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Abstract 19 

 20 

Some stresses are utilised to improve qualities of agricultural products. Low light stress increases 21 

the chlorophyll content of tea leaves, which improves appearance. Although chlorophyll content 22 

estimation is one of the most common applications of hyperspectral remote sensing, previous 23 

studies were based on measurements under relatively low stress conditions. In this study, two 24 

methods, machine learning algorithms and the inversion of a radiative transfer model, were 25 

evaluated using measurements from tea leaves with shading treatments. According to the ratio of 26 

performance to deviation (RPD), PROSPECT-D inversion (RPD=1.71-2.31) had the potential for 27 

quantifying chlorophyll content; although, it required some improvements. Overall, the regression 28 

models based on machine learning had high performances. The kernel -based extreme learning 29 

machine had the highest performance with a root mean square error of 3.04 ± 0.52 μg cm-2 and 30 

RPD values from 3.38 to 5.92 for the test set, which was used for assessing generalisation error. 31 

 32 

Keywords: chlorophyll; green tea; vegetation indices; machine learning; PROSPECT-D 33 

 34 

1. Introduction 35 

Green tea is a very healthy beverage because its consumption is associated with reduced mortality, 36 

and it has attracted a great deal of attention (Kuriyama et al. 2006). Green tea-flavoured sweets 37 

have even become popular. Some techniques have been developed for increasing chlorophyll 38 

content, which is important for improving tea leaf appearance. Chlorophyll content is strongly 39 

related to the colour of dry tea leaves (Wang et al. 2004) and the flavour of tea is principally 40 



determined by chemical components. Chlorophyll content is positively correlated with the total 41 

quality score as well as the scores for appearance and infused leaf (Wang et al. 2010). Therefore, 42 

various methods are used to increase the chlorophyll content of tea leaves during growth (Lee et al. 43 

2013). The control of light transmission by shade treatment is the most effective method for  44 

increasing chlorophyll content in tea plants (De Costa et al. 2007) and shading nets (70–95% 45 

shading) have been used in Shizuoka, Japan to increase the chlorophyll content of tea leaves and 46 

to improve appearance (Sonobe et al. 2018a). However, excessive shading tea can lead to early 47 

mortalities due to the excessive environmental stresses caused by reducing natural photosynthesis 48 

in the leaves. Both quantifying chlorophyll contents and detecting environmental stresses using 49 

field measurements are required for better tea tree management, and no applicable approach has 50 

been established. 51 

 52 

As destructive methods, spectrophotometric measurements using ultraviolet and visible (UV -VIS) 53 

spectroscopy and high-performance liquid chromatography (HPLC) measurements have been used 54 

to quantify pigment content in leaves (Prado-Cabrero et al. 2016). However, these techniques are 55 

expensive, labour-intensive and not always applicable for in-situ measurements. Alternately, the 56 

SPAD-502 Leaf Chlorophyll Meter (Konica Minolta Inc.) has been used for field measurements of 57 

leaf chlorophyll content (le Maire et al. 2004; Elarab et al. 2015). However, light intensity also 58 

influences leaf thickness (Murchie et al. 2005) and that makes the output of the meter obscure 59 

(Yamamoto et al. 2002). In contrast, remote sensing using hyperspectral reflectance has been used 60 

to evaluate biochemical properties (Whetton et al. 2018), especially chlorophyll content 61 

estimation, which has received special attention since chlorophyll pigments closely relate to 62 



protective activity against a variety of degenerative diseases as well as the photosynthetic process 63 

(Korus 2013). Furthermore, because remote sensing is a non-destructive method that can cover 64 

large areas and reflect the spatial variability of crop canopies using sensors mounted on airborne 65 

drones or satellites, this technique is useful for improving fertiliser management (Gabriel et al. 66 

2017). 67 

 68 

The numerical inversion of radiative transfer models (RTMs) has been proposed to estimate 69 

chlorophyll content using hyperspectral remote sensing (Li et al. 2015; Masemola et al. 2016). 70 

PROpriétés SPECTrales (PROSPECT) is one of the most famous RTMs and has been widely used 71 

to assess the biochemical properties of broadleaf species and herbs (Jacquemoud et al. 1996; Féret 72 

et al. 2008; Hernandez-Clemente et al. 2014; Sonobe et al. 2018b; Sun et al. 2018). The latest 73 

version, PROSPECT-D, has an improved ability to estimate pigment content (Féret et al. 2017). 74 

Although le Maire et al. (2004) pointed out that the previous versions of PROSPECT were not 75 

accurate enough to evaluate broad leaf chlorophyll content, this version has not been fully 76 

evaluated. 77 

 78 

Another recent option for estimating chlorophyll content from hyperspectral reflectance is based 79 

on machine learning algorithms (Liang et al. 2016; Chemura et al. 2017). Random forests (RF) is 80 

specifically mentioned as a successful classification and regression method (Biau and Scornet 81 

2016), and has been widely used for evaluating the aboveground biomass of C3 and C4 grasses 82 

(Shoko et al. 2018). Support vector machine (SVM) has also been a very effective approach and is 83 

appropriate to express the relationship between reflectance and leaf water status (Das et al. 2017). 84 



In addition, the high performances of kernel-based extreme learning machine (KELM) have been 85 

shown in some previous studies for solving regression problems (Sonobe et al., 2018a). Therefore, 86 

the machine learning algorithms RF, SVM and KELM were applied to estimate the chlorophyll 87 

content of shade grown tea from hyperspectral reflectance. Notably, the disadvantages of machine 88 

learning algorithms are that they require training data for prediction and not enough training data 89 

leads to overfitting and the models could be unsuitable. In this study, the machine learning 90 

algorithms which possess only two hyperparameters were evaluated.  91 

 92 

Vegetation indices have also been widely used to emphasise the features of vegetation (Sonobe et 93 

al. 2018c) and a number of vegetation indices have been developed for evaluating chlorophyll 94 

content. Most vegetation indices for chlorophyll content are based on wavelengths ranging from 95 

400 to 860 nm, which covers photosynthetically active radiation. There are reflectance value or 96 

derivative-based indices and feature-based indices, mainly on the properties of the red edge. 97 

