
Ransomware Detection Considering User's
Document Editing

言語: eng

出版者:

公開日: 2018-09-11

キーワード (Ja):

キーワード (En):

作成者: Honda, Toshiki, Mukaiyama, Kohei, Shirai,

Takeharu, Ohki, Tetsushi, Nishigaki, Masakatsu

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10297/00025704URL

Ransomware Detection

Considering User’s Document Editing

Toshiki Honda

Graduate School of Integrated Science and

Technology

Shizuoka University

Shizuoka, Japan

Kohei Mukaiyama

Graduate School of Integrated Science and

Technology

Shizuoka University

Shizuoka, Japan

Takeharu Shirai

Graduate School of Integrated Science and

Technology

Shizuoka University

Shizuoka, Japan

Tetsushi Ohki

Graduate School of Science and Technology

Shizuoka University

Shizuoka, Japan

ohki@inf.shizuoka.ac.jp

Masakatsu Nishigaki

Graduate School of Science and Technology

Shizuoka University

Shizuoka, Japan

nisigaki@inf.shizuoka.ac.jp

Abstract— The number of victims suffering from crypto

ransomware is increasing. Thus far, methods for detecting

ransomware when it accesses target files or when it uses

encrypting APIs, have been studied. However, the former

method assumes it will be operated within an analysis sandbox,

and the latter method can be avoided if the ransomware uses its

own encrypting functions. To protect users, a detection method

should be able to detect ransomware in the user’s real-time

environment and is difficult for the ransomware to avoid

detection. This paper proposes a detection method that satisfies

those requirements by using human file-operating characteristics

as a whitelist. We evaluate the effectiveness of our prototype

method, which inspects the consistency between the displayed

documents and the user’s editing operations.

Keywords—ransomware, Encryptor, file protection, document

editing, detection

I. INTRODUCTION

Ransomware attacks are occurring all over the world. The
amount of crypto ransomware has grown in recent years.
Crypto ransomware encrypts the victim’s files and then
demands a ransom for decrypting them. In several cases,
victims have paid the ransom [1][2]. It is urgent to take
measures to detect crypto ransomware. In previous studies,
methods for detecting ransomware when it accesses target files
or when it uses encrypting APIs, have been proposed. However,
the former method is assumed to operate within an analysis
sandbox and thus the latter method can be avoided if the
ransomware uses its encrypting functions. To protect users, it is
necessary to meet the following two requirements: (i) The
ransomware must be detected in the user’s real-time
environment, and (ii) it should be difficult for the ransomware
to avoid detection.

To solve these problems, we focus on the document-editing
differences between humans and ransomware. Ransomware
tries to encrypt files so as not to be noticed by the victim,
regardless of the victim’s actions. Therefore, its behavior
reveals characteristics different from humans. In this paper, as

the first step to our goal, we propose a new detection method
that inspects the consistency between the displayed document
contents and the user’s document editing operations. By using
human file-operating characteristics as a whitelist, the
proposed method achieves to detect ransomware in the user’s
real-time environment and be difficult for the ransomware to
avoid detection.

II. RANSOMWARE

Recent ransomware is generally classified into two types
according to its attack method [3][4]: Locking and Crypto.

A. Locking Ransomware (a.k.a. Locker)

Locker locks a victim’s computer, for instance, filling up
the entire screen of the terminal with ransomware. Then
demands a ransom to unlock it. In most cases, the victim can
unlock it using utilities that disables the launching of Locker
[5]. Booting the infected device into safe mode can also be
used as a symptomatic treatment because the launching of
third-party software is disabled in safe mode [6].

B. Crypto Ransomware (a.k.a. Encryptor)

Encryptor encrypts the victim’s file or hard drive and
demands a ransom for decrypting. An example of an attack is
as follows.

1. Encryptor infects the victim’s PC through a drive-by
download attack or an email attachment.

2. It encrypts files in the background without the victim’s
awareness.

3. After the encryption is completed, the ransomware changes
the wallpaper to an image that showing a ransom note and
demands a ransom.

A decryption key is required to decrypt this type of
encrypted files. Security vendors and the No More Ransom
Project [7] analyze ransomware and, in some cases, publish a

decryption utility. If the utility is not published, however, it is
impossible to decrypt the encrypted files without payment.

