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Assessing the Suitability of Data from Sentinel-1A and 2A for Crop 1 

Classification 2 

Sentinel-1A C-SAR and Sentinel-2A MultiSpectral Instrument (MSI) provide 3 

data applicable to the remote identification of crop type. In this study, six crop 4 

types (beans, beetroot, grass, maize, potato, and winter wheat) were identified 5 

using five C-SAR images and one MSI image acquired during the 2016 growing 6 

season. To assess the potential for accurate crop classification with existing 7 

supervised learning models, the four different approaches of kernel-based 8 

extreme learning machine (KELM), multilayer feedforward neural networks, 9 

random forests, and support vector machine were compared. Algorithm 10 

hyperparameters were tuned using Bayesian optimization. Overall, KELM 11 

yielded the highest performance, achieving an overall classification accuracy of 12 

96.8%. Evaluation of the sensitivity of classification models and relative 13 

importance of data types using data-based sensitivity analysis showed that the set 14 

of VV polarisation data acquired on 24 July (Sentinel-1A) and band 4 data 15 

(Sentinel-2A) had the greatest potential for use in crop classification. 16 

Keywords: Agricultural fields; classification; Hokkaido; machine learning; 17 

Sentinel-1A; Sentinel-2A 18 

  19 



2 

 

1. Introduction 20 

The identification and mapping of crops is important for estimating potential harvest as 21 

well as for agricultural field management, and provides information for national and 22 

multinational agricultural agencies, insurance agencies, and regional agricultural boards. 23 

However, as of 2016 some local governments in Japan are still using manual effort to 24 

document field properties such as crop type and location (Ministry of Agriculture, 25 

Forestry and Fisheries, 2016). The high expense of these manual methods suggests a 26 

necessity to develop more efficient techniques. Remote sensing technology is a very 27 

useful tool for gathering a large amount of information simultaneously (Ryu et al., 28 

2011).  While some in situ data is still required for generating and validating 29 

classification models, remote sensing is generally also effective at reducing labour costs.   30 

In the present study, the applicability of data acquired from Sentinel-1A C-SAR 31 

and Sentinel-2A MultiSpectral Instrument (MSI) for generating crop maps was 32 

evaluated. Previous studies have investigated the use of C-band SAR data for 33 

monitoring vegetation state (Fieuzal and Baup, 2016; Haldar et al., 2016) and for 34 

discriminating between crop types (Larranaga and Alvarez-Mozos, 2016). Multi-35 

temporal SAR data following annual plant growing cycles are useful for clarifying 36 

temporal pattern changes (Costa, 2004). While the use of exclusively backscattering 37 

coefficients yielded an overall accuracy of less than 50% (Roychowdhury, 2016), more 38 

accurate classifications have been possible using a combination of Haralik textures, the 39 

polarization ratio and the local mean together with the VV backscattering coefficients 40 

(Inglada et al., 2016). However, in some areas (including our study area) there were few 41 

opportunities to obtain polarimetric Sentinel-1A data.  42 

Some studies have shown that phenology features derived from optical sensors 43 

are useful to estimate crop acreage (Nigam et al., 2015; Zhang et al., 2017). Biophysical 44 
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parameters including fresh and dry weight and leaf area index (LAI) can also be 45 

retrieved from vegetation indices derived from the Landsat 8 OLI and the Landsat 7 46 

ETM+ (Ahmadian et al., 2016); these data have proven effective in identifying crop 47 

types with high accuracy (Goodin et al., 2015). Moreover, red-edge or short wave infra-48 

red reflectance data have been provided by various satellites such as RapidEye (Eitel et 49 

al., 2007) and Landsat 8 OLI (Roy et al., 2014), and have contributed to improvements 50 

in crop monitoring over large areas (Kim and Yeom, 2015; Sonobe et al., 2017b). These 51 

data as provided by Sentinel-2A may prove useful for the same purpose. Sentinel-2A 52 

data have been shown to be suited for mapping urban green species and may help in 53 

reducing the amount of manual digitizing while sustaining a high level of accuracy 54 

(Rosina and Kopecka, 2016). Huang et al. (2017) further demonstrated that the near-55 

infrared, short wave infrared and red-edge bands are useful for separating unburned and 56 

burned areas, due to these bands’ sensitivity to vegetation state and soil moisture 57 

changes. As observations derived from optical sensors are sometimes influenced by 58 

cloud interference, multi-sensor approaches (combining optical and microwave data) 59 

may be used to improve classification accuracy (Sheoran and Haack, 2013; Eberhardt et 60 

al., 2016). A significant improvement in classification accuracy was confirmed when 61 

Sentinel-1A SAR and Landsat8 satellite image time series were integrated (Inglada et 62 

al., 2016). This indicates that integrating data from Sentinel-1A and 2A may also have 63 

great potential for high-accuracy crop classification. 64 

In addition to good quality remote sensing data, classification algorithms are 65 

essential for generating accurate maps. Different machine learning approaches have 66 

been used for image classification over the past two decades (Pal et al., 2013). The 67 