However, most indices are only applicable to the specific species or specific leaf types, such as 98 

sunlit or shaded leaves, from which they were developed (Sonobe and Wang 2017a). In this study, 99 

regression models using vegetation indices were evaluated as well as regression models based on 100 

original reflectance and their accuracies were compared. 101 

 102 

In leaves, there are two types of chlorophyll pigments (chlorophyll a and b) and the chlorophyll 103 

a/b ratio is positively correlated with the ratio of photosystem II cores to light harvesting 104 

chlorophyll-protein complex (Terashima and Hikosaka 1995). As a result, the cultivation using 105 

shading treatments imposes environmental stress on vegetation and changes the balance among 106 



chlorophyll a and b contents. However, some previous studies have used datasets composed of 107 

measurements taken under relatively low light-stress conditions (e.g. the coefficients of linear 108 

regression models for estimating chlorophyll a content from carotenoid content were 2.99 109 

(Hosgood et al. 1994) to 3.45 (Féret et al. 2008)). Therefore, some approaches in previous studies 110 

for estimating chlorophyll content are not valid for evaluating the chlorophyll content of shade 111 

grown tea, and these approaches were evaluated in this study.  112 

 113 

The objective of this study was to examine the potential of hyperspectral remote sensing 114 

approaches including radiative transfer model inversion and machine learning algorithms for 115 

quantifying chlorophyll content of tea that was grown under low-light stress.  116 

 117 

2. Materials and methods 118 

2.1.  Measurements and datasets 119 

The first flush of leaves, which are harvested from mid-April to mid-May, have the highest quality 120 

and, therefore, we focused on this period. The experiments were conducted at the Institute of Fruit 121 

Tree and Tea Science, National Agriculture and Food Research Organization, Shimada, Japan. 122 

Daily temperatures and precipitation varied between 12.5–19.2 °C and 0–17.5 mm, respectively, 123 

during the experiment (Japan Meteorological Agency, 2017). Four shading treatments were 124 

conducted using no net (0% shading), shading net #410 (35% shading), #1210 (75% shading) and 125 

#1220 (90% shading) (Dio Chemicals, Ltd., Japan) to assess the influence of shading on tea 126 

chlorophyll content from 21 April 2017 to 11 May 2017.  127 

 128 

Forty-six samples (8 samples for 0% shading, 12 samples for 35% shading, 12 samples for 75% 129 



shading and 14 samples for 90% shading) and 60 measurements (15 samples for each treatment) 130 

were collected on 1 and 11 May 2017, respectively. After sampling, we used the spectral 131 

reflectance and biochemical properties including chlorophyll a, b and carotenoid content for 106 132 

leaf samples. 133 

 134 

A spectrometer (FieldSpec4, Analytical Spectral Devices Inc., USA) with three detectors (VNIR, 135 

SWIR 1 and SWIR 2) was used to obtain reflectance data with a leaf clip. The drifts depended on 136 

some inherent variation in detector sensitivities and were confirmed at these connections (i.e. the 137 

wavelengths of 1000 and 1800 nm). Thus, the splice correction function was applied to modify 138 

these connections using ViewSpec Pro Software (Analytical Spectral Devices Inc., USA).  139 

 140 

Leaf discs were used for pigment concentration measurements in dimethyl-formamide extracts 141 

using dual-beam scanning ultraviolet-visible spectrophotometers (UV-1280, Shimadzu, Japan). 142 

The following equations were used to quantify chlorophyll content (Wellburn 1994): 143 

Chlorophyll = Chlorophyll a + Chlorophyll b  (1) 144 

Chlorophyll a = 12𝐴663.8 − 3.11𝐴646.8  (2) 145 

Chlorophyll b = 20.78𝐴646.8 − 4.88𝐴663.8  (3) 146 

where A is the absorbance and the subscripts are the wavelength (nm). 147 

 148 

2.2.  Vegetation indices 149 

Vegetation indices calculated from various remote sensing sensors are effective for removing 150 

variability caused by other features, such as soil background and atmospheric conditions 151 



(Blackburn and Steele 1999). They are also effecting for reducing the data saturation problem 152 

(Mutanga and Skidmore 2004) and in quantitative and qualitative evaluations of vegetation cover, 153 

vigour and growth dynamics, among other applications, that are important components of 154 

precision agriculture (Panda et al. 2010). Many studies have focused on chlorophyll content 155 

estimation based on hyperspectral remote sensing techniques, and a number of vegetation indices 156 

have been developed for this purpose. In this study, 96 published vegetation indices (Table 1) were 157 

used as inputs of machine learning models for estimating the chlorophyll content of shaded tea. 158 

Five (i.e. Chlgreen, Chlred edge1, Chlred edge2, chlorophyll vegetation index (CVI) and global imager 159 

vegetation index (GLI)) are based on broadband reflectance and the mean reflectance values were 160 

used in this study. Although most of the indices are based on original reflectance or a first 161 

derivative at a given wavelength (Rwavelength or Dwavelength), there are eight feature-based indices 162 

that focus on the red edge (i.e. edge-green first derivative normalized difference (EGFN), 163 

edge-green first derivative ratio (EGFR), wavelength of the red edge (RE), Red-Edge Inflection 164 

Point (REIP), Red-edge position liner extrapolation method proposed by Cho and Skidmore (2006) 165 

(REP1), Red-edge position liner extrapolation method proposed by Guyot and Baret (1988) 166 

(REP2), sum of the amplitudes between 680 and 780 nm in the first derivative of the reflectance 167 

spectra (Sum1) and sum of derivative values between 626 nm and 795 nm (Sum2)). They are 168 

calculated as a sum value of the reflectance (Elvidge and Chen 1995; Filella et al. 1995) or a 169 

wavelength value (Collins 1978; Horler et al. 1983; Miller et al. 1990; Filella et al. 1995). In 170 

addition, the triangular vegetation index (TVI) (Broge and Leblanc 2001) and spectral polygon 171 

vegetation index (SPVI) (Vincini et al. 2006) are categorised as feature-based indices.  172 

 173 



The indices based on original reflectance or first derivative are divided into  four groups: 174 

reflectance or first derivative at a given wavelength or inverse reflectance (R, D or 1/R) (Boochs 175 

et al. 1990; Gitelson et al. 1999; Carter and Knapp 2001); difference in reflectance (DR) (Jordan 176 