In addition, some ransomware removes the Volume
Snapshot Service (VSS) files, which store periodic backup
(a.k.a. shadow copies), so that victims cannot restore their
computers [8]. The results of an Encryptor are more difficult to
restore than a that of a Locker; thus, its threat is growing. In
this paper, we focus on studying a method for detecting
Encryptor.

III. PREVIOUS WORKS

A. UNVEIL

UNVEIL is a detection method suggested by Kharraz et al.
that detects both Locker and Encryptor [9]. It utilizes file
access patterns to detect ransomware. First, it generates an
analysis environment that includes bait files that are
ransomware targets. In this environment, file-system activities
can be monitored by API hooking. Next, the malware targeted
for analysis is launched in the environment. If UNVEIL finds
following three situation, then the malware is detected as
ransomware: multiple I/O requests related to writing or
deleting the bait files; a significant increase in the entropy
between read and write data buffers; or the creation of new
high entropy files.

It is worth noting that this method cannot detect before files
are encrypted. When this method detects an ransomware some
files are already encrypted and/or locked. That is why,
UNVEIL needs to assume to be operated in an analysis
sandbox. Moreover, in this method, the ransomware can avoid
detection by encrypting only a specific part of the file or
destroying the file structure by swapping parts of the file.

B. Monitoring API Calls Relating to Encryption

Shigeta et al. found that Locky and CryptoWall, major
Encryptors, use Microsoft CryptoAPI or OpenSSL. They
suggested monitoring API calls that relate to encryption to
detect the attacks[10]. In this method, Encryptors are detected
when they have attempted to start file encryption. Files are
protected by stopping the API execution by the operating
system (OS) as soon as detection occurs. That is why, this
method can be operated in the user’s real-time environment. In
this method, however, Encryptors can avoid detection by using
other encryption libraries or implementing original encryption
codes.

IV. DETECTION METHOD

A. Concept

In this section, we explain our proposed method. As
mentioned in Section II.B, our method targets Encryptor
because of its restoration difficulty. In addition, as described in
Section III, previous methods have two problems: (i) UNVEIL
is not be able to be operated in the user’s real-time
environment since it cannot detect Encryptors before files are
encrypted, and (ii) the effectiveness of both methods may be
limited since there are possible ways for Encryptors to avoid
detection. In this paper, we aim for a solution to these problems

and propose a detection method that uses user’s document-
editing characteristics as a whitelist.

By focusing on user’s document-editing characteristics, we
can detect Encryptors when a non-human Encryptor tries to
manipulate a document. If detection occurs while an Encryptor
is editing a document, then immediately the subsequent file
access to reflect the contents to be edited on the document file
is banned. Therefore, this type of detection method can protect
the document file in the user’s real-time environment.

The problem of ransomware avoiding detection is
improved by adopting a whitelist-based detection method.
Previous studies used a blacklist detection method that targeted
ransomware features. In that method, the ransomware could
avoid detection by finding a single loophole. In contrast,
whitelist detection methods detect all attacks not included in
the whitelist. Hence, it is more difficult for ransomware to
avoid detection.

B. “Humanness” and “Ransomwareness”

When a user edits a document, the window of the software
used to edit the document file is shown on the monitor. For
example, when a user edits a text file, the Notepad program
and the contents of the text file are shown. Fig. 1 shows an
example of a user editing a document using Notepad. The user
cannot edit a document without displaying the window and the
file content. In this paper, we define this characteristic as
“humanness.”

In contrast, Encryptors must run in the background to
encrypt a large number of document files without being noticed
by the user. In other words, Encryptors do not show the
window nor the document file content on the monitor. In this
paper, we define this characteristic as “ransomwareness.”

The critical characteristic is whether the software shows the
content of the document files being edited. We propose a real-
time Encryptor detection method that can proactively protect
document files using these characteristics.

Fig. 1. Example of a display when a user is editing

C. Detection Method

1) Humanness Detection
In this paper, “humanness in document editing” is specified

by the following two user’s characteristics. When the detection
method detects any file operation (see Section IV.A.1), it
checks these characteristics (a) and (b). They are used as

whitelist to determine whether the file operation is being
carried out by a user. To be explicit, as long as both of (a) and
(b) are observed, the detector determines the current operator
as a human.