Support Vector Machine (SVM) has been one of the most effective classification 68 

approaches, and has been widely used with a Gaussian kernel function (Burges, 1998). 69 
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For example, a SVM classifier achieved an overall accuracy of 92.0 % both for 70 

identification of soil types and of five crop types (Foody and Mathur, 2004). The 71 

random forests (RF) approach has also been very successful for classification and 72 

regression using remote sensing data (Biau and Scornet, 2016), and was shown to 73 

perform as well as SVM in terms of classification accuracy and training time (Pal, 74 

2005). A recently developed extension of machine learning, deep learning, has enabled 75 

the use of multilayer feedforward neural networks (FNN) which have also been applied 76 

to optical remote sensing data (Cooner et al., 2016) and several classification 77 

approaches based on this technology have received scrutiny (Foody, 2000; Brown et al., 78 

2009). A more efficient fast learning neural algorithm for single hidden layer 79 

feedforward neural networks, called the extreme learning machine (ELM; Huang et al., 80 

2012) has been applied in a similar manner (Sonobe et al., 2017a).  81 

While these algorithms have been widely used for land cover classification, 82 

parameter tuning is always required and may result in the deterioration of accuracies 83 

(Xue et al., 2017). For optimising the hyperparameters of machine learning algorithms, 84 

grid search strategies have been applied (Puertas et al., 2013). However, as these may 85 

constitute a poor choice for configuring algorithms for new data sets, the use of 86 

Bayesian optimisation has been suggested. This is a framework for sequential 87 

optimisation of the hyperparameters of noisy, expansive black-box functions (Bergstra 88 

and Bengio, 2012), and represents one possible method to unify hyperparameter tuning 89 

for performance comparison among machine learning algorithms. 90 

Evaluating the importance of each variable is useful in such comparisons. 91 

Although RF generates importance measures for variables, a bias in variable selection 92 

during the tree-building process may lead to biased variable importance measures 93 

(VIMs) when variables are correlated to some degree (Nicodemus et al., 2010). Other 94 
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algorithms are generally more difficult to implement, and few studies have engaged in 95 

cross-algorithm comparisons. One tool that allows robust assessment of multiple 96 

supervised learning black box data mining models is data-based sensitivity analysis 97 

(DSA; Cortez and Embrechts, 2013), and this approach to variable evaluation was used 98 

in the present study. 99 

The main objectives of this paper are (1) to evaluate the potential of Sentinel-1 100 

and -2 data for crop type classification and crop map generation, and (2) to identify 101 

whether reflectance values or gamma nought values are more suitable for classification. 102 

2. Materials and Methods 103 

2.1. Study area 104 

The study area is located on Hokkaido, Japan, and encompasses the area 142°55′12″ to 105 

143°05′51″ E, 42°52′48″ to 43°02′42″ N (Figure 1). The continental humid climate of 106 

the region features warm summers and cold winters, with an average annual 107 

temperature of 6°C and an annual precipitation of 920 mm.  108 

<Figure 1> 109 

The crops used in the study were several types of beans (soy, azuki, and kidney), 110 

maize, beetroot and potato, and various grasses. Figure 2 shows the stages of each crop. 111 

Beans and maize were sown in mid-May, while beetroot and potato were transplanted 112 

from late April to early May (Tokachi Subprefecture, 2016). Grasses, including timothy 113 

orchard grass and winter wheat, were sown in the previous year. Beans were harvested 114 

from late September to early November, beetroots in November, potatoes from late 115 

August to September, and winter wheat from late July to early August. Grasses were 116 

harvested twice a year, from late June to early July and in late August. 117 
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<Figure 2> 118 

2.2. Reference data 119 

Field location and attribute data, such as crop types, were based on manual surveys and 120 

provided by Tokachi Nosai (Obihiro, Hokkaido) as a polygon shape file. No more 121 

precise data exist for this area. Based on these data, a total of 4719 fields (981 beans 122 

fields, 569 beet fields, 640 grasslands, 317 maize fields, 783 potato fields and 1429 123 

winter wheat fields) covered the area in 2016. Field size was 0.25–9.70 ha (median 2.04 124 

ha) for beans, 0.21–9.98 ha (median 2.46 ha) for beetroot, 0.30–17.50 ha (median 2.21 125 

ha) for grassland, 0.18–8.42 (median 1.67 ha) for maize, 0.25–8.48 ha (median 2.17 ha) 126 

for potato, and 2.00–14.6 ha (median 1.92 ha) for wheat.  127 

2.3. Satellite data 128 

Sentinel-1A follows a sun-synchronous, near-polar, circular orbit at a height of 693 km 129 

with a 12-day repeat cycle. The satellite is equipped with a C-band imager (C-SAR) at 130 

5.405 GHz with an incidence angle between 20° and 45°. There are four imaging 131 

modes: Strip Map (SM), Interferometric Wide-swath (IW), Extra Wide-swath (EW), 132 

and Wave (WV). C-SAR also supports operation in dual polarisation (HH + HV, VV + 133 

VH) (Torres et al., 2012).We used data acquired during descending passes on 13 May, 6 134 

