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Recently the bound on the Lyapunov exponent λL ≤ 2πT=ℏ in thermal quantum systems was
conjectured by Maldacena, Shenker, and Stanford. If we naïvely apply this bound to a system with a
fixed Lyapunov exponent λL, it might predict the existence of the lower bound on temperature T ≥ ℏλL=2π.
Particularly, it might mean that chaotic systems cannot be zero temperature quantum mechanically. Even
classical dynamical systems, which are deterministic, might exhibit thermal behaviors once we turn on
quantum corrections. We elaborate this possibility by investigating semiclassical particle motions near the
hyperbolic fixed point and show that indeed quantum corrections may induce energy emission, which
obeys a Boltzmann distribution. We also argue that this emission is related to acoustic Hawking radiation in
quantum fluid. Besides, we discuss when the bound is saturated, and show that a particle motion in an
inverse harmonic potential and c ¼ 1 matrix model may saturate the bound, although they are integrable.
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Introduction.—Understanding quantum gravity is one of
the most important problems in theoretical physics.
Through developments in gauge-gravity correspondence
[1,2], many people expect that large-N gauge theories may
illuminate the nature of quantum gravity. However only
special classes of the large-N gauge theories, which possess
certain properties, may describe the gravity; understanding
what the essential properties are in the gauge theories that
have dual gravity is a crucial question.
Recently the idea of the maximal Lyapunov exponent

was proposed by Maldacena, Shenker, and Stanford, and it
might capture one of the essences of gauge-gravity corre-
spondence [3]. They conjectured that thermal many-body
quantum systems have an upper bound on the Lyapunov
exponent:

λL ≤
2πT
ℏ

; ð1Þ

where T is temperature of the system and λL is the Lyapunov
exponent. We have taken kB ¼ 1. (See Ref. [4] also.)
Particularly, if a field theory has thedual black holegeometry,
the gravity calculation predicts that the field theory should
saturate this bound λL ¼ 2πT=ℏ [5–7]. (This would be
related to the conjecture that the black hole may provide
the fastest scrambler in nature [8].) This is called themaximal

Lyapunov exponent, and the properties of this bound are
actively being studied. One remarkable example is the SYK
model [9,10], which saturates the bound, and now people are
exploring the dual gravity of this model.
Apart from the interest in the gauge-gravity correspon-

dence, the possible existence of the bound on the Lyapunov
exponent is interesting in its own right. Especially, we can
rewrite the bound [Eq. (1)] as a more suggestive form

T ≥
ℏ
2π

λL: ð2Þ

This relation tells us that the temperature of the chaotic
system is bounded from below [11]. This is a striking
prediction in semiclassical chaotic systems. Suppose we
consider a model of chaos with a finite Lyapunov exponent
λL in a classical Hamiltonian dynamical system, which is
nonthermal and deterministic. (Indeed many of the studies
of chaos have been developed in such a setup.) Then the
inequality [Eq. (2)] is satisfied trivially as T ¼ 0 ≥ 0. Here
temperature is zero because the system is nonthermal and
the right-hand side is also zero because ℏ ¼ 0 in the
classical model. Now we consider the quantum corrections,
and ask what will happen in the semiclassical regime. Then
the right-hand side of the inequality [Eq. (2)] may become
nonzero

ℏ
2π

½λL þOðℏÞ� ¼ ℏ
2π

λL þOðℏ2Þ; ð3Þ

where we have assumed that the quantum corrections to the
classical Lyapunov exponent λL areOðℏÞ [12] and they can
be ignored at the leading order. Thus, if the bound [Eq. (2)]
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is correct, at least anOðℏÞ temperature has to be induced in
the system somehow.
Such a possibility of the emergence of thermal natures in

nonthermal classical systems reminds us of the black hole
thermodynamics. Although black holes are just classical
solutions of general relativity, they behave as the thermal
baths through the Hawking radiation in the semiclassical
regime [13,14]. Thus the bound [Eq. (2)] might imply that
Hawking radiation-like phenomena are observed in semi-
classical chaotic systems.
Note that the original proposal of the bound [Eq. (1)] was

discussed in thermal many-body quantum systems [3]. On a
related note, many of the studies of the bound have been
investigated in the situations where the Lyapunov expo-
nents depend on temperatures [5–7]. Hence it is unclear
whether the bound [Eq. (1)] really implies the emergence of
thermal behaviors in the classically nonthermal chaotic
systems whose (classical) Lyapunov exponents do not
depend on temperatures.
The aim of this Letter is to pursue this possibility in

