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Abstract

Among the members of flaviviruses, the Zika virus (ZIKV) remains a potent infectious dis-

ease agent, with its associated pandemic prompting the World Health Organization (WHO)

to declare it a global public health concern. Thus, rapid and accurate diagnosis of the ZIKV

is needed. In this study, we report a new immunofluorescence biosensor for the detection of

nonstructural protein 1 (NS1) of the ZIKV, which operates using the localized surface plas-

mon resonance (LSPR) signal from plasmonic gold nanoparticles (AuNPs) to amplify the

fluorescence intensity signal of quantum dots (QDs) within an antigen-antibody detection

process. The LSPR signal from the AuNPs was used to amplify the fluorescence intensity of

the QDs. For ultrasensitive, rapid, and quantitative detection of NS1 of the ZIKV, four differ-

ent thiol-capped AuNPs were investigated. Our biosensor could detect the ZIKV in a wide

concentration range from 10–107 RNA copies/mL, and we found that the limit of detection

(LOD) for the ZIKV followed the order Ab-L-cysteine-AuNPs (LOD = 8.2 copies/mL) > Ab-3-

mercaptopropionic acid-AuNPs (LOD = 35.0 copies/mL). Immunofluorescence biosensor

for NS1 exhibited excellent specificity against other negative control targets and could also

detect the ZIKV in human serum.

Introduction

In the mid-20th century, the causative agent, i.e., the Zika virus (ZIKV), of the vector-borne

infectious disease known as Zika fever was discovered in the Zika forest of Uganda [1, 2]. It

belongs to the family of genus Flavivirus and has a single, positive-stranded RNA genome. The

ZIKV shares similar properties with the West Nile virus, Japanese encephalitis, yellow fever

and dengue virus [3, 4]. Several outbreaks of the ZIKV have been reported since its discovery,

with the most recent being in 2015 in South and North America [5]. The outbreak in Brazil led
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to the discovery of a direct link between the ZIKV and congenital blindness, microcephaly,

and congenital Zika syndrome known as fetal growth restriction [6]. Most recently, a direct

association between the ZIKV and Gullain-Barré neurological disorder [7] was reported: it can

affect individuals of any age group, thus exposing many population groups to greater risk of

infection. Unlike many arboviruses that can spread directly between the host and the vector,

the ZIKV is known to spread via body fluids such as semen, saliva, urine and blood [8], thus

allowing the virus to spread at an alarmingly rapid rate. Limiting the spread of the virus is

problematic because many infected individuals remain asymptomatic [9].

The current ZIKV outbreak has highlighted the main challenges associated with existing

diagnostic techniques. Accurate diagnosis of the ZIKV is compounded by the fact that chikun-

gunya and dengue virus yield similar symptoms, such as joint pain, rash and fever [10]. The

current serological analysis, which is carried out on body fluids, requires highly skilled techni-

cians to prepare, extract and incorporate samples into advanced analytical instruments [11].

The gold standard viral detection technique, reverse-transcription polymerase chain reaction

(RT-PCR), is generally characterized by complex assays, long diagnostic time and expensive

peripheral components. Thus, this technique cannot be recommended as a rapid and easy-to-

use diagnostic tool for the ZIKV [12]. Furthermore, the enzyme-linked immunosorbent assay

(ELISA), which has been used to detect antibodies specific to the ZIKV antigen, suffers from

low sensitivity and poor specificity [13]. Additional challenges associated with developing an

accurate diagnostic biosensor for the ZIKV are low viral loads, nonspecific binding and cross-

reactivity of ZIKV antibodies with other flavivirus antibodies. Therefore, there is an urgent

need to develop portable, smart, rapid and accurate detection systems to meet the overwhelm-

ing demand for point-of-care treatment of the ZIKV.

