imagery 

for atmospheric effects, the Fast Line-of-sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH) algorithm (Matthew et al., 2000) was applied using ENVI 

software (Version 5.3) and the reflectance values of bands 1-7 were used for 

classification in this study. Several studies have attempted to develop spectral indices 

based on the metrics of the reflectance to conduct non-destructive evaluations of 

physiological states and biophysical properties. Among them, indices based on 

difference (D type) (Sonobe and Wang, 2016), simple ratio (SR) (Blackburn, 1998) and 

normalized differences (ND type, NDVI belongs to this type) (Tucker, 1979, Blackburn, 



1998, Gandia et al., 2005) have been widely applied. Three following types of indices 

were calculated based on the reflectance acquired from OLI data; 

D(𝜆1, 𝜆2) = 𝑅𝜆1 − 𝑅𝜆2     (1) 

SR(𝜆1, 𝜆2) = 𝑅𝜆1 𝑅𝜆2⁄     (2) 

ND(𝜆1, 𝜆2) = (𝑅𝜆1 − 𝑅𝜆2) (𝑅𝜆1 + 𝑅𝜆2)⁄   (3) 

where R is reflectance at a given band (λ1 or λ2) and all 21 (7C2, the number of ways to 

choose a sample of 2 bands from a set of 7 bands where order does not matter and 

replacements are not allowed) combinations were calculated for each type and OLI 

image. SAVI (Huete, 1988) and EVI (Huete et al., 2002) were also calculated. 

SAVI = 1.5 ×
(𝑅Band5 − 𝑅Band4)

(𝑅Band5 + 𝑅Band4 + 0.5)⁄  (4) 

EVI = 2.5 ×
(𝑅Band5 − 𝑅Band4)

(𝑅Band5 + 6 × 𝑅Band4 − 7.5 × 𝑅Band2 + 1)⁄  (5) 

The earlier studies have shown that the data of the KT transform, also known as 

the Tasselled-Cap transform, improved the accuracy of the crop classification (Galvao 

et al., 2015, Schultz et al., 2016). Table 2 shows the coefficients of KT data for OLI 

(Baig et al., 2014) and KT data was generated using these coefficients. 

<Table 1> 

<Table 2> 



2.3. GIS data 

Reference data were provided by Tokachi Nosai (located in Obihiro city, Hokkaido). 

Nosai conducts an Agricultural Insurance, which supports farmers after natural disasters 

and contributes to the growth of Japanese agriculture. Reference data were provided as 

a polygon shape file, which included attribute data, such as crop type. The field size 

ranged from 0.1 to 17.5 ha with a median of 2.0 ha. The position of the centre of the 

fields was calculated and the reflectance values of all bands were extracted using these 

points. The process was applied to avoid selecting training pixels from the edge of a 

field, which would create a mixed signal and affect the accuracy assessment.  

2.4. Classification algorithm 

A total of 4719 fields (981 beans fields, 569 beet fields, 640 grasslands, 317 maize 

fields, 783 potato fields and 1,429 winter wheat fields) covered the area in 2016. In this 

data-rich situation the best approach for model selection and model assessment is to 

randomly divide the dataset into three parts: a training set, which is used to fit the 

models; a validation set, which is used to estimate prediction error for model selection 

and a test set, which is used for assessment of the generalisation error of the final 

chosen model (Hastie et al., 2009). A stratified random-sampling approach was applied 

to select the fields used for training (50%), validation (25%) and test data (25%). We 

conducted classifications using the following four different datasets; Case 1: reflectance 



data, Case 2: KT data, Case 3: VIs, Case 4: reflectance + VIs data and Case 5: 

reflectance + KT + VIs data. 

RF is an ensemble learning technique that builds multiple trees (the 

classification and regression tree, CART) based on random bootstrapped samples of the 

training data. Each tree is built using a different subset from the original training data, 

containing approximately two-thirds of the cases, and the nodes are split using the best 

variable out of a group of randomly selected variables. This strategy provides 

robustness to over-fitting and can handle thousands of dependent and independent input 

variables without variable deletion. The output is determined by a majority vote of the 

trees. The two user-defined parameters are the number of trees (ntree) and the number 

of variables used to split the nodes (mtry). RF differs from CART as they are grown 

nondeterministically in order to decorrelate the trees and reduce variance using a two-

stage randomisation procedure related to a bootstrap sample and random variable 

selection. Prior to the construction of each decision tree, some samples are extracted at 

random with replacement from the original training dataset and these samples are taken 

into account in the tree building. Then splits are performed based on Gini index over 

mtry directions chosen uniformly at random. When ntree is increased, the generalisation 

error always converges, and over-training is not a problem. As a result, a tree of RF is 