Hamiltonian dynamical systems described by particle(s). If
the system is chaotic, then, typically, a hyperbolic fixed
point exists, and we investigate particle motions near this
fixed point. We will see that indeed energy emission that
obeys a Boltzmann distribution is induced around the fixed
point quantum mechanically. We will also argue that this
thermal emission is related to acoustic Hawking radiation
[15–17] if we prepare many particles and regard them as a
quantum fluid. Besides, we discuss that the bound [Eq. (2)]
may be saturated even in integrable systems.
Particle motions near hyperbolic fixed point.—We first

consider particle motions in chaotic systems in classical
mechanics. Many chaotic behaviors arise through the two
ingredients: a hyperbolic fixed point and a broken homo-
clinic orbit [18]. The particle trajectories are stretched near
the hyperbolic fixed point, and, through the broken homo-
clinic orbit, somehow the trajectories go back around the
hyperbolic fixed point, and, by repeating these procedures,
the trajectories develop complicated chaotic motions. (We
have in mind, for example, a driven pendulum motion.)
Wewill show that the hyperbolic fixed point plays the key

role for the emergence of thermal behaviors in the quantum
chaotic systems. The particle motions near the hyperbolic
fixed point might be effectively captured by the one-
dimensional particlemotions in an inverse harmonic potential

mẍðtÞ ¼ −V 0ðxÞ; VðxÞ ¼ −
α

2
x2: ð4Þ

Herem is themass of the particle and α is the curvature of the
potential. The point ðx; pÞ ¼ ð0; 0Þ in the phase space is the
hyperbolic fixed point as a model for that of the chaotic
system. (See Fig. 1.) The solution of this equation is given by

xðtÞ ¼ c1e
ffiffiffiffiffiffiffi
α=m

p
t þ c2e

−
ffiffiffiffiffiffiffi
α=m

p
t; ð5Þ

where c1 and c2 are constants determined by the initial
condition, and the sensitivity of the initial condition with the
Lyapunov exponent is shown by

λL ¼
ffiffiffiffi
α

m

r
: ð6Þ

Although this Lyapunov exponent generally differs from that
of the considered chaotic system, if we naïvely apply the
bound [Eq. (2)], we obtain the relation

T ≥ TL ≔
ℏ
2π

ffiffiffiffi
α

m

r
: ð7Þ

Wewill show that oncewe turn on the quantum corrections in
themotion [Eq. (5)], thermal energy emission associatedwith
the temperature TL is induced [19].
Thermal emission from hyperbolic fixed point.—Suppose

a particle with energy E moves toward the potential from
the left (x → 0). Then, in classical mechanics, if the energy
is negative, the particle is reflected by the potential and
goes back (x → −∞), while, if E is positive, the particle
goes through the potential toward x → þ∞. (See Fig. 1.)
Here we consider the quantum corrections to this

classical particle motion by solving the Schrödinger equa-
tion with the Hamiltonian

Ĥ ¼ −
ℏ2

2m
∂2

∂x2 −
α

2
x2: ð8Þ

In the case of E < 0, due to the quantum tunneling, the
particle can penetrate the potential. We can exactly compute
this tunneling probability PTðEÞ by using the parabolic
cylinder function [23] and obtain [24,25] the following:

PTðEÞ ¼
1

exp ð− 2π
ℏ

ffiffiffi
m
α

p
EÞ þ 1

¼ 1

exp ð−E=TLÞ þ 1
: ð9Þ

Itmeans that the ratio of the probability of taking the classical
trajectory (x → −∞) to that of the quantumone (x → þ∞) is
1 to exp ðβLEÞ where βL ≔ 1=TL (7).

FIG. 1. The sketch of the trajectories of the incoming particles in
the classical mechanics (solid lines) and the quantum corrections
(broken lines) near the hyperbolic fixed point ðx; pÞ ¼ ð0; 0Þ in the
phase space. The dotted lines are the separatrices (E ¼ 0).
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In the case of E > 0, the incoming particle may be
reflected by the potential quantum mechanically. The prob-
ability of the reflectance of this process is given by [24,25]