Localized surface plasmon resonance (LSPR) biosensors based on fluorescence-enhanced

intensity signals have recently emerged as a powerful technique to develop ultrasensitive, rapid

and specific detection systems for various biological target analytes [14]. Specifically, our

group has adopted this technology to develop biosensors for dengue virus [15] and influenza

virus [16, 17]. The concept of the biosensor involves using the LSPR signal from plasmonic

nanoparticles (NPs) to mediate the fluorescence intensity signal of semiconductor quantum

dot (QD) nanocrystals in a biosensor probe that utilizes molecular beacon or antibodies as

receptors. In this work, we report the development of a plasmon-induced immunofluores-

cence biosensor for NS1 protein of the ZIKV based on an antibody-antigen interaction that is

target specific, rapid and ultrasensitive. The NS1 protein (size: ~9 nm) is one of the major anti-

genic markers for virus infection [18]. The molecule has a size of 42 kD and a homodimer

structure. The NS1 protein of ZIKV shows no cross-reactivity with NS1 of other flavivirus spe-

cies, and it is a very suitable protein as a marker for detection [19]. We selected NS1 of ZIKV

as a diagnostic marker because of this point. To enhance the fluorescence signal transducer

interface of the QDs upon interaction of the antibody with the virus antigen we investigated

four different kinds of thiol-capped gold nanoparticles (AuNPs) as a signal amplifier.

Materials and methods

Materials

HEPES buffer, sorbitan monolaurate (Tween 20), polyoxyethylene (20), sulfuric acid sodium

acetate, hydrogen peroxide, acetone, chloroform, potassium hydroxide (KOH) and methanol

were purchased from Wako Pure Chemical Ind. Ltd. (Osaka, Japan). Oleic acid was purchased

from Nacalai Tesque Inc. (Kyoto, Japan). Bovine serum albumin (BSA), HAuCl4, N-hydroxy-

succinimide (NHS), N-(3-dimethylaminopropyl)-N0-ethylcarbodiimide hydrochloride (EDC),

cadmium oxide (CdO), 1-octadecene, tellurium (Te), trioctylphosphine oxide (TOPO),
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hexadecylamine (HDA), selenium (Se), trioctylphosphine (TOP) and sulfur (S) were pur-

chased from Sigma Aldrich co. (St Louis, MO, USA).3-mercaptopropionic acid (3-MPA), thio-

glycolic acid (TGA), L-cysteine (L-cyst) and L-glutathione (GSH) as a signal amplifier were

also purchased from Sigma-Aldrich co. (St Louis, MO, USA). GSH with molecular weight

(MW) of 307.32 is a tripeptide consisting of glutamic acid, cysteine and glycine. There is an

amide bond between the amino group of cysteine and a carboxy group on the side chain of

glutamic acid. TGA (MW: 92.11) is a kind of thiol ligand that easily oxidizes in air to form

disulfide and possesses a terminal carboxylic group that can be used for bonding to external

moieties. The acid 3-MPA (MW: 106.14) is a typical thiocarboxylic acid having a carboxyl

group and is widely used as a capping. The amino acid L-cyst (MW: 121.16) has an amino

group and a carboxyl group and is stable under acidic conditions, but it is readily oxidized

with air by trace amount of heavy metal ions to become cystine under neutral and alkaline

conditions. Goat anti-rabbit IgG-HRP was purchased from Santa Cruz Biotechnology (CA,

USA). Tetramethylbenzidine (TMBZ) was purchased from Dojindo (Kumamoto, Japan).

Anti-ZIKV NS1 protein antibody was purchased from Gene Tex Inc. (Irvine, CA, USA),

which does not react with any other type of flavivirus group of the NS1 protein [20]. Zika virus

recombinant NS1 antigen was purchased from the Native Antigen (Oxford, UK). ZIKV strain

PRVABC-59 was used in this study. Influenza viruses A/California/07/2009 (H1N1) and A/

Netherlands/219/03 (H7N7) were purchased from Vircell Microbiologists (Granada, Spain)

and Prospec-Tany TechnoGene Ltd. (Rehovot, Israel), respectively. Norovirus-like particles

(NoV-LPs) was prepared in Sf-9 cell culture [21] and used for a selectivity test. All experiments

were carried out using high-purity deionized (DI) water (> 18 MΩ�cm).

Instrumentation

UV/vis absorption and fluorescence emission measurements were performed using a filter-

based multimode microplate reader (Infinite F500; TECAN, Ltd, Männedorf, Switzerland).

