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Abstract 15 

 16 

Chlorophyll fluorescence can be used to quantify the efficiency of photochemistry and heat dissipation. 17 

While several instruments such as Pulse-Amplitude-Modulation (PAM) fluorometers are available for 18 

taking direct measurements of parameters related to chlorophyll fluorescence, large-scale instantaneous 19 

ecosystem monitoring remains difficult. Several hyperspectral indices have been claimed to be closely 20 

related to some chlorophyll fluorescence parameters (e.g. photosystem II quantum yield (Yield), qP, NPQ), 21 

which may pave a way for efficient large-scale monitoring of fluorescence parameters. In this study, we 22 

have examined 30 published hyperspectral indices for their possible use in tracing chlorophyll 23 

fluorescence parameters. The comparison is based on a series of unique datasets with synchronous 24 

measurements of reflected hyperspectra and seven fluorescence parameters (i.e., Fm, F0, Fs, Fm', Yield, qP 25 

and NPQ) from leaves of Fagus crenata and other six broadleaf species sampled in Mt. Naeba, Japan. 26 

Among them, the first dataset is composed of seasonal canopy field measurements of Fagus crenata leaves, 27 

while the second is composed of field measurements of other deciduous species  including Lindera 28 

umbellate, Clethra barbinervis, Viburnum furcatum, Eleutherococcus sciadophylloides, Quercus crispula 29 

and Acer japonicum. Furthermore, an additional dataset composed of data result ing from various 30 

controlled experiments using inhibitors has been applied for improving physiological interpretations of 31 

indices. Results revealed that PRI had higher coefficients of determination and lower root mean square 32 

errors than other indices evaluated with a set of chlorophyll fluorescence parameters. However, this pattern 33 

was seen only for beech leaves and performed poorly across other species. As a result, no specific indices 34 

that are currently available are recommended for tracing fluorescence pa rameters. 35 

 36 
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 38 



1. Introduction 39 

 40 

A delicate balance between the use of absorbed light in photosynthesis and safe dissipation of potentially 41 

harmful excess light energy is important for plants (De La Barrera and Smith 2012). Photochemical 42 

parameters related to chlorophyll fluorescence are recognized as indicators of environmental stress. 43 

Despite several well-developed approaches to obtain these parameters, photosynthesis has to be excited 44 

actively by saturating light pulses in most cases. This greatly limits the ability to instantaneously and 45 

remotely monitor fluorescence parameters of ecosystems (Rascher et al. 2007). 46 

 47 

The relationships between biochemical properties of vegetation and reflectance have long been 48 

investigated. As a recent development, the potential use of hyperspectral data has been evaluated and 49 

several hyperspectral vegetation indices have been reported to be good predictors of ecosystem attributes. 50 

The use of these indices may offer a good alternative for monitoring ecosystems quickly and remotely. 51 

Notably, the Photochemical Reflectance Index (PRI), calculated from reflectance at 531 and 570 nm 52 

(Gamon et al. 1992), has been claimed to successfully track changes in effective nonphotochemical 53 

quenching (NPQ), and the use of PRI for retrieving NPQ has been validated in various studies (Magney 54 

et al. 2014; Nichol et al. 2006; Porcar-Castell et al. 2012). Furthermore, several previous studies have 55 

demonstrated that PRI was useful for detecting the stress conditions induced by air pollution in its early 56 

phase by monitoring excess energy dissipation pathways such as steady-state fluorescence (Fs) and NPQ 57 

related xanthophyll-cycle (Meroni et al. 2009). In addition, changes in the PRI have been used to assess 58 

radiation use efficiency or light use efficiency as well (Garbulsky et al. 2011; Grace et al. 2007; Lees et 59 

al. 2018; Sims and Gamon 2002). However, absolute PRI values have been found to be greatly affected 60 

by seasonal variation (Filella et al. 2009). Furthermore, Stratoulias et al. (2015) evaluated 17 hyperspectral 61 

indices (see Supplementary Table 1 and associated references for details) for tracing reed Fs, Fm’, Yield, 62 



PAR, electron transport rate and leaf chlorophyll content, based on 122 samples taken from four different 63 

types of habitats (23 from terrestrial habitats, 55 from shallow water, 27 from deep water and 21 from 64 

waterfront regions). Stratoulias et al. (2015) found that all of these indices correlated with some of the 65 

chlorophyll fluorescence parameters with the exception of WBI. Zhang et al . (2012) carried out another 66 

validation study on the abilities of PSSRa and PSNDa (Blackburn 1998a, b), (𝑅780 − 𝑅710)/(𝑅780 +67 

𝑅680)  (Maccioni et al. 2001), SIPI and SRPI (Penuelas et al. 1995), NPCI (Penuelas et al. 1994), (𝑅850 −68 

𝑅710)/(𝑅850 + 𝑅680) (Datt 1999), NDSI and RSI (Yang et al. 2009), OCAR and YCAR (Schlemmer et al. 69 