PRðEÞ ¼
1

exp ð2πℏ
ffiffiffi
m
α

p
EÞ þ 1

¼ 1

exp ðE=TLÞ þ 1
: ð10Þ

In this case, the ratio of the probability of taking the classical
trajectory (x → þ∞) to that of the quantumone (x → −∞) is
1 to exp ð−βLEÞ. (See Fig. 1.)
In this way, the quantum corrections may change the

classical trajectories of the particle motions to the new ones,
which are forbidden in classicalmechanics. The probabilities
of taking the quantum trajectories in the two cases can be
combined into the single form exp ð−βLjEjÞ, and the ratio is
always given by 1 to exp ð−βLjEjÞ. This ratio may be
interpreted as the Boltzmann factor of the two level system
at temperature TL where the ground state (zero energy) and
the excited state (energy ¼ jEj) correspond to the classical
trajectory and quantum one, respectively. See Fig. 2.
This interpretation of the two level systemmaybe clarified

by considering the energy transportation through these
processes. In the case of E < 0, if the tunneling occurs,
the negative energy particle is removed from the left region
(x < 0), and thus the energy in this region increases by
−Eð> 0Þ comparingwith the classical process. In the case of
E > 0, if the quantum reflection occurs, the particle carrying
the positive energy comes into the left region, and again the
energy in the left region increases by E. Thus, in both cases,
the quantum corrections induce the energy jEj in the left
region. Hence the situation in the left region is really
analogous to the two level system in which the emission
of the energy jEj occurs by the probability exp ð−βLjEjÞ.
Therefore the particle motion near the hyperbolic fixed

point ðx; pÞ ¼ ð0; 0Þ shows the thermal behavior. The
fluctuations of the quantum mechanics imitate those of
the thermodynamics. Remarkably, the temperature satu-
rates the bound [Eq. (2)] predicted by Ref. [3]. [Of course,
the Lyapunov exponent of Eq. (2) differs from that of
the whole system. We will discuss this point later.] Note
that this process may occur within the Ehrenfest’s time
∼ð1=λLÞ logð1=ℏÞ and the Lyapunov exponent λL, which
has been obtained through the classical motion [Eq. (5)]
may be valid. (Hence we may not need to employ the

out-of-time-ordered correlator [26] to evaluate the Lyapunov
exponent.) One surprise is that the chaotic natures of the
system do not play any important role in this emission
process. Just the dynamics near the hyperbolic fixed point
causes the emergence of the thermal properties.
Connection to acoustic Hawking radiation.—So far we

have seen that, if the particle with energy E is injected to the
inverse harmonic potential from the left, the energy flow
occurs quantum mechanically, and energy in the left region
increases by jEj, which compares with the classical motion
[Eq. (5)] as if it is a thermal emission at temperature TL.
The emergence of thermal emission in such a semiclassical

system reminds us of Hawking radiation. Here we argue that
this energy flow is indeed related to acoustic Hawking
radiation in quantum fluid [15,16]. (Related discussions
have been done in Ref. [17].) Suppose that, instead of the
single particle, we inject many free Fermions from the left
toward the potential, such that these right moving Fermions
occupy the energy level up to E0ð> 0Þ [27]. (See Fig. 3.)
Then the energy emission occurs at each energy level through
the quantum effects and the energy density of the flux at
location xð< 0Þ can be calculated as [25]

m
2πℏ

�Z
0

−∞

dE
jpðE; xÞj

−E
e−βLE þ 1

þ
Z

E0

0

dE
jpðE; xÞj

E
eβLE þ 1

�

¼ 1

ð−xÞ
TL

24

�
1þO

�
TL

αx2

��
: ð11Þ

Here pðE; xÞ is the classical momentum for the particle,

pðE; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

�
Eþ α

2
x2
�s
; ð12Þ

and it appears in Eq. (11) through the density of the Fermions
in the phase space. Here we have assumed that E0 is
sufficiently large. This energy emission obviously obeys
the Fermi-Dirac distribution, and, hence, it can be regarded as
thermal.
On the other hand, since we are considering many

Fermions, we can treat them as a one-dimensional Fermi
fluid. It is known that the Fermi fluid composed of the
nonrelativistic free Fermions classically obeys the following

FIG. 2. The sketch of the relation between the two trajectories
(classical and quantum) and the probability ratio. The ratio of the
probability of taking the classical trajectory to that of the quantum
one is 1 to exp ð−βLjEjÞ, where E is the energy of the particle.
They can be regarded as the two level system and the quantum
trajectory can be interpreted as an excited state.

FIG. 3. The classical droplet of the Fermi fluid in the phase
space. We consider the incoming right moving Fermions up to
energy level E0.
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continuity equation and the Euler equation with pressure
p ¼ ℏ2π2ρ3=3m2 [28–30],

∂tρþ ∂xðρvÞ ¼ 0;

∂tvþ ∂x

�
1

2
v2 þ ℏ2π2

2m2
ρ2 þ 1

m
VðxÞ

�
¼ 0: ð13Þ

Here ρðx; tÞ and vðx; tÞ denote the Fermion density and
velocity field, respectively, and VðxÞ ¼ −αx2=2 in our case.
By considering the classical fluid flow corresponding

to Fig. 3, we can show that the velocity of the flow exceeds
the speed of the sound at x ¼ 0, and, if we turn on the
quantum corrections, the acoustic Hawking radiation at
temperature

