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Abstract

Background: Ashbya gossypii naturally overproduces riboflavin and has been utilized for industrial riboflavin
production. To improve riboflavin production, various approaches have been developed. In this study, to investigate
the change in metabolism of a riboflavin-overproducing mutant, namely, the W122032 strain (MT strain) that was
isolated by disparity mutagenesis, genomic analysis was carried out.

Results: In the genomic analysis, 33 homozygous and 1377 heterozygous mutations in the coding sequences of
the genome of MT strain were detected. Among these heterozygous mutations, the proportion of mutated reads in
each gene was different, ranging from 21 to 75%. These results suggest that the MT strain may contain multiple
nuclei containing different mutations. We tried to isolate haploid spores from the MT strain to prove its ploidy, but
this strain did not sporulate under the conditions tested. Heterozygous mutations detected in genes which are
important for sporulation likely contribute to the sporulation deficiency of the MT strain. Homozygous and
heterozygous mutations were found in genes encoding enzymes involved in amino acid metabolism, the TCA
cycle, purine and pyrimidine nucleotide metabolism and the DNA mismatch repair system. One homozygous
mutation in AgILV2 gene encoding acetohydroxyacid synthase, which is also a flavoprotein in mitochondria, was
found. Gene ontology (GO) enrichment analysis showed heterozygous mutations in all 22 DNA helicase genes and
genes involved in oxidation-reduction process.

Conclusion: This study suggests that oxidative stress and the aging of cells were involved in the riboflavin over-
production in A. gossypii riboflavin over-producing mutant and provides new insights into riboflavin production in A.
gossypii and the usefulness of disparity mutagenesis for the creation of new types of mutants for metabolic engineering.
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Background
Ashbya gossypii, a filamentous fungus, is a riboflavin
producer and has been utilized for industrial riboflavin
production. Therefore, many studies on the metabolic
mechanism of riboflavin production in A. gossypii have

been carried out, and several overproducing mutants
have been isolated [1]. In addition, the genome of A. gos-
sypii is very similar to that of Saccharomyces cerevisiae,
which is a budding yeast, and 91% of 4476 annotated A.
gossypii genes are syntenic to those of S. cerevisiae [2].
This finding provides for many researchers to identify
differences between the growth of filamentous fungi and
budding yeasts [3].
Isocitrate lyase (ICL), which catalyzes the cleavage re-

action of isocitrate to succinate and glyoxylate, is an im-
portant enzyme for riboflavin production in A. gossypii
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[4]. The mutant isolated using itaconate, which is an
ICL inhibitor, produced a 25-fold higher level of ribofla-
vin in soybean oil-containing medium than the wild
type. The mutant isolated on oxalate-containing medium
showed a 5-fold higher riboflavin yield than wild type in
rapeseed oil medium [5]. In addition, genetic engineering
of this fungus has been utilized for riboflavin production
[6]. Overexpression of riboflavin biosynthetic genes in A.
gossypii contributed to the enhancement of riboflavin
production [7]. Disruption of cytoplasmic serine hydroxy-
methyltransferase gene (AgSHM2) in A. gossypii also im-
proved riboflavin production 10-fold compared to the wild
type [8]. Reinforcement of the purine biosynthetic pathway
in A. gossypii also improved riboflavin production [9, 10].
These results show that glycine and the purine biosynthetic
pathway are important factors for riboflavin production in
A. gossypii. Along with genetic engineering, metabolic in-
vestigation using a 13C tracer has been carried out to im-
prove riboflavin production in A. gossypii [11, 12].
Recently, the A. gossypii w122032 mutant (MT strain),

which is an overproducer of riboflavin, was isolated by
the disparity mutagenesis method [13]. This disparity
mutagenesis was first demonstrated by Furusawa et al.,
and disparity theory has been developed by computer
simulation [14, 15]. Expression of error-prone DNA
polymerase δ in hosts generates increased diversity of
hosts that have mutated genomes and leads to the isola-
tion of mutant strains with desired properties. In the
MT strain, mutation sites in metabolic pathways were
suggested by DNA microarray analysis, proteome ana-
lysis and metabolic flux analysis [13, 16]. However, def-
inite mutation sites have not been identified to date.
In this study, using a next-generation DNA sequencer,

genome analysis of the MT strain was carried out, and
mutation sites in the genome of this mutant compared
to that of wild type were determined to clarify the mech-
anism of the riboflavin over-production in MT strain
considering the previous analyses of MT strain [13, 16].
In addition, we discussed the roles of genes mutated in
the MT strain.