Transmission electron microscopy (TEM) analysis was carried out using a TEM (JEM-2100F;

JEOL, Ltd., Tokyo, Japan) operated at 100 kV. Zeta potential and hydrodynamic particle size

were measured by dynamic light scattering (DLS) using a Zetasizer Nano series (Malvern Inst.

Ltd., Malvern, UK). Powder X-ray diffraction (PXRD) measurement was carried out using a

RINT ULTIMA XRD (Rigaku Co., Tokyo, Japan) with a Ni filter and Cu-Kα source. Data

were collected over 2theta = 5–60˚ at a scan rate of 0.01˚/step and 10 s/point. Conjugation of

the Ab to the NPs was confirmed via an ELISA and read through a plate reader from Bio-Rad

(model 680, Hercules, USA). Fourier transform infrared spectroscopy was achieved using the

FT/IR-6600 (JASCO, Tokyo, Japan).

Synthesis of confetto-shaped AuNPs and alloyed QDs

The thiol-capped AuNPs were synthesized using the HEPES buffer according to a previously

reported procedure [22]. Briefly, in a 3-necked flask containing a mixture of 4 mL of 1 M

HEPES buffer and 36 mL of deionized (DI) water, 1 mL of 20 mM HAuCl4 was added. The

solution was vigorously stirred and the slow formation of AuNPs was evident by the steady

change in the color of the solution to purple. Purification of the AuNPs was carried out by cen-

trifugation; thereafter, the AuNPs were suspended in the DI water. The AuNPs were then

functionalized with the respective thiol ligands of MPA, L-cyst, TGA and GSH by first adding

HCl to the solution and adjusting the pH to 2, and then adding the appropriate volume of thiol

solution. The thiol-capped AuNPs were purified by centrifugation and dissolved in 2 mL of

ultrapure DI water. The synthesis of the alloyed QDs was carried out according to a previously

reported procedure [17].
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Conjugation of anti-NS1 Ab to AuNPs and CdSeTeS QDs. Carbodiimide EDC/NHS

coupling chemistry was used to conjugate the anti-NS1 Ab to the QDs and the respective thiol

(MPA, TGA, L-cyst and GSH)-capped AuNPs. In a separate reaction vial, the carboxylate

groups on the respective AuNPs and QDs (1 mL aqueous solution) were activated with 15 μl of

1 mg/mL EDC and stirred at room temperature for 30 min. Thereafter, 5.1 μg/mL of anti-NS1

Ab was incorporated into each of the systems, and the mixture was stirred for 5 min at 7˚C.

Then, 15 μl of 1 mg/mL NHS was added to the EDC-activated anti-NS1 Ab-conjugated QDs

and the respective AuNPs solutions to stabilize the amide bond formation. Each solution was

allowed to stir overnight at 7˚C. Purification of the anti-NS1 Ab-conjugated QDs and respec-

tive AuNPs was carried out via centrifugation at 3000 g for 10 min, followed by being dissolved

in 2 mL of DI water.

ELISA for binding confirmation. The binding of the anti-NS1 Abs to the QDs and

AuNPs was confirmed using the ELISA. Briefly, 100 μl of conjugated Ab-QDs and Ab-

AuNPs were added to separate wells of a 96-well polystyrene plate and incubated at 4˚C over-

night. To confirm the specificity of the assay, 100 μl of 2% bovine serum albumin (BSA), as a

negative control, was added to a separate well. After incubation overnight, the solution was

washed three times using a solution of 200 μl PBS buffer containing 5% of Tween (PBST),

and a blocking agent (10 μl of 5% skim milk) solution was added to each well and subse-

quently removed by washing three times with PBST. A dilution solution of 100 μl of anti-rab-

bit IgG-horseradish with 2% BSA (1:4000) was added to each well and incubated at room

temperature for 1 h. A coloring chromogenic agent, 100 μl of TMBZ, was added to each well,

which triggered a blue color as a confirmation of binding affinity between the Ab-QDs and

Ab-AuNPs. The color of the solution changed from blue to yellow when the reaction was

stopped with 50 μl of 10% H2SO4. The absorbance of the solution at 450 nm was measured

using a microplate reader (Infinite F500; TECAN) embedded with a reference filter at 655

nm.