June, 30 June, 24 July, and 17 August, 2016 (Table 1(a)). Data were downloaded from 135 

the ESA Data Hub (https://scihub.copernicus.eu/dhus/) as Ground Range Detected 136 

(GRD) products, which have already been focused, multi-looked, calibrated, and 137 

projected to ground range. Data were converted to gamma nought (γ0 dB), which are 138 

equally spaced radiometrically calibrated power images, and then orthorectified using 139 

the 10 m mesh DEM produced by the Geospatial Information Authority of Japan (GSI) 140 

and the Earth Gravitational Model 2008 (EGM2008). 141 
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Sentinel-2A is equipped with a MultiSpectral Instrument (MSI). Table 2 shows 142 

the spatial and spectral resolution of MSI bands. The three atmospheric bands were not 143 

used in this study because they are mainly dedicated to atmospheric corrections and 144 

cloud screening (Drusch et al., 2012). The only MSI data that available for the study 145 

area in 2016 was acquired on 11 August (Table 1(b)). The Level 1C top-of-atmosphere 146 

reflectance data were downloaded from EarthExplorer (http://earthexplorer.usgs.gov/). 147 

All bands are converted to 10 m resolution using Sentinel-2 Toolbox version 5.0.4. To 148 

compensate for spatial variability and to avoid problems related to uncertainty in 149 

georeferencing, average values of satellite data from multiple images were calculated 150 

for each field. 151 

<Table 1> 152 

<Table 2> 153 

2.4. Classification algorithm 154 

A stratified random-sampling approach was used to divide the dataset into three parts: a 155 

training set (50%), which was used to fit the models; a validation set (25%) used to 156 

estimate prediction error for model selection; and a test set (25%) used for assessing 157 

generalisation error in the final selected model (Hastie et al., 2009). The stratified 158 

random-sampling procedure was repeated ten times for more robust results. The 159 

following classification algorithms were used: support vector machine (SVM), random 160 

forests (RF), multilayer feedforward neural networks (FNN), and kernel-based extreme 161 

learning machine (KELM). All processes were implemented using R version 3.3.1 (R 162 

Core Team 2016). 163 

SVM partitions data using maximum separation margins (Cortes and Vapnik, 164 

1995). Since few real systems are linear, the ‘kernel trick’ was applied instead of 165 
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attempting to fit a non-linear model (Aizerman et al., 1964). We applied the Gaussian 166 

Radial Basis Function (RBF) kernel which has two hyperparameters that control the 167 

flexibility of the classifier: the regularization parameter C and the kernel bandwidth γ. 168 

High C values lead to high penalties for inseparable points, which may result in 169 

overfitting. In contrast, low C values lead to under-fitting. The γ value defines the reach 170 

of a single training example, with low values indicating ‘far’ and high values indicating 171 

‘close’ reach. 172 

RF is an ensemble learning technique that builds multiple trees based on random 173 

bootstrapped samples of the training data (Breiman, 2001). Nodes are split using the 174 

best split variable from a group of randomly selected variables (Liaw and Wiener, 2002). 175 

This strategy allows robustness against over-fitting and can handle thousands of 176 

dependent and independent input variables without variable deletion. The output is 177 

determined by a majority vote for the classification tree. The original RF has two 178 

hyperparameters: the number of trees (ntree) and the number of variables used to split 179 

the nodes (mtry). However, the best split for a node can increase classification accuracy 180 

(Ishwaran and Kogalur, 2007; Ishwaran et al., 2008; Sonobe et al., 2017b). Thus, three 181 

additional hyperparameters were considered: the minimum number of unique cases in a 182 

terminal node (nodesize), the maximum depth of tree growth (nodedepth), and the 183 

number of random splits (nsplit). 184 

FNN, which are neural networks trained to a back-propagation learning 185 

algorithm, are the most popular neural networks and are composed of neurons that are 186 

ordered into layers. The first is called the input layer, the last, the output layer, and the 187 

layers in between are hidden layers (Svozil et al., 1997). In the model, each neuron in a 188 

particular layer is connected with all neurons in the next layer. This connection is 189 
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characterised by a weight (wi) and a threshold coefficient (b). Thus, the basic unit is 190 

described as follows: 191 

𝑓(∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖 ), (1) 192 

where function f represents the activation function used throughout the network. As the 193 

rectified linear activation function demonstrated high performance in image recognition 194 

tasks and is, biologically, an accurate model of neuron activations (LeCun et al., 2015),  195 

it was applied in the present study. Dropout, a regularization method, was also used, as 196 

it was shown to be able to provide classifications. Tuning the learning rate and 197 

momentum is useful for overcoming poor convergence of standard back-propagation 198 

(Svozil et al., 1997). The training mode begins with an arbitrary sample size (batch size) 199 

and proceeds iteratively. Each iteration of the complete training set is called an epoch, 200 

and the network adjusts the weights in the direction that reduces the error in each epoch. 201 