Results and discussion
Genome analysis of each strain and identification of
mutations in the genome sequence of MT
We previously reported that the riboflavin over-
producing mutant (MT strain) was isolated by disparity
mutagenesis in the presence of H2O2, itaconate and ox-
alate and phenotypes of this MT strain were character-
ized by transcriptomic, proteomic and metabolic flux
analyses [13, 16]. In this study, to reveal the genotype of
MT strain, genome resequencing and single-nucleotide
polymorphisms (SNP) analysis were carried out. Whole-
genome shotgun sequencing for WT and MT generated
1,083,909 and 1,519,777 high-quality read pairs totaling

approximately 593 and 836Mb, respectively. The high-
quality reads of WT and MT were aligned to the reference
genome of A. gossypii ATCC10895, resulting in sequence
coverages of 41.9–43.4 and 46.7–53.6, respectively, for
chromosome I–VII. Among the variants identified by the
Genome Analysis Toolkit (GATK) based on the aligned
reads for WT and MT, mutations in open reading frames
(ORFs), missense mutations, frameshift mutations and
nonsense mutations were analyzed. In WT, which is same
as the original strain A. gossypii ATCC10895, amino acid
sequences encoded by all ORFs were the same as those of
strain ATCC10895, except for the SEN2 gene (AGOS_
AGR073C), which encodes a subunit of the tRNA splicing
endonuclease in S. cerevisiae (Supplementary material
Table S1). This result indicates that this WT, which has
been maintained in our laboratory, could have gained this
heterozygous mutation. However, this WT was used in
this study because this gene may not be involved in ribo-
flavin production, given the function of the gene product.
Additionally, some silent mutations were also detected
(data not shown).
From the single-nucleotide variant (SNV) analysis be-

tween the genome sequences of WT and MT, we de-
tected 33 homozygous and 1377 heterozygous mutations
in the coding sequences of the genome of MT strain
(Supplementary materials Tables S1 and S2), which
cause missense, nonsense and frameshift mutations, in
addition to silent mutations. These heterozygous muta-
tions suggest that nuclei of the MT strain are polyploid.
In the 1377 heterozygous mutations, the proportion of
mutations in each gene was different. The highest pro-
portion was 75% (chromosome VI:799,900 in AgOCT1,
AGOS_AFR198W), and the lowest proportion was 21%
(chromosome VII:198,537 and 198541 in AgATP1,
AGOS_AGL272C) (Fig. 1). Most heterozygous mutants
were found to have ratios of 40–60%. These results sug-
gest that the MT strain may contain multiple nuclei con-
taining different mutations. To prove its ploidy, we tried
to isolate haploid spores from the MT strain, but this
strain did not produce spores under the conditions
tested. This result indicates that the MT strain lost the
ability to sporulate even though it was previously re-
ported that the riboflavin production in A. gossypii is re-
lated with its spore production [17]. A. gossypii is a
naturally multinucleate fungus, but this fungus may be
haploid, and the spores of this fungus produced by asex-
ual sporulation are also haploid [2, 18]. However, Ander-
son et al. reported that ploidy variation was observed in
A. gossypii with minor aneuploidy [19]. In this study, the
proportion of heterozygous mutations in each gene
ranged from 75 to 21%, and most heterozygous muta-
tions were found at 40–60%. This result may be caused
by the polyploidy or multinucleate cells of this organism.
Anderson et al. [19] also discussed the low germination
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frequency of spores produced from variable polypoid nu-
clei. Two possibilities were suggested: a reduction in
ploidy to uninucleate haploid spores and the formation
of spores with variable ploidy. In this study, the MT
strain never produced haploid spores.
Which corresponds, interestingly, we found a region