1969; Buschmann and Nagel 1993); simple ratio (SR) (Jordan 1969; Chappelle et al. 1992; 177 

Vogelmann et al. 1993; Carter 1994; McMurtrey et al. 1994; Peñuelas et al. 1995a; Gitelson and 178 

Merzlyak 1996; Lichtenthaler et al. 1996; Zarco-Tejada et al. 2003a; Zarco-Tejada et al. 2003c; 179 

Delalieux et al. 2009; Gong et al. 2014) or modified simple ratio (mSR) (Sims and Gamon 2002); 180 

and normalized differences (ND or dND) (Gong et al. 2014; Sonobe and Wang 2018; Sonobe and 181 

Wang 2017b). In addition, complicated indices based on soil line (Rondeaux et al. 1996; Wu et al. 182 

2008), chlorophyll absorption ratio indices (Kim et al. 1994; Daughtry et al. 2000; Wu et al. 2008; 183 

Guan and Liu 2009) and integrated forms (Daughtry et al. 2000; Wu et al. 2008; Guan and Liu 184 

2009) were evaluated in this study. 185 

<Table 1> 186 

2.3.  Regression models based on machine learning algorithms 187 

Machine learning algorithms including random forests (RF), support vector machine (SVM) and 188 

kernel-based extreme learning machine (KELM) were applied to estimate the chlorophyll content 189 

of shade grown tea from hyperspectral reflectance.  190 

 191 

The optimisations of each machine learning algorithm were conducted based on Bayesian 192 

optimisation, which is a framework used to optimise hyperparameters  of noisy, expansive 193 

black-box functions and it defines a principled approach to modelling uncertainty (Bergstra and 194 

Bengio 2012). These processes were conducted with the Gaussian process (GP), which is a 195 



continuous stochastic process commonly used for Bayesian optimisation (Snoek et al. 2015). All 196 

the processes were conducted using R 3.4.3 (R Core Team 2017). While KELM was conducted 197 

using MATLAB and Statistics Toolbox Release 2016a (MathWorks, Inc., USA) and the source 198 

code was downloaded from http://www.ntu.edu.sg/home/egbhuang/index.html, RF and SVM were 199 

assessed using the 'randomForest' package (Liaw and Wiener 2002) and 'kernlab' package 200 

(Karatzoglou et al. 2004), respectively. For applying Bayesian optimisation, the 201 

‘rBayesianOptimization’ package (Yan 2016) was applied. 202 

 203 

2.3.1 Random forests 204 

RF is an ensemble learning technique that builds multiple trees (the class ification and regression 205 

tree, CART) (Breiman 2001) and its two user-defined parameters, number of trees (ntree) and the 206 

number of variables used to split the nodes (mtry), are normally optimised. Each tree is built using 207 

training data and the nodes are split using the best split variable out of a group of randomly 208 

selected variables (Liaw and Wiener 2002). This strategy guards against over-fitting and can 209 

handle thousands of dependent and independent input variables without variable deletion. 210 

Although the two main user-defined parameters are the number of trees (k) and the number of 211 

variables used to split the nodes (m), the generalisation error always converges, and overfitting is 212 

not a problem if the number of trees is increased. However, randomising the splitting rule can 213 

improve the performance for ensembles (Ishwaran 2015; Sonobe et al. 2017). Therefore, three 214 

hyperparameters including the minimum number of unique cases in a terminal node (nodesiz e), the 215 

maximum depth to which a tree should be grown (nodedepth) and the number of random splits 216 

(nsplit) were optimised in this study, as well as ntree and mtry.  217 

http://www.ntu.edu.sg/home/egbhuang/index.html


2.3.2 Support vector machine 218 

SVM has been successfully applied to solve the problem of high dimension and local minima 219 

(Ding et al. 2016). The ‘kernel trick’ has frequently been applied instead of attempting to fit a 220 

non-linear model in previous studies for classification and regression, and the Gaussian Radial 221 

Basis Function (RBF) kernel was most used (Chatziantoniou et al. 2017). In this study, the RBF 222 

kernel was applied, and the regularisation parameter C and the kernel bandwidth σ were tuned to 223 

control the flexibility. 224 

 225 

2.3.3 Kernel based extreme learning machine 226 

ELM (Huang et al. 2006), which is expressed as a single hidden layer feed-forward neural network, 227 

has been widely applied for many practical tasks, such as prediction, fault diagnosis, recognition, 228 

classification and signal processing (Li et al. 2016). Since a fixed hidden layer is composed of a 229 

vast number of nonlinear nodes and the hidden layer bias is defined randomly in this algorithm 230 

(Huang et al. 2006), it possesses fewer hyperparameters than deep learning, such as deep belief 231 

networks. Similar to SVM, the RBF kernel was applied in this study and the hyperparameters of  232 

the regulation coefficient (Cr) and kernel parameter (Kp) were optimised. 233 

 234 

2.4.  Inversion of the radiative transfer model 235 

The PROSPECT model, which is based on the plate model (Allen et al. 1969), simulates leaf 236 

reflectance and transmittance. The first version was expressed as a function of three input 237 

parameters, including the internal structure parameter of the leaf mesophyll (N), chlorophyll 238 

content and water content. The input parameters of the latest version (PROSPECT-D) are leaf 239 



mass per area, brown pigments, carotenoid and anthocyanin contents, plus the above three 240 

parameters. Féret et al (2017) reported that PROSPECT-D outperforms all previous versions. 241 

 242 

The model inversion of PROSPECT-D was conducted using MATLAB and Statistics Toolbox 243 

Release 2016a and the source codes (PROSPECT-D_Matlab.rar) downloaded from the portal site 244 

(Institut de physique du globe de Paris, 2017). The code for the inversion of PROSPECT -5 was 245 

modified for the application of PROSPECT-D. The absorption coefficients of this model were 246 

calibrated to avoid potential systematic bias and error propagation in the inversion process 247 

following Féret et al. (2008). 248 

 249 

2.5. Performance assessment 250 

All measurements were divided into three groups, training (50%), validation (25%) and test data 251 