2005) for tracing Suaeda salsa F0, Fm, Fv/ Fm, qP, Yield and NPQ parameters. This work was based on 20 70 

samples and indicated that these indices correlated well with several chlorophyll fluorescence parameters. 71 

Among these, NDSI and RSI had higher correlation coefficients (R²) and lower root mean square errors 72 

(RMSE) with F0, Fm, Fv/ Fm, qP and Yield, while that of Maccioni et al. (2001) was useful for tracing NPQ. 73 

Both evaluation studies were only based on one specific species.  74 

 75 

Up to current, most validations of reported indices have been done on herbaceous spe cies and shrubs 76 

(Naumann et al. 2008; Rascher et al. 2007; Stratoulias et al. 2015)  but few validations have ever been 77 

made using deciduous leaves. Deciduous forests generally have two distinctive leaf types, namely shaded 78 

and sunlit leaves. Shaded leaves are commonly larger and thinner than sunlit leaves (Terashima et al. 79 

2001). It is well known that sunlit leaves, which develop under high irradiances, are much less susceptible 80 

to photoinhibitory damage than shaded leaves (Powles 1984). The difference between the two types of 81 

leaves should hence be linked also to the differences in their spectral features and therefore it is critical 82 

to validate them separately. Furthermore, accumulating evaluation studies on other hyperspectral indices 83 

besides PRI for tracing chlorophyll fluorescence parameters (Stratoulias et al. 2015; Zhang et al. 2012) 84 

are also limited to one specific species and hardly provide insights for making general conclusions.  85 

 86 



The main target of this study is to extensively evaluate the potential  of hyperspectral indices for tracing 87 

chlorophyll fluorescence parameters for deciduous forests. In total, 30 currently reported hyperspectral 88 

indices were evaluated using two unique datasets, namely: 1) sunlit and shaded beech (Fagus creanata) 89 

leaves; and 2) across different deciduous species. The two unique datasets contain synchronous 90 

measurements of hyperspectral reflectance and fluorescence parameters at different exposure times to light 91 

stress. An additional dataset containing the results from a series of inhibitor experiments following Gamon 92 

et al. (1990) including synchronous fluorescence and spectral information under abnormal conditions , has 93 

further been applied for providing potential physiological interpretations of hyperspectral indices .  94 

  95 



2. Materials and methods 96 

2.1. Study area 97 

The samples were collected from sites in Naeba Mountain, Japan. The climate of the region is cool and 98 

temperate with an average annual temperature of 5.4–6.3°C and annual precipitation of 2321–2391 mm. 99 

A detailed description of the sample region can be found in Wang et al. (2008). This site has also been 100 

important for SpecNet (Gamon et al. 2006) with more than 15 plots set up including four towers at 550, 101 

900 (X1 and X5), and 1500 m (m.a.s.l.), respectively. These plots cover typical stands of the lower, middle, 102 

and upper limits of beech ecosystems. The primary understory species are Acer japonicum, Clethra 103 

barbinervis, Eleutherococcus sciadophylloides, Lindera umbellate, Quercus crispula and Viburnum 104 

furcatum. In this study, sunlit and shaded beech leaves sampled at 900 m (X1, 36°53 ′38″N, 138°46′01″E), 105 

at 700 m (36°55′35″N, 138°46′05″E) and at 550 m (36°55′33″N, 138°45′47″E) were used.  106 

 107 

2.2. Sampling 108 

Beech samples were collected using the detached leaf method (Foley et al. 2006; Richardson and Berlyn 109 

2002) on the 28th of July and on the 27th of August of 2012 from both, the 900 m X1 and the 700 m sites, 110 

and from the 1st of August to the 6th of August of 2010 at the 550 m site. Six other broadleaf species 111 

(Acer japonicum, Clethra barbinervis, Eleutherococcus sciadophylloides, Lindera umbellate, Quercus 112 

crispula and Viburnum furcatum) were also sampled following the same method on the 27th of August of 113 

2013 at the 900 m X1 site. Before experiments were conducted, all sampled shoots were immediately 114 

transported to the laboratory following sampling and were kept in a dark environment inside boxes 115 

surrounded by a black douser.  116 

 117 

2.3. Measurements 118 

All laboratory experiments were conducted within three days after sampling. Measurements were made 119 



by abruptly exposing dark acclimated shoots to strong light from a halogen lamp with the beam adjusted 120 

to a zenith angle of 45°. This caused a sudden increase in photosynthetic photon flux density (PPFD) from 121 

less than 1 to more than 700 μmol m-2 s-1. This level of light saturation has been determined in previous 122 

studies in this region (Saito and Kakubari 1999). Following light exposure for 20 through 2400 sec, the 123 

spectral reflectance was taken and leaf discs were collected for later xanthophyll pigment measu rements. 124 

Spectral reflectance was measured using a FieldSpec4 (Analytical Spectral Devices Inc., Boulder, CO, 125 