representing ~ 2-fold sequence coverage compared to
other regions in chromosome VII of the MT strain, which
correspond to the rRNA gene repeats (Chr VII:441,317-
762,344) (Fig. 2). In yeasts, the number of rRNA gene
repeats is normally maintained for genome stability and
determination of life span [20, 21]. Moreover, the rRNA
gene controls chromosome homeostasis [22]. When the
number of rRNA gene repeats increases, rRNA gene in-
stability and aging phenotypes are observed. Silva et al.
showed that the riboflavin-overproducing Ashbya mutants

are vulnerable to photoinduced oxidative DNA damage
and accumulate reactive oxygen species (ROS) [23]. The
ROS is largely involved in the aging of cells, suggesting
that the riboflavin production in A. gossypii may be associ-
ated with the aging of cells.
It is reasonable that homozygous mutations have more

crucial effects on riboflavin production in the MT strain
compared to heterozygous mutations. We selected candi-
date mutations among 33 homozygous mutations in the
coding sequence of the genome of MT strain, as shown in
Table 1. Among the 33 homozygous mutations, the SEN2
gene (AGOS_AGR073C) has one homozygous mutation
in the MT strain, in contrast to the WT strain used in this
study, which has one heterozygous mutation at the same
nucleotide. Four homozygous mutations in the amino acid
metabolism of A. gossypii were detected.

Fig. 1 Proportion of mutated reads in each gene among 1377 heterozygous mutations in the coding sequences of the MT genome. The highest
proportion was 75% (OCT1, AGOS_AFR198W), and the lowest proportion was 21% (AGOS_AGL272C). Most heterozygous mutations were
detected at 40–60%

Fig. 2 Sequence coverage line graph of chromosomes in MT strain and WT strain. Compared to the WT strain, a large number of rRNA gene
repeat sequences in chromosome VII were detected in the MT strain
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First, a frameshift mutation in the AgSHM2 gene
(AGOS_ACR215C) was detected in the genome of the
MT strain. This gene encodes serine hydroxymethyl-
transferase 2 (SHMT), and it was previously reported
that disruption of this gene enhanced the productivity of
riboflavin in A. gossypii, although the growth of the or-
ganism was compromised [7]. The frameshift mutation
causes the deletion of 25 amino acid residues at the C-
terminus of AgSHM2 and the addition of 6 extra amino
acid residues in the deletion mutant. This C-terminal re-
gion may not be directly involved in catalytic activity
[24]. However, the L474F mutation in this region of hu-
man and rabbit SHMT causes a decrease in the binding
of this protein to co-factors [25]. Therefore, this frame-
shift mutation in the MT strain may lead to a decrease
in the SHMT activity of AgSHM2. In addition to the
homozygous frameshift mutation, one heterozygous mu-
tation (593G→A), which causes a missense mutation,
R198Q, was also detected in the AgSHM2 gene.
Second, a missense mutation (206C→T) in the AgARO2

gene (AGOS_ADL287C), which produces the T69M mu-
tant, was detected. In S. cerevisiae, this gene encodes choris-
mate synthase, which produces chorismate, a building block
of aromatic compounds. Because T69 in the chorismate syn-
thase of S. cerevisiae is distant from the catalytic site, this
residue may not be directly involved in catalytic activity [26].
In addition, this enzyme also exhibits flavin reductase activ-
ity for the synthesis of reduced flavin mononucleotide
(FMN), which is required for chorismate synthase activity.