During the iterative process, the weights gradually converge on a locally optimal set of 202 

values. Finally, the softmax function without an activation function or bias is applied to 203 

the net inputs. In the present study we used the following parameters: number of hidden 204 

layers (num_layer), number of units (num_unit), dropout ratio (dropout) for each layer, 205 

learning rate (learning.rate), momentum (momentum), batch size (batch.size), and 206 

number of iterations of training data needed to train the model (num.round). 207 

For extreme learning machine (ELM; Huang et al., 2004), it is not necessary to 208 

tune the initial parameters of the hidden layer, and almost all non-linear piecewise 209 

continuous functions can be used as hidden neurons. Therefore, if for N arbitrary 210 

distinct samples {(𝑥𝑖, 𝑡𝑖|𝑥𝑖 ∈ 𝑅𝑛, 𝑡𝑖 ∈ 𝑅𝑚, 𝑖 = 1,… ,𝑁)} , the output function in an ELM 211 

with hidden neurons is 212 

𝑓𝐿(𝑥) = ∑ 𝛽𝑖ℎ𝑖(𝑥) = ℎ(𝑥)𝛽𝐿
𝑖=1 , (2) 213 
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where β = {𝛽1, … 𝛽𝐿} is the vector of the output weights between the hidden layer of L 214 

neurons and the output neuron, and h(x) = {ℎ1(𝑥), … ℎ𝐿(𝑥)} is the output vector of the 215 

hidden layer with respect to input x. This maps the data from the input space to ELM 216 

feature space. To decrease training error and improve the generalization performance of 217 

neural networks, the training error and the output weights are simultaneously minimized 218 

using Karush-Kuhn-Tucker (KKT) conditions (Fletcher, 1981): 219 

𝛽 = 𝐻𝑇 (
1

𝐶𝑟
+ 𝐻𝐻𝑇)

−1

𝑇, (3) 220 

where H is the hidden layer output matrix, Cr is the regulation coefficient, and T is the 221 

expected output matrix of samples. When the feature mapping h(x) is unknown and the 222 

kernel matrix of ELM is based on Mercer’s conditions, the output function f(x) of the 223 

KELM can be written as follows: 224 

𝑓(𝑥) = [𝑘(𝑥, 𝑥𝑖), … , 𝑘(𝑥, 𝑥𝑁)] (
1

𝑐
+ 𝐻𝐻𝑇)

−1

𝑇, (4) 225 

where k() is the kernel function of hidden neurons (here we applied the Radial Basis 226 

Function (RBF) kernel). In our study, the regulation coefficient (Cr) and the kernel 227 

parameter (Kp) were tuned. 228 

Bayesian optimisation was applied for optimising the hyperparameters of the 229 

machine learning algorithms. 230 

2.5. Accuracy assessment 231 

As a first step, the ability to separate the six crop types statistically was 232 

evaluated using Jeffries-Matusita (J-M) distances (Richards, 1999). J-M distance values 233 

range from 0 to 2.0, with values greater than 1.9 indicating good separation, and values 234 

between 1.7 and 1.9 fairly good separation. 235 

The classification results were evaluated according to the two simple measures 236 

of quantity disagreement (QD) and allocation disagreement (AD), which provide an 237 
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effective summary of a cross-tabulation matrix. QD is defined as the difference between 238 

the reference data and the classified data based on a mismatch of class proportions, 239 

while AD is the difference between the classified data and the reference data due to 240 

incorrect spatial allocations of pixels in the classification. The sum of QD and AD 241 

indicates the total disagreement (Pontius and Millones, 2011). The results were further 242 

evaluated regarding their overall accuracy (OA), producer’s accuracy (PA), and user’s 243 

accuracy (UA). OA is the total classification accuracy. PA is obtained by dividing the 244 

number of correctly classified fields for each crop type by the number of reference 245 

fields. UA is computed by dividing the number of correctly classified fields for each 246 

crop type by the total number of fields classified as that crop type. McNemar’s test was 247 

applied to identify whether there were significant differences between the two 248 

classification results (McNemar, 1947). This test takes the lack of independent samples 249 

into account by comparing how each point was either correctly or incorrectly classified 250 

in two compared classifications. A chi-square value above 3.84 indicates a significant 251 

difference between the two classification results at a 95% significance level. 252 

The sensitivity of the classification models was determined using data-based 253 

sensitivity analysis (DSA). This simple method performs a pure black box use of the 254 

fitted models by querying the fitted models with sensitivity samples and recording their 255 

responses. DSA is similar to a computationally efficient one-dimensional sensitivity 256 

analysis (Kewley et al., 2000), where only one input is changed at a time and the others 257 

are kept at their average values. However, this method uses several training samples 258 

instead of a baseline vector (Cortez and Embrechts, 2013). 259 
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3. Results and discussion 260 

3.1. Acquired data and separability assessments 261 

Figure 3 shows the time series of gamma nought values (γ0) acquired from Sentinel-1A. 262 

The γ0 values of beetroot crops increased as crop height increased throughout the season, 263 

while germinations of beans and maize remained unconfirmed by 13 May. After 6 June, 264 

the increases in γ0 were confirmed with the growth of the crops. However, differences 265 

between bean and beetroot γ0 values decreased with plant growth. In potato fields, direct 266 

reflections from the pronounced furrow ridges (30–35 cm in height) resulted in a simple 267 

scattering pattern after 30 June, which led to high γ0 values (Figure 3). 268 

The main scattering pattern of wheat changed from double-bounce scattering to 269 

volume scattering from mid-May to June. Correspondingly, the γ0 values were relatively 270 

stable until harvesting. Initially the scattering pattern of grass was similar to that of 271 

wheat, however γ0 increased after the first harvest conducted between 30 June and 24 272 