USA) that was positioned at nadir, 20 cm above the samples (with a 25° FOV, resulting in a circle with 126 

4.3 cm radius). The spectral resolutions of the three detectors were 3 nm for the region 350-1000 nm and 127 

10 nm for the region 1000-2500 nm, which were internally resampled to sampling intervals of 1 nm in the 128 

instrument using cubic spline interpolation (Hatchell 1999).  129 

 130 

Chlorophyll fluorescence measurements were performed using a miniaturized pulse -amplitude modulated 131 

photosynthesis yield analyzer (Mini-PAM) (H. Walz, Effeltrich, Germany) with the leaf clip holder. 132 

Measurements of light intensity at the wavelengths between 380 to 710 nm were taken by the micro -133 

quantum sensor of the Mini-PAM. For each sample, the minimum (F0) and the maximum (Fm) values of 134 

fluorescence in the dark-adapted state were measured, and the apparent (Fs) and maximum (Fm') values of 135 

fluorescence in the light-adapted state were measured. Using these parameters, several calculations were 136 

made, including: the effective quantum yield of photochemistry (Yield), which is direc tly related to the 137 

quantum yield of CO2 fixation in the absence of photorespiration (Baker 2008), photochemical dissipation 138 

of absorbed energy (qP), which gives an indication of the proportion of PSII reaction centers that are open 139 

(Haboudane et al. 2004), and non-photochemical dissipation of absorbed energy (NPQ), which measures 140 

a change in the efficiency of heat dissipation. 141 

 142 



2.4. Datasets 143 

Two datasets (Dataset I and II) were compiled based on the series of measurements. Dataset I (control, 144 

treated with deionized water only) finally contains 17 samples for F0 and Fm and 106 leaf samples for 145 

other parameters after having eliminated mismeasurements and apparent outliers. And Dataset II contains 146 

13 samples including 3 samples of Acer japonicum, one samples of Clethra barbinervis, one samples of 147 

Eleutherococcus sciadophylloides, three samples of Lindera umbellate, two samples of Quercus crispula 148 

and three samples of Viburnum furcatum for F0 and Fm and 46 leaf samples including 12 samples of Acer 149 

japonicum, one samples of Clethra barbinervis, four samples of Eleutherococcus sciadophylloides, 12 150 

samples of Lindera umbellate, five samples of Quercus crispula and 12 samples of Viburnum furcatum for 151 

other parameters.  152 

 153 

In order to discuss the changes in performance of the published hyperspectral indices for tracing 154 

chlorophyll fluorescence parameters, we also applied an additional dataset  (Dataset III) to support the 155 

physiological interpretation of the identified hyperspectral indices. It was composed of a series of 156 

measurements under various conditions by artificially introducing inhibitors of dibromothymoquinone 157 

(DBMIB), 3‐ (3, 4‐dichlorophenyl) ‐1, 1‐dimethylurea (DCMU), and dithiothreitol (DTT) to alter 158 

chlorophyll fluorescence and other physiological processes. All sample leaves were cut under water with 159 

a sharp razor blade and the petioles were placed in a solution containing ten millimolar (mM) DTT, 0.1 160 

mM DCMU, 0.05 mM DBMIB or in deionized water (controls) with dim light to ensure the solution was 161 

taken up by the leaf. Steps described in the method of Gamon et al (1990) were followed. Reflectance and 162 

chlorophyll fluorescence measurements were performed in the aforementioned way. This additional 163 

dataset finally contained 36 samples for F0 and Fm and 232 leaf samples for the other parameters. Among 164 

them, the DBMIB treatment was supposed to increase the xanthophyll cycle pigment accumulation and 165 

transcription of the β-carotene hydroxylase genes without high light irradiation (Kawabata and Takeda 166 



2014), while DCMU is known to inhibit electron transport between QA and QB in the PS II. Further, it is 167 

assumed that PS II fluorescence is at its highest level when the plastoquinone is oxidized caused by the 168 

presence of DCMU (Delphin et al. 1996). In addition, DTT is a potent inhibitor of the xanthophyll cycle 169 

and thus provokes associated absorbance changes (Bilger et al. 1989). This additional dataset, however, 170 

was used mainly for helping to reveal the underlying physiological mechanisms, rather than directly using 171 

it for evaluation, as performance evaluation with data from inhibitor experiments could be rather complex 172 

and is not straightforward. 173 

 174 

2.5. Published indices 175 

In this study, eighteen hyperspectral indices raised from previous studies as listed in Supplementary Table 176 

1 were all evaluated for their correlations with different fluorescence parameters (Table 1). Regarding PRI, 177 

its change caused by saturating light and could be applied for evaluating xanthophyll cycle activity (Wong 178 

and Gamon 2015b) and chlorophyll fluorescence (Liu et al. 2012; Wong and Gamon 2015a). Therefore, 179 

the feasibility of using ΔPRI (Gamon and Surfus 1999) has also been examined. Besides these, 12 180 

additional indices developed by Stratoulias et al. (2015) for tracing the chlorophyll fluorescence of reeds 181 

under various conditions have also been evaluated. These 12 indices were based on simple ratios (SR, Eq. 182 