Third, a missense mutation (1365G→T) in the AgILV2
gene (AGOS_AEL305C), which produces the Q455H mu-
tant, was detected. In S. cerevisiae, this gene encodes the
large subunit of acetohydroxyacid synthase (AHAS),
which solely catalyzes the synthesis of 2-acetolactate and
2-aceto-2-hydroxybutyrate. This reaction is the first step
of branched-chain amino acid biosynthesis. This mutation
may not have considerable effects on enzymatic activity
because Q455 is not in the co-factor-binding sites [27].
This enzyme requires flavin adenine dinucleotide (FAD)
as a co-factor, even though this reaction does not require
oxidation and reduction. A small subunit of AHAS
encoded by the ScILV6 gene regulates the AHAS activity
of ScILV2 in yeast [28]. A. gossypii also has AgILV2 and
AgILV6 genes. In AgILV6 genes, three heterozygous mis-
sense mutations (140G→A, S47N; 155G→A, S52N;
673G→T, G225C) were detected.
Fourth, a missense mutation (365G→A) in the

AgLYS5 gene (AGOS_AGR382W), which produces the
R122H mutant, was detected. In S. cerevisiae, ScLYS5
(4′-phosphopantetheinyl transferase, PPTase) converts
the apo-form of ScLYS2 (α-aminoadipate reductase) to
the active holo-form by the transfer of phosphopan-
tetheine and is present in the lysine biosynthetic path-
way [29]. In addition to modification, PPTase is involved
in fungal growth, the biosynthesis of secondary metabo-
lites and asexual and sexual development [30, 31].
In pyrimidine metabolism in A. gossypii, one homozy-

gous mutation was detected in the AgCDD1 gene

Table 1 Homozygous mutations of genes in MT strain

Chromosome Position WT
seq.

MT
seq.

Quality Mutation Gene Product DNA
changes

Protein
changes

Number

WT
seq.

MT
seq.

II 496,139 C T 1495.42 missense AGOS_ABR055C Transcriptional activator
(AgSOK2 or AgPHD1)

c.1180G >
A

G394R 0 38

III 726,948 CG C 1167.38 frameshift AGOS_ACR215C Cytosolic serine
hydroxymethyltransferase
(AgSHM2)

c.1332delC p.Q445fs 0 30

IV 1,433,
004

T A 1442.42 missense AGOS_ADR404C Oleate-activated transcription
factor (AgOAF1 or AgPIP2)

c.2317A > T p.T773S 0 38

IV 1,433,
040

T G 1455.42 missense AGOS_ADR404C Oleate-activated transcription
factor (AgOAF1 or AgPIP2)

c.2281A >
C

p.T761P 0 39

IV 199,365 G A 1523.42 missense AGOS_ADL287C Chorismate synthase (AgARO2)a c.206C > T p.T69M 0 39

V 70,024 C A 1836.42 missense AGOS_AEL305C Large subunit of
acetohydroxyacid synthase
(AgILV2)a

c.1365G > T p.Q455H 0 46

VII 791,717 C A 1505.42 missense AGOS_
AGL123W

Cytidine deaminase (AgCDD1) c.314C > A p.P105Q 0 41

VII 962,069 G A 1560.42 nonsense AGOS_AGL036C Heat shock protein 104 (AgHSP104) c.1066C > T p.Q356* 0 42

VI 1,753,
850

G A 1884.42 missense AGOS_
AGR382W

L-aminoadipate-semialdehyde
dehydrogenase-phosphopantetheinyl
transferase (AgLYS5)

c.365G > A p.R122H 0 49

These homozygous mutations are a subset among all 32 homozygous mutations which are shown in Table S1
aFlavoproteins
*Translation stops here
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(AGOS_AGL123W), which encodes cytosine deaminase
in S. cerevisiae. This enzyme catalyzes the conversion of
cytidine to uridine in the pyrimidine salvage pathway in
S. cerevisiae [32]. In A. gossypii, in the pyrimidine salvage
pathway, uracil phosphoribosyltransfrase, encoded by
the AgFUR1 gene, controls the amount of phosphoribo-
syl pyrophosphate (PRPP), which is one of the precur-
sors of riboflavin in this organism [33].
Regarding the riboflavin production in A. gossypii, one

missense homozygous mutation (1180G→A) was de-
tected in AgSOK2 gene (AGOS_ABR055C) of MT strain.
AgSOK2 is one of fungal-specific group of transcription
factors and involved in the sporulation and riboflavin
production in A. gossypii [34]. Deletion of AgSOK2 gene
led to the strong reduction of the riboflavin production
and the deficiency of the sporulation by the downregula-
tion of AgIME2 and AgNDT80 gene. In MT strain, the
riboflavin overproduction and the sporulation deficiency
were observed even though AgSOK2 gene had one
homozygous mutation. Therefore, it is possible that the
riboflavin production and the sporulation in A. gossypii
may be regulated differently by AgSOK2 or the homozy-
gous mutation in AgSOK2 gene may cause the sporulation
deficiency but may not cause the reduction of riboflavin
production.
Two homozygous mutation (2317A→T and 2281A→