Fluorescence immunoassay for NS1 of the ZIKV

Anti-NS1 Ab-MPA-AuNPs and anti-NS1 Ab-QDs were mixed at the ratio of 1:3 in a 96-well

plate and used to detect each concentration of the ZIKV. The ZIKV solutions (20 μl), in the

concentration range of 10–107 RNA copies/mL, were each mixed with 80 μl of the anti-NS1

Ab-MPA-AuNPs and anti-NS1 Ab-QDs detection systems and allowed to incubate for 3 min

prior to reading the fluorescence signal. To investigate how thiol capping on the AuNP surface

influences the fluorescence intensity signal, anti-NS1 Ab-TGA-AuNPs, anti-NS1 Ab-L-cyst-

AuNPs and anti-NS1 Ab-GSH-AuNPs were mixed in a separate solution with the anti-NS1

Ab-QDs and used for the ZIKV detection system. Additionally, the sensing performance of

the ZIKV detection system was evaluated in a complex medium containing human serum.

The detection assay was excited at 450 nm the fluorescence detection was carried out in the

range of 460–700 nm. The assay was repeated three times and the average values with standard

deviation were shown.

Detection concept of the biosensor

The detection concept of the biosensor is shown in Fig 1. The AuNPs act as a signal amplifier,

while the QDs act as a fluorophore signal transducer. In the presence of the target NS1 of the

ZIKV, the Ab on the surface of AuNPs and QDs binds the antigen on the NS1, and the LSPR

signal from the AuNPs amplifies the fluorescence intensity of the QDs because the two parti-

cles are close.

Localized surface plasmon resonance-amplified immunofluorescence biosensor for Zika virus detection
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Results and discussion

Characterization

Four thiol-functionalized AuNPs were synthesized and conjugated to the anti-NS1 Ab. The

chemical structures of the four compounds are shown in S1 Fig. The UV/vis absorption spec-

tra of the respective GSH-, TGA-, MPA-, and L-cyst-capped AuNPs are shown in Fig 2A.

GSH- and TGA-capped AuNPs display surface plasmon resonance (SPR) bands between 494–

554 nm and a peak maximum at 654 nm and 634 nm, respectively, while MPA- and L-cyst-

capped AuNPs are characterized by a broad SPR peak in the range of 526–648 nm. The broad

absorption spectra of MPA- and L-cyst-capped AuNPs are the characteristic absorption wave-

lengths of the confetto-shaped AuNPs. On the other hand, GSH- and TGA-capped AuNPs

showed a narrow peak, which was typical one of spherical-shaped AuNPs. The spectra on the

longer wavelength side is a peak showing aggregation of AuNPs. From the absorbance spectra,

changes in the surface shape can be predicted. The corresponding TEM images of the AuNPs

reveal their surface morphology (Fig 2B–2E), which is characterized by heterogeneity. Com-

pared to the shape morphology for each of the NPs, the GSH-AuNPs (Fig 2B) exhibit a quasi-

spherical morphology, while the MPA- (Fig 2D) and L-cyst-capped AuNPs (Fig 2E) are mostly

characterized by the confetto-shaped surface morphology.

The hydrodynamic particle size and Zeta potential curves of the thiol-capped AuNPs and

the respective Ab-AuNPs are shown in S2 Fig, respectively, while the respective values are

listed in Table 1. The sizes of the thiol-capped AuNPs were all less than 100 nm, thus revealing

the relatively monodispersed nature of the particles in solution. The increase in hydrodynamic

size observed for each of the Ab-AuNPs relative to the unconjugated AuNPs provides direct

evidence of the strong binding process between the NPs and the Ab. The percentage increase

Fig 1. Schematic representation of the LSPR-amplified immunofluorescence biosensor. Anti-NS1 antibody-conjugated AuNPs and QDs are captured ZIKV. LSPR is

induced by the close distance of two nanoparticles and enhances the fluorescence intensity.

https://doi.org/10.1371/journal.pone.0211517.g001
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in hydrodynamic size after binding of the Ab to the AuNPs follows the order of Ab-GSH-

AuNPs (62%) >Ab-L-cyst-AuNPs (36%) >Ab-TGA-AuNPs (32%) >Ab-MPA-AuNPs

(27.6%) (S2A–S2D Fig). The Zeta potential charge of the particle surface of Ab-L-cyst-AuNPs,

Ab-TGA-AuNPs, and Ab-MPA-AuNPs was shifted more positively in comparison to that of

Ab-GSH-AuNPs (S2A1–S2D1 Fig), thus suggesting that the antibody was conjugated to the

NP surface with respect to changes in the Zeta potential charge.