(25%) for assessing the potential of machine learning algorithms (Hastie et al. 2009). To apply 252 

this strategy, all measurements were divided into four groups based on the shading treatments and, 253 

50% of the groups were selected as training data, which were used for generating regression 254 

models, based on random number for each group. Next, 50% of the remaining measurements were 255 

selected as validation data, which were used for optimising hyperparameters of the machine 256 

learning algorithms. Finally, the last group was used as test data for evaluating accuracies. This  257 

procedure was repeated ten times to increase the robustness of the results. 258 

 259 

After dividing the data, variable selection based on the genetic algorithm (GA), which is an 260 

adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and 261 



genetics, was applied to remove non-informative variables to generate better and simpler 262 

prediction models (Villar et al. 2017) using the training data. This process was conducted using R 263 

3.4.3 and the ‘plsVarSel’ package (Mehmood et al. 2012) and the preliminary parameters were set 264 

to the default values, which were proposed by Hasegawa et al (1999). Then, the hyperparameters 265 

of the regression models based on machine learning algorithms were optimised based on the 266 

estimation errors for the validation data. 267 

 268 

For assessing vegetation indices, training data and validation data, sets were merged and used to 269 

generate regression models based on linear or exponential regression. This merged dataset was 270 

also used to calibrate the absorption coefficients of PROSPECT-D. Finally, chlorophyll contents 271 

were estimated for the test data and the accuracies of each model were evaluated based on them.  272 

 273 

For evaluating performances, the ratio of performance to deviation (RPD, Equation (4)) (Williams 274 

1987) was applied. Each method was classified into three categories based on RPD: Category ‘A’ 275 

(RPD > 2.0), Category ‘B’ (1.4 ≤ RPD ≤ 2.0) and Category ‘C’ (RPD < 1.4). Models classified as 276 

Categories ‘A’ or ‘B’ were assumed to have the potential to estimate chlorophyll content (Chang 277 

et al. 2001). Category ‘A’ is divided into three levels including approximate (2.0 ≤ RPD ≤ 2.5), 278 

good (2.5 < RPD ≤ 3.0) and excellent (RPD < 3.0) (Saeys et al. 2005). 279 

RPD = SD/RMSE   (4) 280 

RMSE = √
1

𝑛
∑ (𝑦𝑖̂ − 𝑦𝑖)2𝑛

𝑖=0   (5) 281 

where SD is the standard deviation of the chlorophyll content in the test data, n is number of 282 

samples, 𝑦𝑖 is the measured chlorophyll content and 𝑦𝑖̂ is the estimated chlorophyll content.  283 



 284 

A data-based sensitivity analysis (DSA) (Cortez and Embrechts 2013), which uses several training 285 

samples instead of a baseline vector and DSA has been applied for the regression or classification 286 

models based on machine learning algorithms by querying the fitted models with sensitivity 287 

samples, was applied for analysing the sensitivity of the regression models using R 3.4.3 and the 288 

‘rminer’ package (Cortez and Embrechts 2013). 289 

 290 

3. Results and Discussion 291 

3.1.  Chlorophyll content after each treatment 292 

Chlorophyll a and b contents were determined based on measurements of the absorbance of the 293 

supernatant dimethyl-formamide extracts. Table 2 summarises the main characteristics of the 294 

measurements. The numbers of samples collected were not the same since some leaf disks were 295 

too thin to measure chlorophyll content using UV-1280. Figure 1 shows histograms of the 296 

chlorophyll content of the different shading treatments on the two dates. The mean  values of 297 

chlorophyll content by leaf area (µg/cm²) were 15.74, 23.37, 27.40 and 27.02 on 1 May, and 35.10, 298 

44.79, 51.05 and 49.39 on 11 May for 0%, 35%, 75% and 90% shading, respectively.  299 

 300 

Shading treatment makes leaf protein content higher and leaves become thicker (Poorter et al. 301 

2006). So, shaded leaves contain more photosynthetic pigments, especially chlorophyll a, than 302 

sunlit leaves to harvest more light and nitrogen (Suzuki and Shioi 2003). As a result, the mean 303 

values of chlorophyll a and b contents were greater with more shading and a significant difference 304 

in chlorophyll content was confirmed among the four shading treatments when all the 305 



measurements from the two dates were combined (p < 0.01, based on ANOVA test). However, the 306 

differences in chlorophyll content were not significant for 35%, 75% or 90% shading for either 307 

date (p < 0.05, based on the Tukey-Kramer test) because the relative amount of chlorophyll b 308 

decreased and chlorophyll a/b ratios increased sharply in a linear manner at low light intensity 309 

(Leong and Anderson 1984). 310 

<Table 2> 311 

<Figure 1> 312 

3.2.  Spectral reflectance of different treatments 313 

The reflected spectra of each shading treatment are presented in Figure 2. The reflectance  of 314 

tea leaves near the green peak on 1 May was larger than that on 11 May and it was larger for 315 

lighter shading treatments. The red edge inflection points were confirmed around 740 nm as with 316 

previous studies (Vogelmann et al. 1993) and they became greater from 1 May to 11 May for all 317 

shading treatments, even though the differences in the reflectance at the start of the red edge (near 680 nm) 318 

were not significant among the four treatments. The differences in reflectance values between 800 nm and 319 

1400 nm were unclear for 0% and 35% shading, while those of 75% and 90% shading on 11 May were 320 

apparently higher than those on 1 May. A similar trend was found in reflectance values of tea leaves 321 

between 1600 nm and 1800 nm. 322 

<Figure 2> 323 

For tea leaves, significant negative correlations were confirmed between chlorophyll content and 324 

reflectance values between 500 and 750 nm (Figure 3). The lowest correlations were obtained at 325 

741 nm, 735 nm and 518 nm for all measurements acquired on 1 May and on 11 May, respectively.  326 

<Figure 3> 327 

3.3.  Selected wavelengths based on GA 328 

Table 3 lists the selected wavelengths for each round to estimate chlorophyll content based on GA. 329 



The numbers of wavelengths were 10–16. Mainly, selected wavelengths were near the green peak 330 

and red edge inflection point of the tea leaves, and they were sensitive to chlorophyll content. 331 