C) in AgOAF1 gene (AGOS_ADR404C) were also found
in the genome of MT strain. In the conventional medium
previously reported (initial rapeseed oil concentration 100
g/L) [13], WT and MT strains consumed 78.6 and 62.7 g/
L of rapeseed oil for 144 and 168 h cultivation in a 3 L jar-
fermentor, respectively (unpublished data). Riboflavin pro-
duction in WT and MT strains during the cultivation was
1.52 and 6.49 g/L, respectively. This result corresponded
to the data in this study showing two homozygous muta-
tions in AgOAF1 gene (AGOS_ADR404C) encoding a
subunit of an oleate-activated transcription factor which
binds to the oleate response element in promoters of
oleate-responsive genes. A. gossypii has more two genes
encoding homologs of ScOAF1 gene (AGOS_ADR403C
and AGOS_ADR405C). AGOS_ADR403C and AGOS_
ADR405C also had one and two heterozygous mutations,
respectively (Supplementary material Table S2).
In the MT strain, 1377 heterozygous mutations in the

coding sequences were also detected (Supplementary ma-
terial Table S2). Heterozygous mutations usually lead to
less critical effects than homozygous mutations [35, 36].
However, heterozygous mutations sometimes have negative
effects on protein functions as well as haploinsufficiency
[37, 38]. In addition, some mutated proteins that form mul-
timers exhibit dominant-negative effects on functions [39,
40]. Therefore, it is possible that heterozygous mutations
also have some effect on riboflavin production in the MT
strain. Among the 1377 heterozygous mutations in the

coding sequences, unusual heterozygous mutations were
detected (Table 2). Most genes in the TCA cycle have het-
erozygous mutations. In particular, three genes, namely,
AgSDH1 (AGOS_ACR052W), AgSDH2 (AGOS_ACL065C),
and AgSDH3 (AGOS_AFR207C), encoding subunits of suc-
cinate dehydrogenase in S. cerevisiae, have heterozygous
mutations. In addition, several genes encoding flavoproteins
in the mitochondria also have heterozygous mutations.
AgSDH1 is also a flavoprotein. Flavoproteins in mitochon-
dria of yeasts function in redox processes via the
transfer of electrons [41]. In addition, the flavin in fla-
voproteins participates in the reduction of heme iron
or iron-sulfur clusters. In this study, we detected sev-
eral homozygous mutations (AgARO2, AgILV2) and
heterozygous mutations {AgSDH1, AgPDX1 (AGOS_
AGR323C), AgNDI1 (AGOS_AFR447C), AgDLD1 (AGOS_
AER321W), AgCBR1 (AGOS_ADL087W), AgGLR1
(AGOS_AGR196W), AgMTO1 (AGOS_AGR196W),
AgMET5 (AGOS_ABL077W), AgPUT1 (AGOS_
AGL165W), AgFAS1 (AGOS_AER085C), AgHEM14
(AGOS_AAR021W), AgERV2 (AGOS_ACR175W), and
AgERO1 (AGOS_ADL348W)} in genes encoding flavopro-
teins in S. cerevisiae. It is possible that the riboflavin over-
production in the MT strain is associated with these
mutations of genes encoding flavoproteins and dysfunction
of the TCA cycle. MT strain is hypothesized to have mito-
chondrial dysfunction because most genes in the TCA cycle
and genes encoding flavoproteins have heterozygous muta-
tions. One homozygous mutation in AgILV2 gene which en-
codes a flavoprotein, AHAS, localized in mitochondria, was
also found (Tables 2 and 3). In humans, riboflavin supple-
mentation rescues the mitochondrial disorders associated
with the deficiencies of some flavoproteins and respiratory
chains [42]. Additionally, we previously reported that the ex-
pression of genes involved in TCA cycles in MT strain was
decreased compared to WT strain. Also the MT strain
shown the decreased succinate and increased lactate and
pyruvate compared to WT strain [13, 16]. These previous
results also suggest the overproduction of riboflavin in the
MT strain may also be associated with mitochondrial
dysfunction.
Related to the heterozygous mutations in flavoprotein