1) or normalized differences (ND, Eq. 2) using original reflectance: 183 

SR(λ1, λ2) = Rλ1
Rλ2

⁄     (1) 184 

ND(λ1, λ2) = (Rλ1
− Rλ2

) (Rλ1
+ Rλ2

)⁄    (2) 185 

where Rλ is reflectance and λ1 and λ2 are wavelength (nm). The best combination (λ1 and λ2) of a given 186 

type of index was determined by linear regression to calculate the R² and the corresponding significance 187 

level (p-value).188 

 189 

 190 



Table 1. Fluorescence parameters evaluated in this study. 191 

 192 

Fluorescence Parameters Abbreviation Formula 

Maximum value of fluorescence in the dark-adapted 

state 

Fm 

 

Minimum value of fluorescence in the dark-adapted 

state 

F0 

 

Apparent values of fluorescence in the light-adapted 

state 

Fs 

 

The maximum values of fluorescence in the light-

adapted state 

Fm' 

 

Effective quantum yield of Photosystem II Yield Yield = (𝐹𝑚
′ − 𝐹𝑠) 𝐹𝑚

′⁄  

Photochemical quenching of variable Chlorophyll 

fluorescence 

qP 

qP = (𝐹𝑚
′ − 𝐹𝑠)/(𝐹𝑚

′ − 𝐹𝑜) 

Non-photochemical quenching NPQ NPQ = (𝐹𝑚 − 𝐹𝑚
′ )/𝐹𝑚

′  

 193 

2.6. Statistical criteria 194 

The statistical criteria used to evaluate the performance of these indices included root mean square errors 195 

(RMSE) and the coefficient of determination (R²), but a final selection of the best indices was based on 196 

the corrected Akaike information criterion (AICc) (Hurvich and Tsai 1989). The AIC (Akaike 1974) is a 197 

methodology for model selection when more than one model has been fitted to data during model screening.  198 

 199 

In order to reveal in which wavelengths significant differences (p  < 0.05) were observed between two leaf 200 

types or different treatments, the stepwise linear discriminant analysis was applied (Burns and Burns 2008; 201 



Draper 1998). The stepwise linear discriminant analysis is a technique for selecting suitable predictor 202 

variables (different wavelengths in this study) to be included in a multiple regression model; a combination 203 

of forward and backward stepwise regression was implemented. The criterion for adding or removing 204 

variables is determined by the critical significance level, which in this study was set to p < 0.05.  205 

 206 

A hierarchical cluster analysis using correlation clustering (Langfelder and Horvath 2012) was conducted 207 

to reveal the performance similarities of all published hyperspectral indices. This technique does not 208 

require a preset number of clusters but groups the data into the optimal number automatically based on 209 

the similarity between the data points. The Friedman test (Friedman 1937) was used to test for differences 210 

in reflectance among the exposure times. The null hypothesis of this test is that apart from an effect of 211 

blocks, the reflectance is the same in each of the groups. Furthermore, the Tukey-Kramer test (Kramer 212 

1956, 1957) was applied to reveal the differences of chlorophyll fluorescence parameters among different 213 

species. All analyses were conducted using R (R Core Team 2016).  214 

  215 



3. Results 216 

3.1. Spectral and fluorescence parameters in different datasets   217 

a. Sunlit and shaded leaves (Dataset I) 218 

The typical beech leaf spectral reflectance (sunlit or shaded) at various time points following exposure to 219 

light is illustrated in Figure 1. Generally, the reflectance of sunlit leaves was higher than that of shaded 220 

leaves. However, the reflectance of red edge and of wavelengths near 1375 nm was constant regardless of 221 

leaf type or exposure time. For shaded leaves, decreases in reflectance were observed between 750 and 222 

1350 nm with exposure time (p < 0.05 based on Friedman-test). On the other hand, the reflectance at this 223 

range increased for sunlit leaves with exposure time (p < 0.05 based on Friedman -test), and one-quarter 224 

of the published indices used reflectance at wavelengths 750 nm or greater.  225 

 226 

  227 

Figure 1. Example of spectral reflectance of a beech leaf at various times following sudden exposure to 228 

light (60, 300 and 600 seconds later).  229 

 230 

Statistical results (minimum, median, mean, maximum, and standard deviation) of each fluorescence 231 
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parameters in Dataset I have been summarized in Table 2. For Dataset I, the ranges of Fm, F0, Fs, Fm’, 232 

Yield, qP and NPQ cover from 631 to 2383, 118 to 433, 121 to 1117, 170 to 1129, 0.004 to 0.503, 0.007 233 

to 0.989, and 0.661 to 3.924 , respectively.  234 

 235 

Table 2.  Statistical descriptions of fluorescence parameters in each dataset. 236 