(a) The monitor displays the document-editing software
in an easy-to-see window size.

(b) The monitor displays document-editing software that
contains the content of the document file.

As to (a), we define the minimum window size of Windows
7’s Aero Snap feature as an easy-to-see size [11]. When a user
drags a window to the corner of the screen, the window is
resized to a quarter of the screen, as shown in Fig. 2. The size
of the window in Fig. 2. is Aero Snap’s minimum window size.

Fig. 2. Example of Aero Snap when a user drags a window to the monitor’s

upper right corner

As to (b), to check whether the window shows the
document content, we classify the document as WYSIWYG or
Non-WYSIWYG.

WYSIWYG (What You See Is What You Get).
WYSIWYG document files contain font and layout
information and the word-processing software parses and
displays them. A Microsoft Word file is a typical example. Our
method checks whether the file content is displayed in monitor
by matching a screenshot image of the word-processing
software window (hereafter, display image) and a simulated
image reconstructed from the document file (hereafter,
reconstructed image).

Non-WYSIWYG. Non-WYSIWYG document files do not
contain their font and layout information. Therefore, the file
content displayed by the word-processing software depends on
its own settings, e.g., word wrap and fonts. A plain text file is a
typical example. In our proposal, to acquire the text displayed
on the window, we first take a screenshot image (display
image), and then extract the text by processing the display
image with optical character recognition (OCR). Our method
checks whether the file content is displayed in monitor by
matching the text extracted from display image and the text
contained in the document file.

2) Detection Timing
Encryptor uses the following three I/O access patterns

shown in Fig. 3 [9]. Each access pattern is as follows:

(1) Encryptor reads target file x and overwrites it with an
encrypted version.

(2) Encryptor reads target file x and creates an encrypted
version x.locked. Then, it deletes file x.

(3) Encryptor reads target file x and creates an encrypted
version x.locked. Then, it overwrites file x it with an
empty or garbled data to erase the content of file x.

Open

Read

Write

Close

File x

overwrite

Open

Read

Close

File x

read

Open

Write

Close

File x.locked

encrypt

Open

Delete

Close

File x

delete

Open

Read

Close

File x

read

Open

Write

Close

File x.locked

encrypt

Open

Read

Write

File x

overwrite

Close

（1） （2） （3）

Fig. 3. Encryptor’s I/O access patterns [9]

All of these patterns destroy the target file by deleting or
overwriting file x. Therefore, an encryption by Encryptor can
be prevented beforehand by prohibiting delete or overwrite
operations for the file x if either of the behaviors (a) or (b)
described in Section IV.C.1 is not observed. By doing so, it is
expected that our method can achieve real-time detection in a
user environment.

There are ransomware that also renames files before and
after encryption. Therefore, in addition to the file x, it is
necessary to monitor delete or overwrite operations for the
renamed file x.renamed. Furthermore, the ransomware can
generate an external process, such as PowerShell, to handle a
part of its processing. Therefore, in the proposed method, it is
essential to monitor all processes generated by the ransomware.

V. IMPLEMENTATION OF THE PROPOSED METHOD

We implemented a prototype of Encryptor detection
program. As described in Section IV.C.1), documents are
classified into WYSIWYG and Non-WYSIWYG, and there are
a wide variety of file types in each of them. However, in order
to simplify the implementation, the current detection program
is only compatible with the detection of Encryptors targeting
text files (*.txt). In addition, as described in Section IV.C.2, the
proposed method needs to monitor all processes generated by
the ransomware. However, also in order to simplify the
implementation, the current detection program is only
compatible with the detection of Encryptors operating in a
single process.

A. Judge Whether the File Content Is Displayed

To determine whether the software is displaying the text
content of file x, the following steps are required.

1. Obtain the character strings displayed on the monitor.

2. Extract the corresponding part of the file x.

3. Calculate the similarity between step 1 and step 2.

1) Obtain Character Strings Displayed on Monitor
To obtain character strings from the software window, the

display image must be converted into character strings.
Therefore, we employ OCR (Optical Character Recognition)
[12] and extract the character strings from the display image.
We need to understand here that OCR sometimes fails to
convert them partly. Misrecognition will occur also because the
software displays more than the file content (e.g., ruler, menu
bar).