The corresponding DLS curves for the unconjugated QDs and the Ab-QDs (S3 Fig) reveals

a percentage increase of 69% in hydrodynamic diameter after conjugation to the Ab. The

hydrodynamic particle size value determined from the DLS curves was used to assess the

aggregation state of the NPs and the Ab-conjugated NPs.

The FT-IR analysis of the thiol-capped AuNPs and the respective Ab-AuNPs was carried

out to confirm the amide bond formation between the amino group on the Ab and the

Fig 2. UV/vis absorption spectra (A) and TEM images (B–E) of the thiol-capped AuNPs. (B), (C), (D), and (E) denote GSH-, TGA-, MPA-, and L-cyst-conjugated

AuNPs, respectively.

https://doi.org/10.1371/journal.pone.0211517.g002

Table 1. Hydrodynamic sizes and Zeta potential values of the thiol-capped AuNPs and the Ab-AuNPs.

Sample Hydrodynamic particle size (nm) Zeta potential (mV)

GSH-AuNPs 21.24±8.42 -45.2±9.9

Ab-GSH-AuNPs 55.54±19.31 -39.5±7.6

TGA-AuNPs 42.37±14.21 -35.4±12.4

Ab-TGA-AuNPs 62.73±21.32 -42.7±7.6

MPA-AuNPs 40.05±13.69 -40.6±11.1

Ab-MPA-AuNPs 55.33±20.94 -29.2±8.2

L-cyst-AuNPs 46.33±16.81 -38.4±11.0

Ab-L-cyst-AuNPs 72.82±25.37 -29.4±10.3

https://doi.org/10.1371/journal.pone.0211517.t001
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carboxylate group on the thiol-capped AuNPs. It was observed that the intensity of the–OH

band and–C = O-NH band for the Ab-AuNPs was stronger for Ab-MPA-AuNPs and Ab-L-

cyst-AuNPs, than for Ab-GSH-AuNPs and Ab-TGA-AuNPs (Fig 3A–3D), The clear difference

in the intensity of the band signal is attributed to the binding affinity of the Ab to the AuNPs.

Fig 2E shows the ELISA results confirming the covalent binding between the Ab-QDs and Ab-

AuNPs. The strong absorbance for the Ab-QDs, Ab-L-cyst-AuNPs and Ab-MPA-AuNPs rela-

tive to the negative control (2% BSA) confirms the covalent binding interaction. MPA- and L-

cyst-AuNPs also show an efficiency of antibody conjugation that is better than that of GSH-

and TGA-AuNPs.

LSPR-amplified detection of NS1 of the ZIKV

The ratio of Ab-AuNPs and Ab-QDs were optimized before detection of the ZIKV because the

fluorescence signal was affected by the ratio of QD and AuNP. High ratio of Ab-QDs showed

increased fluorescence intensity (S4 Fig), which led to increase in the fluorescence baseline

and to less enhanced fluorescence intensity. On the other hand, high ratio of Ab-AuNPs

decreased the fluorescence intensity (S4 Fig), which also led to decrease the fluorescence base-

line and to less enhanced fluorescence intensity. A ratio of Ab-QDs: Ab-NPs = 3: 1 was appro-

priate for inducing the LSPR signal. Ab-MPA-AuNP was used to detect the NS1 antigen of

the ZIKV in the LSPR-amplified biosensor. The fluorescence intensity of the biosensor was

dependent on the concentration of the NS1 antigen in the region from 10 pg/mL to 1 ng/mL

(Fig 4). The limit of detection (LOD) was evaluated by multiplying the standard deviation of

blank measurements (n = 10) by 3 and dividing by the slope of the calibration curve. The LOD

was 1.28 fg/mL in DI water, which shows that this sensor can detect NS1-ZIKV with high

sensitivity.