    Fm F0 Fs Fm' Yield qP NPQ 

Dataset I 

Minimum 631.0  118.0  121.0  170.0  0.004  0.007  0.661  

Median 1764.0  307.0  410.0  485.5  0.098  0.441  2.472  

Mean 1609.0  284.9  409.7  493.7  0.144  0.436  2.283  

Maximum 2383.0  433.0  1117.0  1129.0  0.503  0.989  3.924  

Standard 

deviation 
563.3  94.6  179.3  191.6  0.123  0.291  0.793  

Dataset 

II 

Minimum 1919.0  366.0  206.0  406.0  0.157  0.160  1.327  

Median 2133.0  407.0  340.0  556.0  0.343  0.351  2.763  

Mean 2138.0  409.2  379.0  590.3  0.361  0.369  2.732  

Maximum 2526.0  501.0  692.0  954.0  0.655  0.669  3.938  

Standard 

deviation 
145.9  32.4  121.6  129.5  0.112  0.114  0.619  

 237 

b. General spectral properties of other species to light stress (Dataset II)  238 

Reflectance spectra of beech (Fagus crenata) and other deciduous species (Acer japonicum, Clethra 239 

barbinervis, Eleutherococcus sciadophylloides, Lindera umbellate, Quercus crispula and Viburnum 240 

furcatum) that composed Dataset II are presented in Figure 2. The reflectance patterns were very similar 241 

for 400 to 1800 nm, although three species (Clethra barbinervis, Quercus crispula and Viburnum furcatum) 242 

had higher reflectance while two other species (Lindera umbellate and Viburnum furcatum) had lower 243 

reflectance than that of beech. The reflectance of Acer japonicum was the same as the beech reflectance. 244 

Relatively low variations in reflectance values were found for both Eleutherococcus sciadophylloides and 245 

Viburnum furcatum. 246 

 247 



 248 

Figure 2. Mean reflectance spectra and standard deviations for six broadleaf species ( Acer japonicum, 249 

Clethra barbinervis, Eleutherococcus sciadophylloides, Lindera umbellate, Quercus crispula and 250 

Viburnum furcatum). 251 

 252 

The fluorescence parameters recorded in Dataset II range from 1919 to 2526, 366 to 501, 206 to 692, 406 253 

to 954, 0.157 to 0.655, 0.160 to 0.669 and 1.327 to 3.938 for Fm, F0, Fs, Fm’, Yield, qP, and NPQ, 254 

respectively (Table 2).  255 

 256 

With the exception of Eleutherococcus sciadophylloides, the mean values of Fm, F0, and Fm’ of these 257 

deciduous species were significantly higher than those of beech (p<0.05, based on Tukey-Kramer test). 258 

The four species, with the exception of Eleutherococcus sciadophylloides and Lindera umbellate, also had 259 

lower averaged Fs values than beech. The largest qP was noted for beech, followed by Acer japonicum, 260 



Quercus crispula, Viburnum furcatum, Clethra barbinervis, Lindera umbellate and Eleutherococcus 261 

sciadophylloides in that order. On the other hand, the lowest Yield was also observed for beech, followed 262 

by Eleutherococcus sciadophylloides, Lindera umbellate, Clethra barbinervis, Viburnum furcatum, 263 

Quercus crispula and Acer japonicum in that order. The highest NPQ values (3.938) were confirmed for 264 

Acer japonicum, but the ranges of beech Fm’, Fs and qP (Dataset I) covered those of the other six species 265 

(Dataset II).  266 

 267 

3.2. Performance of published indices 268 

The evaluation results of the 30 reported indices including the R², p-values, RMSE and AICc are presented 269 

in Supplementary Table 2. Generally, the R² of the regression models resulting from the published indices 270 

were high for the basic fluorescence levels (Fm, F0, Fs and Fm’) and for the derived parameters (Yield, qP 271 

and NPQ). From Supplementary table 2, PRI performed best for F0 and Fm ', while SR (539, 560), ND 272 

(659, 687), YCAR, OCAR and PSRI performed best for Fm, Fs, Yield, qP and NPQ when based on Dataset 273 

I. Alternatively, ARI2 performed best for Fm and F0, ND (621, 692) performed best for Fs and Fm’, SR 274 

(659, 687), SR (621, 692) and EVI performed best for Yield, qP and NPQ when only using Dataset II.  275 

 276 

In order to clarify the inconsistencies in the index performance, the performance similarities of all 277 

published indices were evaluated using correlation clustering. Figure 3 shows the clustering of the 278 

correlation relationship among all hyperspectral indices. Clearly, there were no apparent differences 279 

between SR and ND when the combination of selected wavelengths was the same, such as with RSI and 280 

NDSI. However, for the other indices, the cluster distances were not similar among the datasets; instead, 281 

there were different performance patterns for the evaluated indices for the different datasets. Although 282 