T ¼ ℏ
2π

ffiffiffiffi
α

m

r
ð14Þ

is emitted from x ¼ 0 to x ¼ −∞ [17,25]. Here the obtained
temperature precisely agrees with the temperature TL
[Eq. (7)] in our previous argument. It is not difficult to
reproduce the energy flow [Eq. (11)] as the emission through
the acoustic Hawking radiation using the fluid mechanics
[25]. Therefore the energy emission near the hyperbolic fixed
point discussed in the previous section can be regarded as the
particle description of the acoustic Hawking radiation.
Discussions.—We have argued for the mechanism of the

emergence of the thermal emission in chaotic systems by
investigating the particle motions near the hyperbolic fixed
point through the inverse harmonic potential model
[Eq. (4)]. If the particle with energy E is injected to the
inverse harmonic potential from the left, the energy
flow occurs quantum mechanically, and the energy in the
left region increases by jEj, which compares with the
classical motion [Eq. (5)] as if it is thermal emission at
temperature TL.
The idea that every chaotic system with finite Lyapunov

exponents cannot be zero temperature quantum mechani-
cally basedon thebound [Eq. (1)] sounds radical.However, if
a system has a hyperbolic fixed point and the effective one-
dimensional description [Eq. (4)] can be applied, the thermal
emission may be induced. This might be analogous to the
radiations from the black holes [13,14] as we mentioned in
the introduction. This point has been emphasized in the
example of the acoustic Hawking radiation in the Fermion
system [17].
One important question is about the temperature bound

[Eq. (2)]. We have seen that the temperature of the radiation
TL [Eq. (7)] is fixed by the curvature of the potential α
[Eq. (4)], and it saturates the temperature bound [Eq. (2)].
However the Lyapunov exponent considered here is that
of the hyperbolic fixed point and it differs from that of the
whole system generally. Thus it is unclear whether the
bound [Eq. (2)] is satisfied or not. Naïvely, the Lyapunov

exponent of the system might be smaller than that of the
hyperbolic fixed point, since the exponential time evolution
of the particle motion [Eq. (5)] would be disturbed in the
actual chaotic system, and the speed of the evolution might
be decelerated. If so, the bound [Eq. (2)] is satisfied.
However, it may be not difficult to construct some models
which violate the bound [Eq. (2)], although they might be
artificial [11]. It would be important to understand whether
the bound on chaos [Eq. (1)] works in the classically
deterministic dynamical systems by developing our argu-
ment in this Letter.
Another important point is that the particle motion in the

inverse harmonic potential [Eq. (4)] saturates the bound
on the Lyapunov exponent [Eq. (1)]. Since the maximal
Lyapunov λL ¼ 2πT=ℏ was supposed to be related to the
maximal chaos [3] or the fastest scrambler [8], it is
surprising that the free particle motion [Eq. (5)] saturates
this bound. On the other hand, if we consider many free
Fermions in the inverse harmonic potential, the system can
be mapped to the two-dimensional string theory through
the c ¼ 1 matrix model [31–33]. Therefore the saturation
of the bound might be related to the existence of the gravity
description, although the free Fermions may not be able to
describe any two dimensional black holes [20]. It would be
interesting if we could reveal why the bound is saturated
from the point of view of the two-dimensional string theory,
and we leave this problem for future investigations.
Finally we discuss a possible connection to the original

conjecture of the bound on chaos in quantum many-body
systems [3]. Suppose that there are N interacting classical
particles at temperature T. Then the system possesses 2N
Lyapunov exponents: �λ1…� λN , where they would
depend on T and we have assumed that the Hamiltonian
is time reversal. (We also assume that λN is the maximum
one.) This system may have two timescales: the dissipation
time td and the scrambling time t� [3], and we may observe
the exponential developments of the deviations of the
observables δX between these two timescales td ≤ t ≪ t�.
Thus, in this timescale, there is a mode δXN that effectively
feels the potential −ðm=2Þλ2NδX2

N , causing the exponential
development. Then, through the mechanism of this Letter,
this mode would be disturbed quantum mechanically as
if it has the temperature Teff ∼ ½ℏ=ð2πÞ�λN . If T ≫ Teff ,
this effect may be irrelevant. However, if T ≪ Teff , the
quantum fluctuations of δXn may overcome the thermal
fluctuations, and the thermal equilibrium state may be
disturbed. Therefore, such a large Lyapunov exponent λN
may be forbidden. It may intuitively explain the bound on
chaos.
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