ELISA was used to confirm that NS1 was contained in the culture medium infected with

the ZIKV (S5 Fig). The immunofluorescence detection of NS1 of the ZIKV was triggered by

the LSPR-amplifying effect of the Ab-AuNPs on the fluorescence intensity signal of the Ab-

QDs. To confirm that the LSPR signal amplified the fluorescence of the QDs, we carried out

Fig 3. FT-IR spectra of thio-functionalized AuNPs and their binding assay. AuNPs were conjugated by GSH (A), TGA (B), MPA (C), and L-cys (D). (E) ELISA

showing the strong binding affinity of the Ab to the QDs and AuNPs. The 2% of BSA was used as a negative control.

https://doi.org/10.1371/journal.pone.0211517.g003
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the detection of the ZIKV without the LSPR effect from the plasmonic NPs. The poor quantita-

tive detection of NS1 using the immuno-QDs without the LSPR-amplified signal from the

plasmonic NPs is shown (S6 Fig). This result demonstrates that the immunofluorescence

intensity could not be amplified without the LSPR effect and ensures that NS1 of the ZIKV can

be detected quantitatively.

The LSPR-amplified fluorescence enhancement spectra for ZIKV detection using the

respective Ab-GSH-, Ab-TGA-, Ab-MPA-, and Ab-L-cyst-AuNPs are shown in S7 Fig. Ab-

TGA- and Ab-GSH-AuNPs, which showed low LSPR-amplified signal and low linearity.

Meanwhile, in the cases of Ab-MPA- and Ab-L-cyst-AuNPs, the ZIKV was successfully

detected in a wide range of concentrations from 10 copies/mL to 107 copies/mL, and with

higher sensitivity (Fig 5). The LOD was in the order Ab-L-cyst-AuNPs (LOD = 8.2 copies/mL)

> Ab-MPA-AuNPs (LOD = 35.0 copies/mL) > Ab-TGA-AuNPs (LOD = 55.8 copies/mL) >

Ab-GSH-AuNPs (LOD = 57.9 copies/mL). L-cyst has one carboxyl group and one amino

group, but MPA only one carboxyl group (S1 Fig). Here, additional AuNPs may bind to

amino group of L-cyst-AuNPs, compared to MPA-AuNPs. Therefore, higher possibility of

forming Ab-QD-NS1-Ab-L-cyst-AuNPs sandwich structure than that of Ab-QD-NS1-Ab-

MPA-AuNPs, is surmised. This led to more enhanced LSPR effect in L-cyst-capped AuNPs

than that in the MPA-AuNPs. Comparison of the quantitative detections revealed that Ab-L-

cyst-AuNPs amplified the fluorescence intensity of Ab-MPA-AuNPs by 4.3-fold.

The versatility of the LSPR-amplified immunofluorescence biosensor was investigated in a

complex biological medium using human serum as a model medium. The linear fluorescence

Fig 4. Fluorescence intensity in ZIKV detection using Ab-MPA-AuNPs and Ab-QDs and calibration curve. Fluorescence enhancement spectra (A) of the Ab-QDs

and calibration curve (B) of the recombinant NS1 antigen using the LSPR signal amplifier of Ab-MPA-AuNPs.

https://doi.org/10.1371/journal.pone.0211517.g004
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calibration plot of Ab-MPA-AuNPs and Ab-L-cyst-AuNPs for NS1 detection is shown in Fig

6A and 6B. The result shows that Ab-MPA-AuNPs amplified the immunofluorescence inten-

sity of the system in human serum better than Ab-L-cyst-AuNPs. To better understand the

poor amplifying ability exhibited by Ab-L-cyst-AuNPs, TEM images of QD-Ab-NS1-Ab-

MPA-AuNPs and QD-Ab-NS1-Ab-L-cyst-AuNPs in human serum were compared (Fig 6A

Fig 5. Calibration curves of ZIKV detection using 4 kinds of thiol-functionalized AuNPs. The LSPR signal amplifiers of L-cyst-AuNPs (red closed circles)

and Ab-MPA-AuNPs (black closed circles) showed higher correlation coefficients than those of Ab-GSH-AuNPs (black open circles) and Ab-TGA-AuNPs

(yellow open circles).