grown as deeply as possible under the constraint that each terminal node must contain 



no fewer than nodesize ≥ 1 case. It is also generally believed that randomising the 

splitting rule can improve performance for ensembles (Ishwaran, 2015). So, RF 

modified by Ishwaran (Ishwaran and Kogalur, 2007, Ishwaran et al., 2008) was used for 

classification and the contributions of each variable were assessed based on the variable 

importance (VIMP), which is calculated from training data and defined as the difference 

between prediction error when the variable is noisy versus prediction error caused by 

randomly permuting it (Ishwaran, 2007). Therefore, the value of VIMP indicates 

degradation if that variable was not used for classification and we can reveal which 

variable is effective for identifying crop types.  As a result, three additional 

hyperparameters were considered, including the minimum number of unique cases in a 

terminal node (nodesize), the maximum depth to which a tree should be grown 

(nodedepth) and the number of random splitting (nsplit).  

 Grid search strategies have been applied for optimising the hyperparameters of 

machine learning algorithms (Puertas et al., 2013, Sonobe et al., 2015a). However, grid 

search strategies were shown to be a poor choice for configuring algorithms for new 

data sets, and this suggested the use of the Gaussian process, Bayesian optimisation 

(Bergstra and Bengio, 2012). Bayesian optimisation is a framework used to optimise 

hyperparameters of noisy, expansive black-box functions and it defines a principled 

approach to modelling uncertainty. Depending on its characteristics, such as simplicity 



and flexibility, the Gaussian process (GP) has commonly been used for Bayesian 

optimisation (Snoek et al., 2015). Therefore, the five hyperparameters were selected 

through the framework of Bayesian optimisation, in which a learning algorithm’s 

generalisation performance is modelled as a sample from a GP (Snoek et al., 2012). The 

parameter spaces were 3 to 1000 for ntree, 1 to the total of variables (i.e. 21 for Case 1, 

18 for Case 2, 195 for Case 3, 216 for Case 4 and 234 for Case 5) for mtry, 1 to 20 for 

nodesize, 1 to 50 for nodedepth and 1 to 20 for nsplit. 

2.5. Accuracy assessment 

 The classification maps were evaluated for their overall accuracy (OA), producer’s 

accuracy (PA), user’s accuracy (UA) and the two simple measures of quantity 

disagreement (QD) and allocation disagreement (AD), which provides an effective 

summary of a cross-tabulation matrix (Pontius and Millones, 2011). OA is the total 

classification accuracy. PA is obtained by dividing the number of correctly classified 

fields in each crop type by the number of reference fields. This value represents how 

well the reference fields of the crop cover type are classified. UA is computed by 

dividing the number of correctly classified fields in each crop type by the total number 

of fields classified in that crop type. It represents the probability that a field classified 

into a given crop type actually represents that crop type. QD is defined as the difference 

between the reference data and the classified data based on a mismatch of class 



proportions. AD is considered the difference between the classified data and the 

reference data due to incorrect spatial allocations of pixels in the classification. The 

total disagreement is the sum of QD and AD (Pontius and Millones, 2011). AD 

indicates the difference between the classified data and the reference data misled by 

incorrect spatial allocations, and QD provides information on the error in the relative 

proportion of the classes in the classification results.  

To compare the accuracy of the classification methods, we used McNemar’s test 

(McNemar, 1947). McNemar’s test considers the lack of independent samples by 

focusing on how each point was either correctly or incorrectly classified in the two 

classifications being compared. A 2 value ≥ 3.84 indicates a significant difference 

between the two methods at the 95% level of significance.  

3. Results and discussion 

3.1. Reflectance obtained from Landsat OLI data for six crops 

The mean reflectance of each crop is shown in Figure 2. There were small plants (less 

than 7 cm in height) in the fields of beans, beet, maize and potato on 20 May; therefore, 

their reflectance features were similar to bare soil and their differences were not visible. 

In contrast, the fields of wheat and grass were covered with vegetation, and a high 

reflectance at near infrared (band 5) was confirmed. 



 The reflectance in the peak of the growing season (7 July) showed similar 

patterns in the visible domain (bands 1-4), but the patterns at near and shortwave near 

infrared bands (bands 5-7) were different among them and could be divided into three 

groups. The first group had a specific peak at band 5 and beet, potato and wheat 

belonged to this group; the second showed a gradual decrease with the wavelength and 

grass and maize belonged to this group, and the last group had a gradual increase from 

band 5 to band 6 and beans belonged to this group.  