2) Extract Corresponding Part of File x
For a longer document file, the software shows the file

content page by page, or part by part, on the monitor.
Therefore, we must determine which character string in the
document file x is displayed on the monitor before inspecting
the consistency between the displayed document contents and
the user’s document editing operations. We employ the LCS
(Longest Common Subsequence) [13] from the Diff utility to
look for the corresponding part in the file contents. Fig. 4(i)
shows an example of the result of character string extraction
using LCS.

3) Calculate Similarity
We employ the Jaro-Winkler distance [14] to calculate the

similarity between the character string obtained by OCR (Step
1) and the displayed file content (Step 2). The Jaro-Winkler
distance represents the distance between two strings from 0
(least similar) to 1 (most similar). Fig. 4(ii) shows an example
of the result of the Jaro-Winkler distance calculation.

We conducted a preliminary experiment to determine the
similarity threshold. In the preliminary experiment, we
observed the Jaro-Winkler distance value in both cases that the
correct file content is displayed and incorrect file content is
displayed using randomly chosen 10 text files. The maximum
value was about 0.78 when the correct file content was
displayed, and the maximum value was about 0.66 when
incorrect file content was displayed. Therefore, we set the
threshold as 0.7.

Content of the entire file

Screen Display

* Text with a yellow background is extracted by LCS

(i) LCS(ii) Jaro-Winkler Distance

Fig. 4. Example of checking whether the file content is displayed

B. Detection Program

The detection program is a resident program that monitors
all API calls made by each software, and judges whether or not
the software is an Encryptor. More specifically, with the timing
when a software executes a delete/overwrite operation for an
existing file or the renamed file (Section IV.C.2), it checks
whether the software’s behavior deviates from the humanness
characteristic (Section IV.C.1) using the Jaro-Winkler distance
between displayed content and file content (Section V.A).
When a deviating software is detected, the detection program
identifies it as Encryptor and prevents it from deleting or
overwriting the files, and immediately displays an alert.

To monitor API calls from the target software, the detection
program injects a DLL (dynamic-link library) file into each
software process [15]. The detection method is composed of a
DLL injector, which injects a DLL into the software, and a
DLL file, which monitors API calls and detects Encryptors
(Fig. 5).

Fig. 5. Outline of the detection program

1) DLL Injection
The DLL injector monitors new processes every 500 ms,

and injects a DLL file into them.

2) Operations of DLL File
The DLL file operates as described below.

(1) The detection program monitors API calls made by
the process for reading any existing text file. (Please
remember that our current detection program tries to
detect Encryptors targeting text files.) When a text file
is renamed by the process, the detection program
considers the renamed file as a text file and includes
the renamed file in the target files to be monitored.

(2) When the process reads a text file, the detection
program reads the same text file and obtains the
character strings of the file content.

(3) The detection program takes a screenshot of the
software window and converts it into character strings
using OCR. In addition, the detection program judges
whether the monitor is displaying the document-
editing software in an easy-to-see window size as
described in Section IV.C.

(4) The detection program compares the character strings
obtained in (2) with the character strings extracted in
(3), using the method shown in Section V.A, and

calculates the Jaro-Winkler distance to see whether
the text file is displayed on the screen.

(5) If the detection program judges that the process is not
Encryptor, the process can delete or overwrite the file
read in (1). If the detection programs judges the
process as an Encryptor, deleting and overwriting are
prohibited.

Ideally, these operations (1)-(5) should be executed when a
process requests a file deletion or overwrite. However, it turned
out that processing (2)-(4) took an amount of time. Therefore,
in our detection program, the operations are started when any
process generates a file-read API call. Thus, these operations
are conducted before a file deletion/overwriting occurs, and if
once Encryptor is detected, any subsequent executed file
deletion and overwriting made by the process (Encryptor) are
forbidden.

VI. EVALUATION

We performed detection experiments and false-detection
experiments and evaluated the effectiveness of the proposed
method.

A. Detection Experiment

1) Purpose
We evaluate the effectiveness of the proposed detection

method by checking whether Encryptors can encrypt files
while the detection program is running.