July (Figure 3). Sentinel-1A data were thus useful for identification based on crop 273 

structure, since the total backscattering strength of the cropland is expressed as a 274 

function of direct backscattering strength from the ground, the stem-ground, the stem, 275 

the canopy-ground, and the canopy including multiple scattering within the canopy. 276 

<Figure 3> 277 

In contrast, reflectance from Sentinel-2A is shown in Figure 4. Significant differences 278 

in mean reflectance were found, except for the pairs of maize-beans for band 4, 279 

beetroot-maize for band 2, grass-beetroot for band 2, 3, 4, 5, 11 and 12, potato-beetroot 280 

for band 11and potato-grass for band 6, 7, 8 and 11 (p < 0.05, based on Tukey-Kramer 281 

test). Differences in reflectance were particularly clear between wheat and beans. Wheat 282 

harvesting was completed by 11 August, and thus wheat reflectance was similar to that 283 

of bare soil (although some residues were left in wheat fields), i.e., relatively high in 284 
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bands 2–5, 10, and 11. Other crops had similar spectral patterns but peaked around 285 

bands 7–8a. This feature was particularly obvious for beans, beetroot, and grass, which 286 

are late growing-season crops or crops that ripen early. 287 

<Figure 4> 288 

Separability analysis is important to assess the performance of training data. The 289 

separability levels of the two classes were evaluated based on the J-M values. Figure 290 

5(a) shows crop pairs with a J-M distance greater than 1.7 in at least one Sentinel-1A 291 

data set or one Sentinel-2A band, and Figure 5(b) shows pairs with a J-M distance 292 

below 1.0 in every data set and band. Distances above 1.7 were found between beans 293 

and wheat, beetroot and grass, beetroot and maize, beetroot and wheat, grass and potato, 294 

grass and wheat, maize and wheat, and potato and wheat. Distinguishing beetroot from 295 

wheat was particularly straightforward since ten data types illustrated the distinction, 296 

including VV polarisation (Sentinel-1A data) on 30 June and 24 July, and reflectance in 297 

bands 2, 4, and 6–12. The VV polarisation on 24 July was useful for discriminating 298 

between beans and wheat, beetroot and grass, beetroot and wheat, grass and potato, 299 

maize and wheat, and potato and wheat. In contrast, VV polarisation on 13 May and 6 300 

June and reflectance in band 3 were unsuitable for distinguishing crop types. 301 

3.2. Accuracies and statistical comparison 302 

Optimal values for combinations of parameters were (C, γ) = (29, 2-7) for SVM, (ntree, 303 

mtry, nodesize, nodedepth, nsplit) = (864, 6, 6, 21, 4) for RF, and (Cr, Kp) = (221, 214) 304 

for KELM. Two hidden layers were suitable for FNN with (num_unit of first layer, 305 

num_unit of second layer, dropout, learning.rate, momentum, batch.size, num.round) = 306 

(107, 257, 0.270, 135, 0.959, 21, 0.194). Accuracy results are tabulated in Table 3 and 307 

McNemar’s test results are shown in Table 4. 308 

<Table 3> 309 
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<Table 4> 310 

Although J-M distance values between some crop combinations were lower than 311 

1.0, the PAs and UAs derived using the machine learning algorithms were greater than 312 

0.9, excepting those of SVM (PA and UA for maize were 0.849 and 0.882, respectively). 313 

OAs were 96.0% for SVM, 95.7% for RF, 96.0% for FNN, and 96.8% for KELM; thus 314 

all machine learning algorithms performed well in classifying agricultural crops. 315 

However, the classification results were significantly different from each other based on 316 

McNemar’s tests (p < 0.05, Table 4). Classification results by KELM (Figure 6) had the 317 

best OA and AD+QD, although FNN had a better QD value. FNN performed well for 318 

identifying wheat, which covered approximately 30% of the cropland, while showing 319 

relatively poor performance when identifying grass (UA of grass was 0.939). This led to 320 

a mismatch of class proportions between the reference data and the classification data. 321 

Figure 7 shows the relationship between field area and misclassified field for each 322 

algorithm. More than 90% of the misclassified fields were less than 700 a in area. and 323 

50.9% (FNN) –78.1% (RF) of misclassified fields were below 200 a. Except for use 324 

with grasslands, KELM was the most robust algorithm for classifying smaller fields. 325 

Since grasses cultivation employs fewer controls, a lot of weeds were present in 326 

grasslands. As a result, variation in spectral features were larger here than in other crop 327 

types, causing misclassifications of relatively larger fields. FNN in particular performed 328 

unsatisfactorily when identifying grasslands, with 84.2 % of misclassified fields 329 

consisting of grasslands. This percentage was much lower for the other algorithms, from 330 