OCAR, PSRI, SR (539,560), PRI, SR (621,692), EVI and ARI2 were selected for tracing the basic 283 

fluorescence levels, the distances were different between the two datasets except for PRI and SR (539,560). 284 



 285 

 286 

 287 

Figure 3. Clustering of correlation relationships among the hyperspectral indices.  288 

 289 

PRI performed well for measuring Fm (R²=0.585, AICc=255.5), F0 (R²=0.624, AICc=193.1), Fs 290 

(R²=0.495, AICc=1333.7) and Fm’ (R²=0.599, AICc=1323.269) for Dataset I, while it did not 291 

perform well for Dataset II, in which different species were measured. This casts doubts on the 292 

general application of PRI when different species are investigated (AICc and R² were 174.0 and 293 

0.01 (p=0.796) for Fm, 134.9 and 0.01 (p=0.775) for F0, 577.3 and 0.01 (p=0.497) for Fs and, 582.7 294 

and 0.02 (p=0.358) for Fm’).  295 

 296 

To determine if the inclusion of sunlit and shaded leaves caused PRI to perform poorly, evaluations 297 

(a) Dataset I (b) Dataset II



of different leaf groups were also carried out. For sunlit leaves of Dataset I, PRI was the best index 298 

for Fm (AICc=140.4 and R²=0.690) and F0 (AICc=107.3 and R²=0.719), fourth best for Fm’ 299 

(AICc=410.5 and R²=0.679) and 8th best for Fs (AICc=403.6 and R²=0.575), while insignificant 300 

relationships were noted with the three derived fluorescence parameters (all R² < 0.1, p=0.889 for 301 

Yield, p=0.598 for qP and p=0.250 for NPQ, respectively). Similarly, for shaded leaves PRI also 302 

showed significant correlations and high R² for Fm (AICc=128.6 and R²=0.408), F0 (AICc=99.1 and 303 

R²=0.472), Fs (AICc=912.3 and R²=0.268) and Fm’ (AICc=900.3 and R²=0.431) were confirmed. 304 

Again, poor performance was observed with the three derived fluorescence parameters similar to 305 

for the sunlit leaves. 306 

 307 

Our results indicated that ΔPRI was more effective for tracing Yield and qP than PRI when based 308 

on Dataset I (AICc=-158.5 and R²=0.174 for Yield, R²=0.264 and AICc=12.0 for qP). However, 309 

ΔPRI was not applicable for tracing all of the chlorophyll fluorescence parameters when using 310 

Dataset II. As for NPQ, the R² values were 0.005 for both the datasets only, suggesting that the 311 

approach still cannot offer a universal method for tracing the parameter. Alternatively, PSRI was 312 

the best index for it when based on Dataset I. However, it had worse performance for sunlit leaves 313 

(AICc=56.2, R²= 0.03, p=0.304). ,  314 

 315 

3.3. Time courses of selected indices and chlorophyll fluorescence parameters  316 

Figure 4 shows the time courses of the five fluorescence parameters, which change with exposure 317 

time (i.e. Fs, Fm’, Yield, qP, and NPQ), and the selected hyperspectral indices for Dataset I. The 318 

patterns of time variations of fluorescence parameters were generally similar between sunlit and 319 



shaded leaves, although the values for shaded leaves were higher than those of sunlit leaves in terms 320 

of Fs and Fm’ and reversions were noted for NPQ. For Fs, it rapidly decreased in the first 100–120 321 

seconds and slight movements were kept for both leaf types. Similar tendencies were also confirmed 322 

for Fm’. In contrast, a rapid increase in the first 120 seconds and then a gradual increase with time 323 

were observed for Yield and qP. A rapid increase for the first 80 seconds and a sudden drop after 324 

40 seconds were observed for NPQ. Indices ND (659, 687) and PRI could trace the variation in Fs 325 

and Fm’ respectively, however, for the derivative chlorophyll parameters (i.e. Yield, qP and NPQ), 326 

the selected indices were not suitable for tracing.  327 

 328 

 329 

 330 

Figure 4. Time courses of fluorescence parameters and selected indices for Datase t I. 331 

 332 
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4.  Discussion 334 

Evaluation results based on Dataset I suggested that RSI and NDSI had high R² with F0, which 335 

agrees with findings reported by an earlier study of (Zhang et al. 2012). However, RSI and NDSI 336 

performed poorly with Dataset II, as indicated by low R² values. Different ranges of fluorescence 337 

parameters in Dataset I, Dataset II, and the dataset by Zhang et al. (2012) may have explained the 338 

discrepancy, even though it may not be adequate to compare different fluorescence measurements 339 

directly. In this study, it was found that RSI and NDSI were not applicable for large F0 or Fm cases. 340 

Thereby, RSI and NDSI both had spectral features at 935 nm, among the domain where opposite 341 

responses to the light stress of different leaf types were identified. This may partially explain the 342 

poor performance of both indices when different leaf types are not explicitly separated. Other 343 

indirect evidence for the above assertion may be strengthened by examining both indices with the 344 

additional chemically-treated dataset; they showed poor responses to other chemical treated 345 

samples for all the three inhibitors including DBMIB, DCMU, and DTT, which had effects on the 346 

various leave types as shown by the large variation in reflectance at 935 nm.  347 