2) Experimental Procedure
We observed what happens to text files on an infected PC

when the detection program was running and when it was not
running. We used Hybrid Analysis [16] to collect ransomware
samples, namely, Cerber, Jaff, WannaCry, and Locky.

This experiment was conducted on QEMU, which is a
virtual PC emulator. Table I shows the experimental
environment. Using a blind text generator [17], we created 40
text files with various combinations and numbers of characters.
Fig. 6 shows 1000.txt, an example of the created text files. We
placed 20 text files and one folder on the desktop and the
remaining 20 text files inside the folder. A folder named
“Prog,” containing the detection program, was also located on
the desktop. To prevent the detection program from being
encrypted during ransomware operation, the “Prog” folder was
set to “read only.” All ransomware samples are located in the
Download folder.

TABLE I. DETECTION EXPERIMENT ENVIRONMENT

QEMU 2.5.0 Debian 1:2.5+dfsg-5ubuntu10.7

Guest OS Windows 8.1
Resolution 1,024×768

Memory 2,048 MB

Internet Connection
None

(Network Adaptor is connected)

OS Language English

Windows Update Until 2017/2/3 17:00

Windows Defender Disabled

Fig. 6. Part of the file contents of 1000.txt

3) Results
Table II shows the results when text is infected with each

Encryptor. The detection program detected Cerber and Jaff,
and it was able to prevent those file encryptions. However,
WannaCry and Locky could not be detected or prevented. Due
to page limit, here provide more details about Cerber and
WannaCry.

TABLE II. RESULTS FOR EACH FAMILY OF DETECTION EXPERIMENTS

Family
Generates

other processes

Detection Avoid

Encryption

Avoid Rename

after Encryption

Cerber ✓ ✓

Jaff ✓ ✓

WannaCry ✓

Locky ✓

During our experiment, in case the PC was infected with

Cerber while the detection program was not running, the file
names of two text files, including 1000.txt, were changed. In
addition, the wallpaper was changed to an image demanding a
ransom (Fig. 7). We observed the contents of the two renamed
files with Notepad. The beginning part of the file was the same
as before running Cerber, but the rest had been encrypted. Fig.
8 shows JrofdGp16O.a49e, which was a file renamed 1000.txt.
Comparing Fig. 6 with Fig. 8, it can be observed that the
content of 1000.txt was encrypted.

Fig. 7. Desktop after ransomware infection

Fig. 8. Part of the file contents of JrofdGp16O.a49e

When the PC was infected with Cerber while the detection
program was running, a message announcing that ransomware
was detected was displayed. Cerber was able to rename two
text files, including 1000.txt, and change the wallpaper the
same as mentioned earlier. However, we observed that the two
renamed files had the same file contents as before the infection.
Fig. 9 shows R2AlxP3MQu.a49e, which was a file renamed
1000.txt. Comparing Fig. 6 with Fig. 9, we observed that the
content of 1000.txt was not encrypted, and the file contents
were successfully protected.

Fig. 9. Part of the file contents of R2AlxP3MQu.a49e

To clarify the reason why our detection program failed
detection of WannaCry and Locky, we investigated how
WannaCry encrypts files and found that WannaCry do not
operate in a single process. WannaCry invokes a system
process and get help with (a part of) crime from the co-process.
It is impossible to hook system processes by DLL injection and
therefore the current detection program cannot monitor the
operation of multiple processes as mentioned before.

This was same with Locky. Therefore, we can say that our
evaluation results confirmed the effectiveness of the proposed
method against Encryptor that runs in a single process.

B. False-Positive Experiment

1) Purpose
When the user edits a text file while the detection program

is running, we confirm that the user operations are not
erroneously detected as ransomware operations.

2) Experimental Procedure
We prepared text files with various strings of two to 10,000

characters and opened them in Notepad with the detection
program activated. We used the "Pangram" dummy text of the
blind text generator[17] to generate the contents of the file.
Notepad’s window size was set to one quarter of the screen
size (the minimum size shown in Section IV.C.1). After that,
the user added the letter "A" to the beginning of the text and
overwrote it after approximately three seconds. Table III shows
the experimental environment.