35.5% (KELM) to 26.3% (RF). 331 

Overall, identifying maize fields was difficult due to the small number of fields 332 

and the similarity in their reflectance and γ0 to those of bean fields (Figure 5). SVM 333 
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classified 62.5% of omissions in maize fields as beans; KELM, 75.0%; RF, 71.4%; and 334 

FNN, 25% (here maize fields were mostly classified as grassland). 335 

In contrast, identifying wheat fields was straightforward due to the large 336 

differences between growth stages when compared to other crops; in addition, 337 

cultivated wheat fields were already present at the acquisition date of Sentinel-2A. As a 338 

result, only 1.1% (FNN) –7.9 % (SVM) of the misclassified fields were wheat fields, 339 

the lowest error rate for each algorithms Beetroot was also easy to identify because it 340 

had high productivity in mid-August and was the only vegetation present during its 341 

growing season. In addition, the structure of beetroot (leaf rosettes) produced a simple 342 

scattering pattern easy to identify from VV polarization data. Therefore, crop pairs with 343 

J-M distances above 1.7 always involved beetroot, and beetroot was responsible for 344 

only 2.3% (FNN) –13.2 % (SVM) of the misclassified fields. 345 

<Figure 6> 346 

Table 5 shows the accuracy results achieved by KELM using three different 347 

satellite datasets: I) five Sentinel-1A images, II) one Sentinel-2A image and III) merged 348 

data. When using only Sentinel-1A data (in the present study, only VV polarization 349 

data), it was impossible to identify maize fields and most were misclassified as bean 350 

fields, which is also shown by the pair’s low J-M distance (0.015–0.161). Although 351 

dataset II was already much superior to dataset I, classification results were further and 352 

significantly improved (p < 0.05, based on McNemar’s test) when both were combined 353 

into dataset III. 354 

Table 6 summarises many of the studies that have been undertaken for 355 

classification of crop types using satellite data of medium spatial resolution (less than 356 

30 m). Although conditions such as study area and crop type in the present study differ 357 

from those in previous studies, study areas had similar cultivation styles and included 358 
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the same crops (maize [corn], soybean, beetroot [sugar beet], potato, grass and wheat).   359 

Compared to those studies that used the same algorithms as those evaluated in the 360 

present study, our OA values were larger. This indicates the large potential of the 361 

combination of Sentinel-1A and 2A data and particularly of KELM. The approach 362 

proposed in the present study may thus be useful for other agricultural regions. 363 

Some studies have reported that the integration and comparison of microwave 364 

and optical remote sensing images is useful for land use/land cover classifications (Villa 365 

et al., 2015; Hutt et al., 2016). This conclusion was confirmed in the present study; 366 

however, we used C-band SAR data while the above authors used X-band SAR data. 367 

The dependence of these conclusions on the specific type of optical data should be 368 

explored in future research. 369 

Classification problems related to the borders of fields remain to be resolved. To 370 

make good use of remote sensing data in geographic object-based image analysis 371 

(GEOBIA), very fine resolutions of less than 1 m are required (Baker et al., 2013). 372 

Some recent studies have however shown the potential of GEOBIA in conjunction with 373 

Landsat-8 OLI or Sentinel-2A MSI data (Immitzer et al., 2016; Novelli et al., 2016). 374 

With the available information, it is difficult to evaluate the degree of certainty related 375 

to the edges of the provided shape files provided. Future research is planned to address 376 

this question. 377 

<Table 5> 378 

3.3. Sensitivity analysis 379 

To clarify which variables contributed to the high overall accuracy of each algorithm, a 380 

data-based sensitivity analysis (DSA) was conducted. The VV polarisation data 381 

acquired on 24 July and band 4 showed the greatest potential for crop classification, 382 

corroborating the results of J-M distance analyses (Figure 8). There was also support for 383 
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the strong dependence identified between the two datasets for RF (Figure 8). Excluding 384 

the VV polarisation data reduced the OA from 95.7 to 94.8%, a significant difference (p 385 

< 0.05, McNemar’s test). There was an increase in the importance of band 4 (from 16.2 386 

to 21.7%) and the VV polarisation data (from 9.5 to 19.4%). A similar tendency was 387 

identified for FNN; in this case, OAs decreased from 96.0 to 95.2%. While the VV 388 

polarisation data acquired on 24 July also had some influence on the KELM 389 

classification, high performance could still be yielded in its absence (OAs decreased 390 

from 96.8% to 96.5%). Excluding it did not substantially influence KELM classification 391 

accuracy. The most notable change was observed within band 6 (importance increased 392 

from 6.3 to 8.9%). However there was little dependence on this band (which had a more 393 

important role for SVM classification),  and OA was still 96.0% when the VV 394 

polarisation data were excluded. 395 

These results suggest some vulnerabilities of RF in cross-year training and 396 

classification, which is required for saving some manual effort related to collecting 397 

training data. However, the other algorithms, especially KELM, might show high 398 

performances in this area. 399 

4. Conclusions 400 

Sentinel-1A and 2A data are available free of charge and could be a valuable tool for 401 

managing agricultural fields. Some local governments in Japan are already investigating 402 

alternatives to manual documentation of field properties (including crop types and 403 

locations) in the interest of reducing labour costs. This study investigates the differences 404 

in classification accuracies among four classification algorithms (SVM, RF, FNN, and 405 