https://doi.org/10.1371/journal.pone.0211517.g005

Fig 6. Fluorescence enhancement calibration curve. (A) Ab-MPA-AuNPs and (B) Ab-L-cyst-AuNPs were used to detect ZIKV and insets show TEM images

of QD-Ab-ZIKV-Ab-MPA-AuNPs and QD-Ab-ZIKV-Ab-L-cyst-AuNPs, respectively. Detection media are in human serum (closed red circles) and in DI

water (open circles).

https://doi.org/10.1371/journal.pone.0211517.g006
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and 6B). When impure proteins containing serum were added, proteins tend to bind electro-

statically with the amino group of L-cyst-AuNPs but are less interacted with MPA-AuNPs

because MPA has not amino group. From the TEM image, Ab-L-cyst-AuNPs showed a higher

level of aggregation in human serum in comparison to Ab-MPA-AuNPs, which can be attrib-

uted to the low fluorescence signal response in higher ZIKV concentration of 102 RNA copies/

mL.

The hydrodynamic particle sizes of the ZIKV, QD-Ab-NS1-Ab-MPA-AuNPs and QD-Ab-

NS1-Ab-L-cyst-AuNPs are shown in S8 Fig. The hydrodynamic particle size of the ZIKV was

38.6 nm, and that of Ab-ZIKV-Ab-MPA-AuNPs was 106.8 nm. However, the value for

QD-Ab-ZIKV-Ab-L-cyst-AuNPs was over 200 nm, which provides direct evidence of the poly-

disperse nature of the conjugate. Thus, we could conclude that a nonspecific interaction

between Ab-L-cyst-AuNPs and other proteins in serum could have led to the low sensitivity

and aggregation. Functionalization of AuNPs using 3-MPA and L-Cyst, we succeeded in

imparting reactivity with antibodies to AuNPs while maintaining the surface structure. Fur-

thermore, by presenting only the carboxyl group by 3-MPA, it was possible to detect NS1 sta-

bly even in human serum. In L-Cyst modified AuNPs, the highest fluorescence enhancement

effect was found in ultrapure water, but this was due to the fact that the particles were chemi-

cally crosslinked by the EDC/NHS reaction and the plasmon field was enhanced and the

energy transfer to the QD was occurred more efficiently. This phenomena called coupling

effect of AuNPs [23]. However, since the chemical bonding between the nanoparticles

increased the particle diameter, when nano-sized ZIKV was present in human serum, the anti-

gen-antibody reaction could not be normally induced, and the fluorescence enhancement

effect decreases.

The applicability of the immunofluorescence biosensor system was applied to detect the

influenza virus, as shown in S9 Fig. The influenza virus was detected with high sensitivity in

the range of 1 fg/mL to 100 pg/mL and in human serum. The results reflect the robustness of

our LSPR immunofluorescence biosensor system to detect other target viruses.

The sensitivity of our detection system was compared with other detection methods

(Table 2). The comparison shows that the sensitivity of the LSPR immunofluorescence biosen-

sor was comparable to that of the molecular beacon system and was higher than that of the

RT-PCR and RT-LAMP methods. Additionally, our detection method has the advantage that

DNA extraction and a washing process are not required, which is an attractive property for

rapid and onsite ZIKV detection.

Table 2. Comparison of detection methods in terms of ZIKV detection.

Detection technique Signal type LOD Reference

Molecular Beacon Fluorescence

enhancement

1.7 copies/ml [24]

Nanoparticle-enhanced electrical detection Electrical signal 10 virus particle/μl [25]

RT-LAMP Molecular detection Colorimetric 5 pfu/ml [26]

1 copy/μl [27]

rRT-PCR

(real-time RT-PCR)

Polymerase chain reaction 32 genome (0.05 pfu/ml) [28]

530 aM (3.2×105 copies/mL) [29]

~ 1 fM [8]

103 GCE/mL

genome copy equivalents

[30]

LSPR-amplified immunofluorescence Fluorescence enhancement NS1 antigen 1.28 fg/ml (in DI water)

8.2 RNA copies/ml (in DI water)

~ 100 RNA copies/ml (in serum)

This work

https://doi.org/10.1371/journal.pone.0211517.t002
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Specificity of the LSPR-amplified immunofluorescence biosensor. The specificity of the

LSPR-amplified immunofluorescence biosensor to detect the ZIKV was investigated in the

presence of other negative analytes. BSA, norovirus-like particles (NoV-LP) and influenza

virus A (H7N7) were used as a negative control. As shown in Fig 7, none of the tested negative

control analytes altered the fluorescence intensity of the biosensor probe. Thus, the results pro-

vide a strong indication that the LSPR-induced immunofluorescence biosensor developed in

this work is specific for the ZIKV.