 348 

OCAR is one of the promising indices for tracing Fm as claimed by Zhang et al. (2012). The results 349 

presented here did not support this, as significant correlations were not observed for F0 (p=0.437) 350 

and Fm (p=0.499) based on the additional chemically-treated dataset. A stepwise discriminant 351 

analysis was carried out and the results revealed that both reflectance values at 630 and 680 nm 352 

used by OCAR did not respond to inhibitor treatments. Furthermore, opposite tenden cies of 353 

reflectance patterns with exposure time were noted for the two leaf types, as reflectance increased 354 

with exposure time for sunlit leaves while it decreased with exposure time for shaded leaves. These 355 



results raise doubts about applying OCAR to trace the time courses of F0 and Fm. 356 

 357 

The different response patterns of different leave types may also explain the behavior of ARI2, 358 

which was claimed to perform well by Stratoulias et al . (2015) who investigated reed reflectance 359 

under various conditions. Our results indicated that ARI2 was the best index for Dataset II but not 360 

for Dataset I, in which two leaf types were included. Even so, the index is attracting attention for 361 

its applicability across different species of deciduous trees. In addition, further evaluation of the 362 

other indices reported by Stratoulias et al. (2015) revealed that they were basically unacceptable 363 

for both datasets. Interestingly, the indices based on reflectance at 659 and 687 nm developed for 364 

tracing Yield by Stratoulias et al. (2015), were found to perform well for tracing Fm, F0 and Fs for 365 

Dataset I. These indices also had relatively lower AICc and higher R² for Fm (AICc=155.2 and 366 

R²=0.765), F0 (AICc=117.9 and R²=0.730) and Fs (AICc=787.6 and R²=0.415) of Dataset II. This 367 

implies that these wavelengths are effective in tracing basic fluorescence levels.  368 

 369 

PRI has been shown to be a promising index for tracing various chlorophyll fluorescence parameters, 370 

especially for NPQ, as high correlations have been reported in previous studies  (Magney et al. 2014; 371 

Porcar-Castell et al. 2012; Rahimzadeh-Bajgiran et al. 2012). Furthermore, changes in PRI have 372 

been related to Radiation Use Efficiency (RUE) or Light Use Efficiency (LUE) (Garbulsky et al. 373 

2011; Grace et al. 2007; Lees et al. 2018; Sims and Gamon 2002) as the reduction of PRI is caused 374 

by a greater recourse to NPQ by an increase of the de-epoxidation level of the xanthophyll pigments 375 

(Castagna et al. 2001; Elvira et al. 1998; Ranieri et al. 2001). Surprisingly, the evaluation results 376 

herein presented indicate that PRI is not suitable for tracing NPQ, Yield, or qP, although PRI was 377 



identified as the best index for tracing Fm’. This is similar to the results reported by Rapaport et al. 378 

(2017), who pointed out that it was hard to explain very large PRI variations solely by NPQ. One 379 

possible reason for this is that NPQ is calculated from dividing the difference between Fm and Fm’ 380 

with Fm’, while both Fm and Fm’ are found linearly related with PRI and thus level out the parameter 381 

of PRI after being divided.  382 

 383 

Another possible reason for this discrepancy can be explained by the different data ranges used for 384 

the evaluations. In earlier studies focusing on herbaceous plants , such as sunflower and eggplant or 385 

pine trees, high correlations were reported to be largely limited within an intra-daily scale. As a 386 

comparison, we focused on deciduous leaves, which were sampled from three different altitudes, 387 

from different dates, and from different species. Hence, the datase ts used here for the evaluation of 388 

the indices include much more diverse cases. The poor performance of PRI for tracing the derived 389 

fluorescence parameters may therefore be explained by the different pigments contained in the 390 

evaluation datasets, as leaf spectral reflectance at 531 and 570 nm increases with decreasing 391 

chlorophyll (Sims and Gamon 2002) and PRI was found to be highly correlated with ratios of 392 

carotenoids and chlorophyll (Filella et al. 2009; Sims and Gamon 2002). This, in turn, leads to 393 

different behaviors of PRI under various environmental stress conditions, which are sometimes 394 

evaluated by the ratios of carotenoids and chlorophyll  (Gamon et al., 2016).  395 