 On 24 August, the reflectance of wheat was similar to bare soil with peak at 

band 6 since the wheat had been cultivated. The characteristic reflectance features 

related to wilt caused by chemical treatments were also confirmed in the potatoes. Other 

crops had similar spectral patterns with peaks at band 5. Especially the date belonged to 

the late growing season or the early in the ripening period of beans and beet. As the 

result, the band 5 of these crops was bigger than that observed on 7 July. 

<Figure 2> 

3.2. Accuracy Validation 

The optimal values of the combinations of the five parameters (ntree, mtry, nodesize, 

nodedepth, nsplit) were (543, 13, 1, 48, 10) for Case 1; (858, 14, 2, 37, 11) for Case 2; 

(394, 185, 2, 11, 2) for Case 3; (478, 155, 3, 16, 2) for Case 4 and (827, 80, 2, 42, 8) for 

Case 5. It was conceivable that these negative effects related to large sets were 



relatively low since the values of mtry were higher that the default value which was 

proposed by Breiman (2001). The corresponding confusion matrixes of classifications 

are given in Table 3 and the results of McNemar’s test are shown in Table 4. The best 

PAs and the best UAs of beans, grass and maize were confirmed by Case 5, the best 

UAs of beet and potato were confirmed by Case 4 (0.986 and 0.931, respectively) and 

the best UA of wheat was confirmed by Case 1 (0.983). The classification results were 

different from each other except for the relationship between Case 3 and 4 (p < 0.05 

based on McNemar’s test). Case 5 was the best based on OA and AD+QD and Figure 3 

shows the crop classification map generated from Case 5. Thus, reflectance data were 

not needed when VIs were applied for classification. 

<Table 3> 

<Table 4> 

<Figure 3> 

Figure 4 shows the relative importance of the contribution to the classification 

model for the combination of reflectance data, KT data and VIs (Case 5). According to 

the VIMP, the metrics derived from bands 6 or 7 were most significant for 

classification. The difference between bands 6 and 7 on 7 July was useful to identify 

grass, potato and wheat. However, some metrics could be used instead of the reflectance 

values at these bands, since there was no significant difference between the 



classification result of Cases 3 and 4 (Table 4). Previous studies have shown that 

reflectance at shortwave infrared contributed to the estimation of photosynthetic 

pigments, water, nitrogen, cellulose, lignin, phenols and leaf mass per area (LMA), 

which accurately estimated canopy traits (Asner et al., 2011). Therefore, the reflectance 

at bands 6 and 7 in the growing season periods may be useful to detect differences in 

vegetation properties, such as biomass or photosynthetic characteristics among crops. 

However, the data acquired on 20 May contributed to the identification of grass since 

the first harvest of grass was conducted in late June to early July and the second was 

conducted in late August. The data also contributed to the identification of potato, 

though there were small plants in the fields because of the pronounced furrow ridges 

(30-35 cm in height).  

Although the reflectance of bands 3 and 6 on 7 July was useful for identifying 

wheat, the performances of classification was improved by using the metrics calculated 

from two bands (not restricted to the published indices). The differential type of index 

using reflectance at band 3 and band 4 on 20 May was also useful due to the differences 

in crop phonologies although the other metrics were not contributed to identify wheat. 

The contributions of the KT data, which is calculated from the reflectance of six bands, 

were relatively low. However, the KT data helped to improve the classification 

accuracy because there was a significant difference between Cases 4 and 5 (Table 4). 



<Figure 4> 

3.3. Comparison with traditional random forests 

The traditional RF method (Breiman, 2001) has widely been used in previous studies 

with high accuracies (Pal, 2005, Kavzoglu and Colkesen, 2013, Sonobe et al., 2014). 

The comparison between modified RF and traditional RF was conducted (Table 5) and 

the significant differences were confirmed for all cases. The result for Case 5 was also 

best for traditional RF and OA of 0.943, AD of 4.492 and QD of 1.186 were confirmed. 

Although the differences were quite small (less than 1%), the difference was significant 

(p < 0.05, 2 of 4.00) and the advantage of the modified RF was confirmed. However, 

the traditional RF still had an OA of more than 0.9 for Cases 1-4 and it could be an 

attractive option for crop classification using Landsat 8 OLI imagery. 

4. Conclusions 

Three Landsat 8 OLI images, acquired on 20 May, 7 July and 24 August, were used and 

the reflectance, KT transform data and vegetation indices including D, SR and ND were 

calculated. Classifications were made using four different datasets: reflectance data 

(Case 1), KT data (Case 2), VIs (Case 3), reflectance + VIs (Case 4) and reflectance + 

KT + VIs data (Case 5). When all data were combined (Case 5), the best performance, 

in terms of OA and QD+AD was confirmed, and an OA of 94.5% was achieved.  