However, some wavelengths shorter than 500 nm or greater than 750 nm, for which there were few 332 

differences in reflectance values among the four shading treatments, were selected and these 333 

values were used as references. These values have been applied to emphasise the reflectance at 334 

680–690 nm for estimating total chlorophyll content in previous studies (Peñuelas et al. 1995b; 335 

Lichtenthaler et al. 1996). 336 

<Table 3> 337 

3.4.  Selected indices based on GA 338 

The indices, which were selected for estimating chlorophyll content based on GA, are listed in 339 

Table 4. From 3 to 6 indices were selected and used to reduce numbers of explanatory variables for 340 

regression models. MSAVI was selected three times; mSR2, TCI and EGFR were selected twice 341 

and most of the indices were selected only once. Chlorophyll strongly absorbs light at blue and red 342 

spectra and does not include light in green and orange spectra (Mattos et al. 2015). Most 343 

vegetation indices for chlorophyll content use wavelengths ranging from 400 to 860 nm. 344 

Furthermore, some stresses influence reflectance at specific wavelengths and reflectance between 345 

healthy and stressed vegetation can be detected in changes to the green peak and t he red edge 346 

(Zarco-Tejada et al. 2001). As a result, some combinations consist of red edge-related indices and 347 

indices covering photosynthetically active radiation (PAR) domain. 348 

<Table 4> 349 

3.5.  Accuracy validation 350 

The statistical criteria of accuracies including the RPD, RMSE and R² from the test data are given 351 



in Table 5.  352 

<Table 5> 353 

Among all the machine learning algorithms with RPD values always greater than 2.0 when 354 

original reflectance values were used, KELM showed the best performance with RPD values of 355 

more than 3.38. This means that it is an excellent model for quantifying chlorophyll content. 356 

However, there is no advantage of using vegetation indices for machine learning regression and 357 

that made their RPD values smaller, except for round 2 and 9 of SVM. Rounds 4, 6 and 10 of SVM 358 

and round 6 of KELM were unacceptable as regression models for estimating chlorophyll 359 

contents.  360 

 361 

Broadleaf trees are composed of two distinctive leaf groups of shaded and sunlit leaves  and most 362 

of indices were divided into two groups including the sunlit leaf -oriented indices and the 363 

shaded-oriented indices (Sonobe and Wang 2017a). The light shading treatments , such as 0 % or 364 

35 % shading, made sunlit leaves, while the heavy shading treatments, such as 75 % or 90% 365 

shading, made shaded leaves. As the result, few vegetation indices could be used as generally 366 

applicable indices to express the differences in leaf chlorophyll content and the combination of 367 

machine learning algorithms and vegetation indices led the worse results . The comparisons among 368 

the three algorithms were conducted based on the results of the original reflectance values. 369 

 370 

To clarify which wavelengths were sensitive to their accuracies, a sensitivity analysis was 371 

conducted and Figure 4 shows the results of the DSA. Although there were specific differences in 372 



strategies in which wavelengths were attached weights to estimate chlorophyll contents, they were 373 

obscure between SVM and KELM and both used RBF kernel in this study, the accuracies of 374 

KELM were superior to those of SVM. Some previous studies showed the selection of the kernel 375 

function parameters can negatively affect their accuracies (Horvath 2003). The optimal values of σ 376 

ranged from 2-41 to 2-1 while Kp ranged from 2-8 to 2-2 based on Bayesian optimisation and that led 377 

the differences. (Huang et al. 2010) showed that the extreme learning machine has less 378 

optimisation constraints and its superiorities have been confirmed in regression  (Maliha et al. 379 

2018). The reflectance at 701–750 nm had the greatest influence on chlorophyll content 380 

estimations for all the algorithms; it occupied an importance of 45.1% for RF, while, no 381 

wavelength that occupied an importance of more than 20% was confirmed for SVM or KELM. 382 

Thus, RF achieved its high performances based on a few explanatory variables. This strategy 383 

might be effective than SVM; however, the red edge inflection points of tea leaves were increasing 384 

and the green peek was decreasing with the shading treatment (Figure 2). The excessive 385 

partialities of RF’s importance made its estimation accuracies lower than KELM. 386 

<Figure 4> 387 

The RPD values of PROSPECT-D were relatively stable between 1.71 and 2.31; therefore, this 388 

method was assumed to have the potential to estimate chlorophyll content according to the 389 

criterion by Chang et al. (2001). In this model, the wavelength near the green peak and the red 390 

edge inflection point are not fully considered and the statistics of PROSPECT-D were inferior to 391 

those of the machine learning algorithms. However, it is useful to estimate other biochemical 392 

properties including carotenoid content, anthocyanin content, water content and leaf mass per area 393 

simultaneously. PROSPECT-D has a high potential for quantifying carotenoid content (Sonobe et 394 



al. 2018b). Since the chlorophyll to carotenoid ratio is an indicator for environmental stress in 395 

plants (Hendry and Price 1993), this model might be useful to assess physiological properties as 396 

well as biochemical properties. Furthermore, in some versions of PROSPECT, the influence of 397 

reflectance in total chlorophyll content is separated into chlorophyll a and b. However, a 398 

consideration of anthocyanin information and improvement in the measurement of individual 399 

photosynthetic pigment concentrations are needed since the measurement of carotenoid was not 400 

accurate enough (Zhang et al. 2017). Thus, there is some potential for using PROSPECT to assess 401 

vegetation properties following some improvements.  402 

 403 

In this study, it was revealed that the combination of leaf scale spectroscopy and machine learning 404 

has exhibited relatively high accuracy and has been found to be useful for quick estimation of 405 

chlorophyll content. However, satellite- or unmanned aerial vehicle (UAV) remote sensing 406 

techniques are more of professional applications concerning large scale assessment . There remain 407 

many gaps to be crossed over from the study reported here to large scale satellite -borne 408 

applications. 409 

 410 

4. Conclusions 411 

The potential of vegetation reflectance for quantifying chlorophyll content of shaded tea was 412 

evaluated. In this study, two methods were assessed, the inversion of a radiative transfer model 413 

and machine learning algorithms, and the estimations based on machine learning algorithms were 414 

superior. Specifically, KELM yielded the most accurate estimation with a RMSE of 3.04 ± 0.52 μg 415 

cm-2 and RPD values from 3.38 to 5.92, which means the regression models based on KELM were 416 



excellent and were confirmed for quantifying chlorophyll content. 417 

 418 

PROSPECT-D possessed some potential for this purpose; its RPD values ranged from 1.71 to 2.62 419 

and more improvements were required to apply this method to shade grown tea cultivation. 420 