KELM) using five Sentinel-1A images and one Sentinel-2A image with the aim of 406 

determining the best method to generate crop maps. 407 
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 We found that KELM generated the most accurate crop classification map for 408 

the study area, with an overall accuracy of 96.8%. VV polarisation data acquired on 24 409 

July played the most important role in the RF and KELM classifications. In contrast, 410 

FNN was mostly dependent on band 4 data and SVM on band 6 data. KELM showed 411 

high flexibility in allowing for crop classification of almost undiminished quality (as 412 

determined by OA) even under data reduction by exclusion of the VV polarisation data. 413 

This implies that use of this algorithm would confer some robustness towards possible 414 

future sensor degradation in the satellites. 415 

The results of this study verify the validity of this remote sensing method, 416 

demonstrate Sentinel-1A and 2A’s remarkable potential for crop classification and 417 

suggest a great potential for expanded future use of data from both satellites.  418 
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Tables 617 

Table 1. Characteristics of the satellite data used in this study 618 

(a) Sentinel-1A 619 

Acquisition 

date 

Incidence angle (º) 
Pass direction 

Cycle 

number 

Orbit 

number Near Far 

13-May-16 30.68  45.86  DESCENDING 78 11245 

6-Jun-16 30.67  45.87  DESCENDING 80 11595 

30-Jun-16 30.67  45.86  DESCENDING 82 11945 

24-Jul-16 30.67  45.86  DESCENDING 84 12295 

17-Aug-16 30.67  45.86  DESCENDING 86 12645 

 620 

(b) Sentinel-2A 621 

Acquisition date Sun Zenith Angle (º) 
Sun Azimuth 

Angle (º) 
Orbit number 

11-Aug-16 30.35  151.29  74 

 622 

  623 
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Table 2. Spatial and spectral resolution of MSI data. 624 

Band Spatial Resolution (m) Central Wavelength (nm) 
Bandwidth 

(nm) 

Band 1 60 443 20 

Band 2 10 490 65 

Band 3 10 560 35 

Band 4 10 665 30 

Band 5 20 705 15 

Band 6 20 740 15 

Band 7 20 783 20 

Band 8 10 842 115 

Band 8a 20 865 20 

Band 9 60 945 20 

Band 10 60 1380 30 

Band 11 20 1610 90 

Band 12 20 2190 180 

 625 

  626 



26 

 

Table 3. Accuracy results for four classification algorithms: support vector machine 627 

(SVM), random forests (RF), multilayer feedforward neural networks (FNN), and 628 

kernel-based extreme learning machine (KELM). PA: producer’s accuracy; UA: user’s 629 

accuracy; OA: overall accuracy; AD: allocation disagreement; QD: quantity 630 

disagreement 631 

 
SVM RF FNN KELM 

PA 
    

Beans 0.974  0.948  0.963  0.953  

Beetroot 0.959  0.967  0.967  0.992  

Grassland 0.933  0.913  0.933  0.926  

Maize 0.849  0.868  0.849  0.925  

Potato 0.946  0.962  0.946  0.962  

Wheat 0.990  0.994  0.994  0.997  

UA 
    

Beans 0.916  0.923  0.944  0.958  

Beetroot 0.967  0.992  0.975  0.984  

Grassland 0.972  0.971  0.939  0.972  

Maize 0.882  0.902  0.900  0.907  

Potato 0.961  0.926  0.939  0.962  

Wheat 0.994  0.981  0.994  0.978  

     

OA 0.960  0.957  0.960  0.968  

AD 2.714  2.818  3.445  2.401  

QD 1.253  1.461  0.522  0.835  

 632 

  633 
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Table 4. Chi-square values from McNemar’s test performed on results of four 634 

classification algorithms: support vector machine (SVM), random forests (RF), 635 

multilayer feedforward neural networks (FNN), and kernel-based extreme learning 636 

machine (KELM)  637 

 
SVM RF FNN KELM 

SVM X 12.17  6.62  19.47  

RF 
 

X 12.30  13.15  

FNN 
  

X 18.20  

KELM 
   

X 

Note: A chi-square value ≥ 3.84 indicate a significant difference (p < 0.05) between two 638 

classification results. 639 

  640 
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Table 5. Comparison of accuracy for six crop types achieved by KELM using three 641 

different satellite dataset. PA: producer’s accuracy; UA: user’s accuracy; OA: overall 642 

accuracy; AD: allocation disagreement; QD: quantity disagreement 643 

  Sentinel-1A Sentinel-2A Sentinel-1A+2A 

PA 
   

Beans 0.817  0.911  0.953  

Beetroot 0.746  0.992  0.992  

Grassland 0.779  0.933  0.926  

Maize 0.038  0.943  0.925  

Potato 0.808  0.962  0.962  

Wheat 0.965  0.990  0.997  

UA 
   

Beans 0.768  0.972  0.958  

Beetroot 0.645  0.992  0.984  

Grassland 0.823  0.979  0.972  

Maize 0.500  0.926  0.907  

Potato 0.772  0.880  0.962  

Wheat 0.907  0.972  0.978  

    
OA 0.806  0.959  0.968  

AD 13.466  2.088  2.401  

QD 5.950  1.983  0.835  

 644 

  645 
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Table 6. Summary of overall accuracy in reviewed studies 646 