Furthermore, the VIs derived from bands 6 or 7 were important for crop 

classification based on the VIMP values, and this study demonstrated that adding 

vegetation indices improved the classification accuracy. Collecting training data is still 

a big problem and saving some manual labour related to this task are required. The 

potential application for the cross-year training and classification (cross-year 

classification) should be analysed for future work. 
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Tables 

Table 1. Characteristics of satellite data 

Date Scene ID Path Row 

20 May 2016 LC81070302016141LGN00 107 30 

7 July 2016 LC81070302016189LGN00 107 30 

24 August 2016 LC81070302016237LGN00 107 30 

 

  



Table 2. Kauth-Thomas (KT) transform coefficients for Landsat 8 OLI. 

Component Blue Green Red NIR SWIR1 SWIR2 

Brightness 0.3029  0.2786  0.4733  0.5599  0.5080  0.1872  

Greenness -0.2941  -0.2430  -0.5424  0.7276  0.0713  -0.1608  

Wetness 0.1511  0.1973  0.3283  0.3407  -0.7117  -0.4559  

Component 4 -0.8239  0.0849  0.4396  -0.0580  0.2013  -0.2773  

Component 5 -0.3294  0.0557  0.1056  0.1855  -0.4349  0.8085  

Component 6 0.1079  -0.9023  0.4119  0.0575  -0.0259  0.0252  

 

  



Table 3. Accuracy results for the classifications 

  Case 1 Case 2 Case 3 Case 4 Case 5 

PA      

Beans 0.939  0.918  0.939  0.935  0.943  

Beet 0.958  0.951  0.965  0.965  0.965  

Grassland 0.938  0.881  0.938  0.931  0.938  

Maize 0.700  0.675  0.750  0.750  0.750  

Potato 0.964  0.933  0.959  0.964  0.964  

Wheat 0.969  0.958  0.975  0.975  0.975  

UA      

Beans 0.913  0.879  0.924  0.920  0.928  

Beet 0.971  0.944  0.979  0.986  0.979  

Grassland 0.955  0.953  0.974  0.974  0.974  

Maize 0.778  0.667  0.759  0.750  0.779  

Potato 0.913  0.910  0.930  0.931  0.926  

Wheat 0.983  0.974  0.978  0.978  0.978  
      

OA 0.938  0.915  0.943  0.942  0.945  

AD 4.661  6.949  4.831  4.831  4.492  

QD 1.525  1.525  0.847  0.932  1.017  

Note: PA: producer’s accuracy; UA: user’s accuracy; OA: overall accuracy; QD: quantity disagreement; 

AD: allocation disagreement. 

 

  



Table 4. McNemar’s test performed on four combinations. 

  Case 1 Case 2 Case 3 Case 4 Case 5 

Case 1  14.96  14.08  15.79  10.44  

Case 2   20.11  18.29  21.30  

Case 3    2.67  4.33  

Case 4     7.00  

Case 5          

Note: A 2 value ≥ 3.84 indicates a significant difference between two datasets in the classification results 

(p < 0.05). 

  



Table 5. McNemar’s test results obtained between RF modified by Ishwaran (Ishwaran and 

Kogalur, 2007, Ishwaran et al., 2008) and traditional RF. 

Case 1 Case 2 Case 3 Case 4 Case 5 

6.13  10.48  5.00  11.29  4.00  

Note: A 2 value ≥ 3.84 indicates a significant difference between two datasets in the classification results 

(p < 0.05). 

  



Figures 

 

Figure 1. The study area (background map shows Landsat 8 OLI data obtained on 7 July 

2016). 



 

Figure 2. Mean reflectance spectra and standard deviations (a) on 20 May, (b) on 7 July, and 

(c) on 24 August. 



 

Figure 3. Crop classification map with misclassified fields printed in black. 

  



 

Figure 4. Variable importance of the top 10 useful variables (Case 5) for identification of each 

crop; (a) totally, (b) beans, (c) beet, (d) grass, (e) maize, (f) potato and (g) wheat.  

VIMP: variable importance, which is calculated from training data (Ishwaran, 2007). 

D(𝝀𝟏, 𝝀𝟐) = 𝑹𝝀𝟏 − 𝑹𝝀𝟐, 𝐒𝐑(𝝀𝟏, 𝝀𝟐) = 𝑹𝝀𝟏 𝑹𝝀𝟐
⁄  and 𝐍𝐃(𝝀𝟏, 𝝀𝟐) = (𝑹𝝀𝟏 −𝑹𝝀𝟐) (𝑹𝝀𝟏 + 𝑹𝝀𝟐)⁄  

 where R is reflectance at a given Landsat band number (𝝀𝟏 or 𝝀𝟐). 

 