However, it is not sufficient to evaluate chlorophyll content of tea trees under high light stress and 421 

further improvements of the PROSPECT model are required. Our results showed that applying 422 

machine learning algorithms is a unique solution to conduct in -situ measurements of green tea. 423 
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Tables 787 

Table 1 Vegetation indices evaluated in this study. dG: maximum of the first derivative of reflectance 788 

in the green, dRE: maximum of the first derivative of reflectance in the red edge  789 

Index Formula Reference 

Chlorophyll 

absorption ratio 

index (CARI) 

R700*(SQRT((a*670+R670+b)2))/R670*(a2+1)0.5 

a = (R700–R550)/150 and b = R550–(a*550) 

(Kim et al.  1994) 
Chlorophyll 

absorption ratio 

index 2 (CARI2) 

(|(a+1)*R670+b|/(a²+1)0.5)*(R700/R670) 

a = (R700– R550)/150 and b = R550–(a*550) 

Reflectance value 

at 550 nm (Carter) 
R550 (Carter and Knapp 2001) 

Chlgreen 

RNIR/RGREEN–1 

RNIR: mean reflectance value from 760 to 800 

nm 

RGREEN: mean reflectance value from 540 to 

560 nm 
(Gitelson  et al.  2006) 

Chlred edge1 

RNIR/RRED EDGE–1 

RNIR: mean reflectance value from 760 to 800 

nm 

RRED EDGE: mean reflectance value from 690 

to725 nm 

Chlred edge2 R750/R710–1 (Wu  et al.  2009) 

Red-edge 

chlorophyll index 

(CI)  

R675* R690/R683
2 

(Zarco-Tejada et al. 

2009) 

Chlorophyll 

vegetation index 

(CVI) 

RNIR*RRED/RGREEN
2 

RGREEN: mean reflectance value from 490 to 

570 nm 

RRED: mean reflectance value from 640 to 760 

nm 

RNIR: mean reflectance value from 780 to 

1400 nm 

(Vincini  et al.  2008; 

Hunt  et al.  2011) 

D703 D703 
(Boochs et al. 1990) 

D720 D720 

Datt1 R860/(R550*R708) 

(Datt 1998) Datt2 R672/(R550*R708) 

Datt3 R672/R550 

Datt4 D754/D704 (Datt 1999b) 

Datt5 R850/R710 (Datt 1999a) 



Datt6 (R850–R710)/(R850–R680) 

Double difference 

(DD) 
(R749–R720)–(R701–R672) (le Maire et al. 2008) 

DDn 2*R710–R(710–50)–R(710+50) (le Maire et al. 2008) 

dND(522, 728) (D522–D728)/(D522+D728) 
(Sonobe and Wang 

2017b) 

Double-peak index 

(DPI) 
(D688*D710)/D697

2 
(Zarco-Tejada et al. 

2003b) dSR1 D730/D706 

dSR2 D705/D722 

DR(800, 550) R800–R550 
(Buschmann and Nagel 

1993) 

DR(800, 680) R800–R680 (Jordan 1969)  

Edge-green first 

derivative 

normalized 

difference (EGFN) 

(dRE–dG)/(dRE+dG) 

(Peñuelas et al. 1994) 

Edge-green first 

derivative ratio 

(EGFR) 

dRE/dG 

Enhanced 

vegetation index 

(EVI) 

2.5*((R800–R670)/(R800–(6*R670)–(7.5*R475) + 

1)) 
(Huete et al. 2002) 

First derivative 

normalized 

difference 

vegetation index 

(FDNDVI) 

(D630–D723)/(D630+D723) (Zhao et al. 2014) 

Greenness index 

(GI) 
R554/R677 (Smith et al. 1995) 

Gitel1 1/R700 (Gitelson et al. 1999) 

Gitel2 (R750–R800/R695–R740)–1 (Gitelson et al. 2003) 

Global imager 

vegetation index 

(GLI) 

(2*RGREEN–RRED–RBLUE)/ (2* RGREEN + RRED + 

RBLUE) 

RBLUE: mean reflectance value from 420 to 

480 nm 

RGREEN: mean reflectance value from 490 to 

570 nm 

RRED: mean reflectance value from 640 to 760 

nm 

(Gobron et al.  2000) 

Green normalized 

difference 

vegetation index 

(R800–R550)/(R800+R550) (Gitelson et al. 1996) 



(GNDVI) 

Mac (R780–R710)/(R780–R680) (Maccioni et al. 2001)  

Modified 

chlorophyll 

absorption in 

reflectance index 

(MCARI) 

((R700–R670)–0.2*(R700–R550))*(R700/R670) 
(Daughtry et al. 2000) 

MCARI/OSAVI MCARI/OSAVI 

Modified 

chlorophyll 

absorption in 

reflectance index 1 

(MCARI1) 

1.5[1.2(R712–R670)–0.5(R712–R550)](R712/R670) 
(Guan and Liu 2009) 

MCARI1/MSAVI MCARI1/MSAVI 

Modified 

chlorophyll 

absorption in 

reflectance index 2 

(MCARI2) 

((R750–R705)–0.2*(R750–R550))*(R750/R705) (Wu et al. 2008) 

MCARI2/OSAVI2 MCARI2/OSAVI2 (Wu et al. 2008) 

mND705 (R750–R705)/(R750+ R705–2R445) 
(Sims and Gamon 2002) 

mNDVI (R800–R680)/(R800+R680–2R445) 

mREIP 
The index based on the Gaussian fit of the red 

edge derivative 
(Miller et al. 1990) 

Modified soil 

adjusted 

vegetation index  

(MSAVI) 