TABLE III. FALSE-POSITIVE EXPERIMENTAL ENVIRONMENT

Machine
OS Windows 10

Screen Resolution 1,920×1,080

Notepad

Version 1607

Word Wrap Enabled
Font Consolas

Font Size 11pt

Window size 929×540

3) Results
Table IV summarizes the results of the false-positive

experiment. “✓” indicates that the overwrite was permitted and
“X” indicates that the overwrite was rejected; i.e., a false-
positive detection as ransomware. It should be noted that in all
cases, overwriting was allowed. It was confirmed that the Jaro-
Winkler distance always exceeded the threshold value of 0.7
when a user is editing a file. Based on the results, it is expected
that false-positive detection of editing by users will not occur.

TABLE IV. OVERWRITING JUDGMENT FOR EACH NUMBER OF

CHARACTERS

Number of

Characters

Jaro-Winkler

Distance
Overwrite

2 0.822222 ✓

4 0.933333 ✓

10 0.950000 ✓

50 0.848188 ✓

100 0.878358 ✓

500 0.805686 ✓

1000 0.886816 ✓

10000 0.890940 ✓

VII. DISCUSSION

A. Detection Avoidance by Ransomware

The proposed method recognizes ransomware by whether
the file contents are being displayed on the screen. Therefore,
to avoid the proposed method, the ransomware must display
the target-file contents on the screen for a certain period when
encrypting it. This raises the risk of the ransomware being
noticed by the user.

The ransomware might avoid detection by displaying the
file content in a small window that is not easily noticeable by
the user. In the proposed method, the minimum window size is
defined in Section IV.C.1. By refusing to allow the software to
overwrite the file if the displayed document-editing window is

less than the minimum window size, it is expected that the
ransomware will find it difficult to encrypt without being
noticed by the user.

Alternatively, the ransomware could prepare a dummy file,
display it on the screen, and encrypt the target file in the
background. However, when another document file is
displayed on the screen, the similarity between the character
strings of the file contents and the character strings displayed
on the screen becomes lower (Fig. 10). Thus, detection
avoidance by displaying dummy contents does not work
effectively.

File Content read by the Ransomware

Dummy Screen Display with Other Content

* Text with a yellow background is extracted by LCS

(ii) Jaro-Winkler Distance
Distance: 0.63 (Below the Threshold) (i) LCS

Fig. 10. Sample distance calculation when a dummy file is displayed

B. Implementation of Detection Program

In this paper, DLL injection was adopted to implement the
detection program. However, certain ransomware operates in
multiple processes. As it is impossible to perform API hooking
to system processes, the detection program does not work
effectively in such software. To address this problem, the
detection method should be implemented as an OS function
and monitor the I/O accesses and screen displays of all
processes.

C. File Operation Exception

The proposed method is a whitelist-type ransomware
detection method that uses the user’s document editing as a
feature representing "humanness." Therefore, a false-positive
detection occurs for software that performs a file operation
without displaying the contents of the file, e.g., general
encryption software or file converter software. In such software,
although the file contents are not displayed, information, e.g.,
the file path and file name, usually will be displayed.

In addition, the user will provide input to the software, e.g.,
select a file or click a button. By including these in the
definition of "humanness," we believe it is possible to reduce
the false-positive detections for software that manipulates files
without displaying the file content.

Moreover, we believe that the proposed method is
applicable not only for text document but also for a variety
type of contents (e.g., Image Editor, Excel, PowerPoint, etc.),
by using sophisticated image matching instead of OCR.

A critical weakness of the proposed method is that there are
legitimate programs that do not display file contents, such as
batch processes, and the proposed method will make misjudge.
This is the future work we must address.

VIII. CONCLUSION

In this study, we focused on the difference between
"humanness" and "ransomwareness" and proposed a whitelist-
type ransomware-detection method. The proposed method
prevented files from being encrypted by crypto ransomware by
restricting the file deletion and overwriting. As a first step, we
implemented a ransomware-detection program to protect text
files and evaluated its effectiveness.

We confirmed that when the detection program operates as
suggested in our concept, it can detect ransomware and prevent
the encryption of the document files. In addition, false-positive
detections do not occur as shown in our experiment of editing
by a user using Notepad.