 396 

Much of the confusion in the recent PRI literature may arise from the fact that multiple factors 397 

drive variation in PRI over different temporal scales (Barton and North 2001), and few studies have 398 

fully considered sampling effects or have attempted to distinguish the multiple causes of PRI 399 



variation (Gamon 2015).  400 

 401 

A recent study by Verhoef et al. (2018) reported the leaf types have great influences on the energy 402 

balance and such information is critical for modeling reflectance and fluorescence. Indeed, 403 

proportions in leaf types have been considered for estimating vegetation fluorescence emissions in 404 

previous studies (e.g. Hernández-Clemente et al. 2017). Our datasets include both sunlit and shaded 405 

leaves, which might be an important reason why PRI performed poorly. However, ignorant of leaf 406 

groups, our evaluation results suggested that PRI performed well with Fm, F0, Fs and Fm’, but poor 407 

with the three derived fluorescence parameters. In addition, much better performances were noted 408 

for ΔPRI with qP and NPQ for both leaf types. Astonishingly, our results suggested that ΔPRI was 409 

not applicable for tracing all of the chlorophyll fluorescence parameters when using Dataset II, 410 

although good performance was noted for ΔPRI with Dataset I. Overall, our results suggest that 411 

PRI is useful for tracing the basic fluorescence levels when measuring only one leaf type or when 412 

making measurements under similar conditions. The data acquired from satellites and airborne are 413 

strongly influenced by the signal from sunlit leaves and thus the abilities of PRI could be useful.  414 

As for the derived fluorescence parameters, e.g. NPQ or qP, ΔPRI is a better choice than PRI, 415 

although ΔPRI comparisons should still be limited to only one species.  416 

 417 

As an important step towards an extensive evaluation, performance examinations for all indices 418 

were carried out on each leaf type of the sampled broadleaf trees (Supplementary Table 3). Under 419 

conditions where photosynthesis is limited by factors other than light, sunlit parts of the canopy are 420 

exposed to more excessive radiation energy than those shaded by other vegetation elements (Hilker 421 



et al. 2010). Shaded leaves are, in general, larger and thinner than sunlit leaves. They also have h alf 422 

as many stomata as sunlit leaves, or even fewer, resulting in a lower respiration rate. It is well 423 

known that sunlit leaves, which develop under high irradiances, are much less susceptible to 424 

photoinhibitory damage than shaded leaves, which develop under low irradiances (Powles 1984). 425 

Evaluation results suggested that the best indices identified for both groups were different between 426 

the two leaf types. For shaded leaves, the wavelengths of the identified best indices were relatively 427 

close to that of PRI for the basic fluorescence levels (i.e. SR (539, 560) or ND (539, 560)). On the 428 

contrary, the indices using reflectance at 659 and 687 nm were selected for sunlit leaves regardless 429 

of leaf types. Indices using reflectance at 659 and 687 nm also had significant coefficients of 430 

determination for shaded leaves (AICc=127.9, 101.4, 888.3 and 922.5, R²=0.458, 0.300, 0.477 and 431 

0.225 for Fm, F0, Fs and Fm’, respectively). Furthermore, the reflectance at 659 and 687nm was 432 

effective for the other deciduous species (except for Fm’) (AICc=168.1, 125.2 and 547.4, R²=0.370, 433 

0.528 and 0.482 for Fm, F0 and Fs, respectively). Data screening of other similar wavelengths may 434 

contribute to the development of more robust indices for tracing basic fluorescence levels.  435 

 436 

For basic fluorescence levels, PRI was still the best indicator when the leaf types were separated, 437 

and was the most reliable indicator of basic fluorescence levels overall. However, PRI was not 438 

applicable for the derived fluorescence parameters. On the other hand, ΔPRI performed better at 439 

tracing qP and NPQ, but its use is restricted to homogeneous conditions like those cases in Dataset 440 

I or II. As a result, although there are various indices for tracing chlorophyll fluorescence 441 

parameters, no index was applicable across diverse conditions and various species as evaluated in 442 

this study.  443 



5. Conclusions 444 

The relationships between fluorescence parameters and 30 published hyperspectral indices were 445 

evaluated based on three unique datasets including cases employing different  chemical treatments, 446 

species, sites, and types of leaves. PRI was useful for tracing Fm, F0, Fs and Fm’ for beech leaves 447 

including controlled chemically treated samples, and PRI performed well when limited to a single 448 

species. YCAR was identified as the best index for tracing Yield for Dataset I, and SR (659, 687) 449 

was the best index for tracing Yield for Dataset II. For tracing qP, OCAR and SR (621, 692) were 450 

the best indices, while PSRI and EVI were the best indices for tracing NPQ for Dataset I and II, 451 

respectively. However, some of these indices were not acceptable for sunlit beech leaves. 452 

Furthermore, the well-known relationships of PRI and Yield, PRI and NPQ were not observed. In 453 

addition, poor responses of current indices under inhibitor-treated conditions suggest they did not 454 

hold strong direct engagements with chlorophyll fluorescence process. As thus, further development 455 

of relevant radiative transfer models that can offer inversion retrievals and new indices that are 456 

generally applicable, is highly needed for future work. Towards it, an extensive dataset composed 457 

of diverse cases including different leaf types, different species, and different stress conditions , as 458 

well as a clear understanding of related radiative transfer processes,  is needed to make general 459 

conclusions. 460 

 461 
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