0.5*(2*R800+1–SQRT((2*R800+1)2–8*(R800–

R670))) 
(Qi et al. 1994) 

mSR1 (R750–R445)/(R705–R445) 
(Sims and Gamon 2002) 

mSR2 (R800–R445)/(R680–R445) 

mSR3 (R750/R705–1)/SQRT((R750/R705)+1) (Chen 1996) 

MERIS terrestrial 

chlorophyll index  

(MTCI) 

(R754–R709)/(R709–R681) (Dash and Curran 2004) 

Modified 

triangular 

vegetation index  

(MTVI) 

1.5[ 1.2(R712–R550)–2.1(R670–R550)] 
(Guan and Liu 2009) 

MTVI/MSAVI MTVI/MSAVI  

ND (R565–R735)/(R565+R735) (Gong et al. 2014) 

Normalized 

difference 
(R800–R670)/(R800+R670) (Tucker 1979) 



vegetation index  

1 (NDVI1) 

Normalized 

difference 

vegetation index  

2 (NDVI2) 

(R750–R705)/(R750+R705) 

(Gitelson and Merzlyak 

1994; Gamon and Surfus 

1999) 

Normalized 

difference 

vegetation index  

3 (NDVI3) 

(R682–R553)/(R682+R553) (Gandia et al. 2005) 

Normalized 

pigments 

reflectance index 

(NPCI) 

(R680–R460)/(R680+R460) 
(Blackburn 1998a, 

1998b) 

Normalized 

pigments 

reflectance index  

2 (NPCI2) 

(R680–R430)/(R680+R430) (Peñuelas et al. 1994) 

Optimized soil 

adjusted 

vegetation index  

(OSAVI) 

(1+0.16)*(R800–R670)/(R800+R670+0.16) (Rondeaux et al. 1996) 

Optimized soil 

adjusted 

vegetation index  

2 (OSAVI2) 

(1+0.16)*(R750–R705)/(R750+R705+0.16) (Wu et al. 2008) 

Pigment specific 

normalized 

difference for 

chlorophyll a 

(PSNDa) 

(R800–R680)/(R800+R680) 

(Blackburn 1998a, 

1998b) 

Pigment specific 

normalized 

difference for 

chlorophyll b 

(PSNDb) 

(R800–R635)/(R800+R635) 

Pigment specific 

simple ratio for 

chlorophyll a 

(PSSRa) 

R800/R680 

Pigment specific 

simple ratio for 

chlorophyll  b 

(PSSRb) 

R800/R635 



Renormalized 

difference 

vegetation index  

(RDVI) 

(R800–R670)/(SQRT(R800+R670)) 
(Roujean and Breon 

1995) 

Wavelength of the 

red edge (RE) 

Amplitude of the main peak in the first 

derivative of the reflectance spectra 
(Filella et al. 1996) 

Red-Edge 

Inflection Point  

(REIP) 

The position of the red edge inflection point 
(Collins 1978; Horler et 

al. 1983) 

Red-edge position 

liner extrapolation 

method1 (REP1) 

700+40*((Rre–R700)/(R740–R700)) 

Rre=(R670–R780)/2 

(Cho and Skidmore 

2006) 

Red-edge position 

liner extrapolation 

method2 (REP2) 

700+40*((R670+R780)/2–R700)/(R740–R700)) (Guyot and Baret 1988) 

Structure intensive 

pigment index 

(SIPI) 

(R800–R445)/(R800–R680) (Peñuelas et al. 1995b) 

Spectral polygon 

vegetation index 

(SPVI) 

0.4*3.7*(R800–R670)–1.2*SQRT((R530–R670)2) 
(Vincini et al. 2006; 

Main et al. 2011) 

SR1 R605/R760 

(Carter 1994) 

SR2 R695/R760 

SR3 R710/R760 

SR4 R695/R420 

SR5 R695/R670 

SR6 R675/R700 (Chappelle et al. 1992) 

SR7 R750/R550 (Gitelson and Merzlyak 

1996) 

 

SR8 R750/R700 

SR9 R752/R690 

SR10 R440/R690 
(Lichtenthaler et al. 

1996) 

SR11 R700/R670 (McMurtrey et al. 1994)  

SR12 R430/R680 (Peñuelas et al. 1995a) 

SR13 R740/R720 (Vogelmann et al. 1993) 

SR14 R750/R710 
(Zarco-Tejada et al. 

2003c)  

SR15 R565/R740 (Gong et al. 2014) 

SR16 R1250/R1050 (Delalieux  et al.  2009) 

SRC R800/R680 (Jordan 1969) 

Sum of the The sum of the amplitudes between 680 and (Filella et al. 1995) 



amplitudes 

between 680 and 

780 nm in the first 

derivative of the 

reflectance spectra 

(Sum1) 

780 nm in the first derivative of the 

reflectance spectra 

Sum of derivative 

values between 

626 nm and 795 

nm (Sum2) 

The sum of derivative values between 626 nm 

and 795 nm. 
(Elvidge and Chen 1995) 

Transformed 

chlorophyll 

absorption ratio 

(TCARI) 

3*((R700–R670)–0.2*(R700–R550)*(R700/R670)) 
(Haboudane et al. 2002) 

TCARI/OSAVI TCARI/OSAVI 

Transformed 

chlorophyll 

absorption ratio 2 

(TCARI2) 

3*((R750–R705)–0.2*(R750–R550)*(R750/R705)) 
(Wu et al. 2008) 

TCARI2/OSAVI2 TCARI2/OSAVI2 

Triangular 

chlorophyll index  

(TCI) 

1.2*(R700–R550)–1.5*(R670–

R550)*SQRT(R700/R670) 
(Hunt  et al.  2011) 

Transformed 

vegetation index  

(TVI) 

0.5*(120*(R750–R550)–200*(R670–R550)) 
(Broge and Leblanc 

2001) 

Voge1 D715/D705 
(Vogelmann et al. 1993) 

Voge2 (R734–R747)/(R715+R726) 
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Table 2 Main characteristics of the measurements in this study.  792 