Conclusions

A new LSPR-amplified immunofluorescence biosensor for NS1 of the ZIKV has been devel-

oped with characteristic features of rapidity, ultrasensitivity and specificity for ZIKV detection.

Four Ab-conjugated thiol-capped AuNPs were investigated for their use as LSPR signal ampli-

fiers within an antigen-antibody detection system, while the Ab-conjugated QD was used as a

fluorescent signal transducer. Our results show that NS1 can be detected within a wide range

of concentrations from 10 fg/mL to 1 ng/mL with an LOD of 1.28 fg/mL. Based on this result

the ZIKV was detected from 10–107 RNA copies/mL with high sensitivity, rapidity and speci-

ficity using Ab-MPA-AuNPs. We have also demonstrated that Ab-MPA-AuNPs stably

detected the ZIKV in a complex biological medium without any complicated processes.

Supporting information

S1 Fig. Chemical structure of (A) L-glutathione (GSH), (B) thioglycolic acid (TGA), (C)

3-mercaptopropionic acid (MPA) and (D) L-cysteine.

(TIF)

Fig 7. Specificity of our proposed detection method. Fluorescence intensity of ZIKV was compared with those of NoV-LPs, influenza virus A (H7N7) BSA,

and BSA as negative control. The concentration of the sample used was 100 ng/mL for NoV-LPs and influenza virus A (H7N7) and 1×105 RNA copies/mL for

the ZIKV.

https://doi.org/10.1371/journal.pone.0211517.g007
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S2 Fig. DLS hydrodynamic curves (A–D) and Zeta potential (ZP) (A1–D1) for the thiol-

capped AuNPs (red curves) and the Ab-AuNPs (green curves). The thiol capping agents are

(A, A1) GSH, (B, B1) TGA, (C, C1) MPA and (D, D1) L-cyst. Green and red curves indicate

for the thiol-capped AuNPs and the Ab-AuNPs, respectively. The thiol capping are (A1) GSH,

(B1) TGA, (C1) MPA and (D1) L-cyst.

(TIF)

S3 Fig. DLS hydrodynamic curves for the QDs before (red curve) and after (green curve)

conjugation to the antibody.

(TIF)

S4 Fig. Effect of Ab-QDs and Ab-AuNPs ratio in detection solution. ZIKV concentration

was 10 RNA copies/mL.

(TIF)

S5 Fig. ELISA showing the strong binding affinity of the NS1 antibody to the NS1 protein

in Zika virus sample solution.

(TIF)

S6 Fig. Fluorescence intensity changes for ZIKV using the immuno-QDs without LSPR-

amplified signal from the plasmonic AuNPs.

(TIF)

S7 Fig. Fluorescence enhancement spectrum of the Ab-QDs as it correlates to the detected

ZIKV using the LSPR signal amplifier of A) Ab-GSH-AuNPs, B) Ab-TGA-AuNPs, C) Ab-

MPA-AuNPs, and D) Ab- L-cyst-AuNPs.

(TIF)

S8 Fig. DLS hydrodynamic curves for A) QD-Ab-ZIKV-Ab-MPA-AuNPs and B) QD-Ab-

ZIKV-Ab-L-cyst-AuNPs. Peaks of A, B and C are 38.6, 106.8 and 212.0 nm, respectively.

(TIF)

S9 Fig. Fluorescence enhancement spectrum of the Ab-QDs. Influenza virus A (H1N1) was

detected using the LSPR signal amplifier of Ab-MPA-AuNP in DI water (A), in human serum

(B). Calibration curve (C) for Ab-MPA AuNP in DI water (�) and in human serum (•).

(TIF)
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