Our future tasks are as follow:

 Confirm the effectiveness of the proposed method for
other ransomwares.

 Implement a detection program targeting WYSIWYG
document files.

 Address problem mentioned in Section VII.C.

ACKNOWLEDGMENT

The authors wish to acknowledge Associate Professor
Atsushi Nakazawa of the Graduate School of Informatics,
Kyoto University for advice in selecting the algorithm for
image matching the WYSIWYG document file.

REFERENCES

[1] Richard Winton: Hollywood hospital pays $17,000 in bitcoin to hackers;
FBI investigating, Los Angeles Times, available from
〈 http://www.latimes.com/business/technology/la-me-ln-hollywood-
hospital-bitcoin-20160217-story.html〉(accessed 2017-12-03).

[2] University of Calgary paid $20K in ransomware attack, CBC News,
available from 〈 http://www.cbc.ca/news/canada/calgary/university-
calgary-ransomware-cyberattack-1.3620979〉(accessed 2017-12-03).

[3] Kevin Savage, Peter Coogan, Hon Lau: The evolution of ransomware,
available from
〈 http://www.symantec.com/content/en/us/enterprise/media/security_re
sponse/whitepapers/the-evolution-of-ransomware.pdf 〉(accessed 2017-
12-03).

[4] Marvin the Robot: Infographic: What you need to know about
ransomware, Kaspersky Lab official blog, available from
〈 https://www.kaspersky.com/blog/ransomware-infographics/13315/〉
(accessed 2017-12-03).

[5] Anastasiya Angel: Tip of the week: Fighting screen lockers, Kaspersky
Lab official blog, available from
〈 https://www.kaspersky.com/blog/kaspersky-windowsunlocker-
2/12275/〉(accessed 2017-12-03).

[6] John Zorabedian: Android “police warning” ransomware – how to
avoid it, and what to do if you get caught, naked security, available from

〈 https://nakedsecurity.sophos.com/2014/05/19/android-police-
warning-ransomware-how-to-avoid-it-and-what-to-do-if-you-get-
caught/〉(accessed 2017-12-03).

[7] The No More Ransom Project, available from
〈https://www.nomoreransom.org/〉(accessed 2017-12-03).

[8] Paul Ducklin: Got ransomware? What are your options?, naked security,
available from 〈 https://nakedsecurity.sophos.com/2016/03/03/got-
ransomware-what-are-your-options/〉(accessed 2017-12-03).

[9] Kharraz, A., Arshad, S., Mulliner, C., Robertson, W. and Kirda, E.,
“UNVEIL: A Large-Scale, Automated Approach to Detecting
Ransomware,” 25th USENIX Security Symposium, 2016, pp.757-772.

[10] Takanari Shigeta, Masakatu Morii, Tomohisa Hasegawa, Masato
Ikegami, Teiichi Ishikawa, “Encryption Processing of Ransomware,”
Computer Security Symposium 2016, pp.134-137 (in Japanese).

[11] Miron Vranjes: Arrange your Windows in a Snap, Windows Experience
Blog, available from
〈 https://blogs.windows.com/windowsexperience/2015/06/04/arrange-
your-windows-in-a-snap/〉(accessed 2017-12-03).

[12] zdeno: Tesseract Open Source OCR Engine, available from
〈https://github.com/tesseract-ocr/tesseract〉(accessed 2017-12-03).

[13] Wu, S., Manber, U., Myers, G., and Miller W., “An O(NP) Sequence
Comparison Algorithm,” Information Processing Letters, Vol.35, No.6,
1990, pp.317-323.

[14] Winkler, W. E., “String Comparator Metrics and Enhanced Decision
Rules in the Fellegi-Sunter Model of Record Linkage,” Proceedings of
the Section on Survey Research Methods. American Statistical
Association, 1990, pp.354–359

[15] Brad Antoniewicz: Windows DLL Injection Basics，Open Security
Research ， available from
〈 http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-
basics.html〉(accessed 2017-12-03)

[16] Hybrid Analysis, available from〈https://www.hybrid-analysis.com/〉
(accessed 2017-10-16).

[17] BLIND TEXT GENERATOR, available from
〈http://www.blindtextgenerator.com/〉(accessed 2017-04-17).