Sensor Algorithm Location Class 
Best overall 

accuracy 
Reference 

Landsat 8 OLI, 

COSMO-

SkyMed 

Classificati

on and 

regression 

tree 

Northern 

Italy 

Maize, Rice, 

Soybean, Winter 

crop, Double 

crop, Forages, 

Forestry-

woodland 

0.918 
(Villa et al., 

2015) 

Kompsat-2 

Support 

vector 

machine 

Northwest 

Turkey 

Corn, Pasture, 

Rice, Sugar Beet, 

Wheat, Tomato 

0.9332 
(Ozdarici-Ok et 

al., 2015) 

TerraSAR-X 
Random 

forests 

Northeaster

n Germany 

Reed, Water, 

Meadow, 

Deciduous, 

Coniferous forest 

0.9190 
(Heine et al., 

2016) 

TerraSAR-X, 

FORMOSAT-2 

Optimized 

Maximum 

Likelihood 

Northeast 

China 

Coniferous 

Forest, 

Decideous 

Forest, Maize, 

Pumpkin, Rice, 

Soya, Urban, 

Concrete, Water 

0.92 
(Hutt et al., 

2016) 

RADARSAT-2 
MTSBTCS-

MDPS 

Southwester

n Ontario, 

Canada 

Corn, Soybean, 

Wheat, Grass, 

Forest, Urban 

0.875 
(Huang et al., 

2017) 

COSMO-

SkyMed 

Support 

vector 

machine 

Lower 

Austria 

Carrot, Corn, 

Potato, Soybean, 

Sugar beet 

0.845 
(Guarini et al., 

2015) 

Landsat 8 OLI 

Support 

vector 

machine 

Ukraine-

Poland 

border 

Artificial/urban, 

Bare, Grassland 

or Herbaceous 

cover, Woodland, 

Wetland, Water 

0.89 
(Goodin et al., 

2015) 

Landsat 

Thematic 

Mapper 

Classificati

on and 

regression 

tree 

Arizona 

Alfalfa, Cotton, 

Grain, Fallow, 

Corn, Melon, 

Orchards/citrus, 

Sorghum 

0.92 
(Hartfield et al., 

2013) 

Landsat 8 OLI 
Maximum 

Likelihood 

Northern 

Italy 

Maize, Rice, 

Soybean, Winter 

crops, Forage 

crops 

0.927 
(Azar et al., 

2016) 

TerraSAR-X 
Random 

forests 
Japan 

Beans, Beet, 

Grass, Maize, 

Potato, Winter 

wheat 

0.929 
(Sonobe et al., 

2014) 

MTSBTCS-MDPS: Multi-temporal supervised binary-tree classification scheme -647 

Maximum power difference of polarization signature (MDPS) 648 

  649 
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Figures 650 

 651 

 652 

Figure 1. The study area in Hokkaido, Japan. Enlarged map shows Sentinel-1A VV 653 

polarization data acquired on 24 July, 2016. 654 
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 655 

Figure 2. Crop growth stages in the study area. 656 
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 657 

Figure 3. Boxplots of gamma nought (γ0) values acquired from Sentinel-1A on (a) 13 658 

May, (b) 6 June, (c) 30 June, (d) 24 July, and (e) 17 August. 659 

(a) 13 May (b) 6 June

(c) 30 June (d) 24 July

(e) 17 August
Beans Beetroot Grass Maize Potato Wheat

Beans Beetroot Grass Maize Potato Wheat
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 660 

Figure 4. Boxplots of reflectance for each crop in (a) band 2, (b) band 3, (c) band 4, (d) 661 

band 5, (e) band 6, (f) band 7, (g) band 8, (h) band 8a, (i) band 11, and (j) band 12. The 662 

data for these plots were obtained from Sentinel-2A, taken on 11 August 2016. 663 

(a) Band 2 (b) Band 3

(c) Band 4
(d) Band 5

(e) Band 6 (f) Band 7

(g) Band 8 (h) Band 8a

(i) Band 11 (j) Band 12

Beans Beetroot Grass Maize Potato Wheat Beans Beetroot Grass Maize Potato Wheat
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 664 

Figure 5. Jeffries-Matusita (J-M) distance values calculated for all potential crop pairs 665 

using all available data. The heavy horizontal line represents the J-M distance value of 666 

1.7, the solid lines indicate J-M distance values greater than 1.7, and the dotted lines 667 

represent J-M distance values less than 1.7. 668 
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 669 

Figure 6. Crop classification map generated by KELM. 670 
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 671 

Figure 7 Relationship between field area and misclassified fields. 672 
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 674 

Figure 8. Data-based sensitivity analysis (DSA) results for each classification algorithm. 675 
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