Shading 0% 35% 75% 90% 

Date 01 May 11 May  01 May 11 May  01 May 11 May  01 May 11 May  

Number of samples 8 15 12 15 12 15 14 15 

Minimum 9.24  24.58  16.84  36.20  19.62  36.41  17.03  29.63  

1st Quartile 13.06  31.42  19.03  40.78  24.11  49.39  21.88  46.73  

Median 16.01  33.64  22.42  44.28  26.16  51.27  27.02  49.30  

Mean 15.74  35.10  23.37  44.79  27.40  51.05  26.77  49.39  

3rd Quartile 18.72  38.35  27.21  46.93  30.46  55.01  32.61  54.99  

Maximum 21.63  46.25  31.75  55.80  38.51  57.89  38.04  60.60  
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Table 3. Selected wavelengths (nm) based on GA. 795 

Round Wavelength (nm) 

1 481, 494, 541, 544, 564, 582, 618, 630, 634, 664, 730, 770, 771 

2 409, 426, 513, 520, 546, 553, 574, 576, 586, 606, 657, 681, 689, 702, 745, 753  

3 535, 556, 565, 571, 609, 612, 620, 643, 650, 736, 755, 766, 768 

4 410, 520, 526, 534, 572, 573, 614, 618, 623, 639, 642, 713, 770, 772 

5 434, 448, 528, 591, 599, 636, 677, 695, 697, 742, 749, 752, 763 

6 401, 419, 432, 492, 625, 648, 672, 677, 706, 736, 737, 749,  777 

7 443, 450, 453, 495, 497, 569, 587, 646, 648, 677, 689, 739 

8 415, 423, 449, 485, 511, 526, 541, 545, 591, 605, 654, 655, 688, 704, 728, 776  

9 427, 472, 485, 493, 518, 527, 546, 596, 602, 619, 659, 672, 675, 711, 728  

10 441, 458, 461, 597, 679, 697, 703, 735, 747, 760 
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Table 4. Selected indices based on GA. 798 

Round Index 

1 SR2, SR4, MCARI2 

2 Datt1, EGFN, NPCI2, mSR2, TCI 

3 Mac, D1, MSAVI, RDVI.1 

4 PSSRb, SR6, SR14 

5 EGFR, MSAVI, OSAVI2, GLI 

6 EGFN, mSR2, SR3, GI, MTCI 

7 mREIP, PSNDb, SR11, MCARI1, TCI 

8 PSNDb, SR8, CI, DDn, DPI, RDVI 

9 Datt4, Gitel1, MSAVI, D800_550 

10 EGFR, NPCI, TVI 
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Table 5. Effective methods for quantifying chlorophyll content . 802 

  Round 1 Round 2 Round 3 Round 4 Round 5 

  R² RMSE RPD R² RMSE RPD R² RMSE RPD R² RMSE RPD R² RMSE RPD 

Machine learning 

Reflectance 

SVM 0.77  4.66  2.46  0.94  3.64  3.87  0.87  4.32  2.83  0.82  5.65  2.36  0.96  2.84  4.32  

RF 0.87  4.04  2.84  0.94  3.39  4.15  0.93  3.63  3.37  0.85  4.85  2.75  0.95  3.29  3.73  

KELM 0.95  2.57  4.47  0.94  2.83  4.96  0.95  2.85  4.29  0.83  3.58  3.73  0.96  2.59  4.73  

Vegetation index 

SVM 0.69  7.87  1.46  0.93  3.60  3.90  0.82  6.16  1.98  0.39  11.03  1.21  0.89  4.10  3.00  

RF 0.76  5.51  2.08  0.81  6.08  2.31  0.88  4.24  2.88  0.68  7.66  1.74  0.77  5.99  2.05  

KELM 0.92  3.22  3.56  0.95  3.25  4.32  0.74  6.32  1.94  0.67  7.60  1.76  0.83  4.97  2.47  

Model inversion 

PROSPECT-D 0.69  6.71  1.71  0.79  6.87  2.05  0.77  6.30  1.94  0.72  7.45  1.79  0.81  6.41  1.91  

  Round 6 Round 7 Round 8 Round 9 Round 10 

  R² RMSE RPD R² RMSE RPD R² RMSE RPD R² RMSE RPD R² RMSE RPD 

Machine learning 

Reflectance 

SVM 0.96  3.09  5.06  0.92  4.19  3.29  0.95  3.57  4.20  0.74  6.00  2.28  0.84  4.87  2.57  

RF 0.96  3.49  4.48  0.95  3.12  4.42  0.90  4.86  3.08  0.88  4.70  2.91  0.94  3.97  3.15  

KELM 0.97  2.65  5.92  0.93  2.82  4.89  0.94  3.75  4.00  0.92  4.05  3.38  0.96  2.66  4.70  

Vegetation index 

SVM 0.69  14.50  1.08  0.62  8.70  1.58  0.52  10.33  1.45  0.84  5.71  2.40  0.51  11.80  1.06  

RF 0.83  7.03  2.23  0.71  7.75  1.78  0.78  7.08  2.12  0.85  5.47  2.50  0.54  8.85  1.41  

KELM 0.25  13.36  1.17  0.76  7.25  1.90  0.85  6.07  2.47  0.80  6.48  2.11  0.58  8.27  1.51  

Model inversion 

PROSPECT-D 0.92  6.78  2.31  0.81  7.93  1.74  0.76  8.38  1.79  0.83  5.92  2.31  0.77  6.62  1.89  
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Figures 804 

  805 

Figure 1. Histograms of chlorophyll content on (a) 1 May and (b) 11 May. Continuous, dashed, dotted 806 

and long dashed lines represent distributions of chlorophyll content after 0 %, 35 %, 75 % and 90 % 807 

shading, respectively. 808 

  809 

(a)

(b)



  810 

Figure 2. Mean reflectance spectra and standard deviations for (a) 0% shading, (b) 35% shading, 811 

(c)75% shading and (d) 90% shading. Red and blue represent measurements on 1 May and 11 May, 812 

respectively.   813 
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(b)
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(d)



 814 

 815 

Figure 3. Correlations between reflectance and chlorophyll content.  Continuous, dotted 816 

and broken lines represent correlation coefficients for all, on 1 May and on 11 May, 817 

respectively. 818 
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 820 

Figure 4. DSA results for RF (black), SVM (grey) and KELM(white). Importance values were 821 

averaged for ten repetitions. 822 
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