genes, a heterozygous mutation in the AgFMN1 gene
(AGOS_ABL109W) was detected (Table 2). In S. cerevi-
siae, this gene encodes riboflavin kinase, which catalyzes
the synthesis of FMN from riboflavin. FMN is converted
to FAD by FAD synthase. The downregulation of
AgFMN1 gene expression prevented riboflavin consump-
tion in this fungus, and the ribC-deleted mutant deregu-
lated riboflavin production in B. subtilis by preventing
FMN and FAD accumulation [43, 44]. Therefore, this
mutation may partially contribute to riboflavin overpro-
duction in the MT strain by partial restriction of the
riboflavin flow to FMN. Additionally, heterozygous
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Table 2 Heterozygous mutations in genes involved in metabolisms

Chromosome Position Wt
seq.

MT
seq

Quality Mutation Gene Product DNA
changes

Protein
changes

Read
number

MT
seq.
RatioWT

seq.
MT
seq.

Glycolysis/Gluconeogenesis

III 456,890 C T 327.19 missense AGOS_
ACR056W

Phosphoglycerate mutase (AgGPM1) c.374C > T p.A125V 28 12 0.300

IV 287,997 T C 503.19 missense AGOS_
ADL237C

6-phosphofructo-2-kinase (AgPFK26) c.1796A >
G

p.D599G 24 18 0.429

IV 1,362,
124

A T 725.19 missense AGOS_
ADR368W

Pyruvate kinase (AgPYK1) c.1040A > T p.K347M 21 23 0.523

V 242,262 A C 708.19 missense AGOS_
AEL208W

Alpha subunit of phosphofructokinase
(AgPFK1)

c.2255A > C p.K752T 27 23 0.460

V 426,255 C T 700.19 missense AGOS_
AEL106W

Fructose-2,6-bisphosphatase (AgFBP26) c.103C > T p.R35W 21 23 0.523

VI 96,950 A C 1088.19 missense AGOS_
AFL185W

Beta subunit of phosphofructokinase
(AgPFK2)

c.1963A > C p.N655H 35 37 0.514

VI 97,509 AT A 907.15 frameshift AGOS_
AFL185W

Beta subunit of phosphofructokinase
(AgPFK2)

c.2526Tdel p.Phe842fs 20 32 0.615

TCA cycle

I 346,384 G A 758.19 missense AGOS_
AAR004C

Citrate synthase (AgCIT1) c.68C > T p.T23M 18 25 0.581

I 634,291 G T 991.19 Nonsense AGOS_
AAR162C

Pyruvate carboxylase (AgPYC2) c.3266c > A p.S1089* 31 33 0.514

I 634,669 A T 836.19 missense AGOS_
AAR162C

Pyruvate carboxylase (AgPYC2) c.2888 T >
A

p.L963Q 21 26 0.553

III 238,489 T G 729.19 missense AGOS_
ACL065C

Iron-sulfur protein subunit of succinate
dehydrogenase (AgSDH2)

c.697A > C p.T233P 25 23 0.479

III 238,962 G A 1051.19 missense AGOS_
ACL065C

Iron-sulfur protein subunit of succinate
dehydrogenase (AgSDH2)

c.224C > T p.T75M 20 32 0.615

III 451,903 G A 879.19 missense AGOS_
ACR052W

Flavoprotein subunit of succinate
dehydrogenase (AgSDH1)a

c.1132G >
A

p.D378N 17 27 0.614

IV 403,968 C T 488.19 missense AGOS_
ADL164C

Malate dehydrogenase (AgMDH2) c.196G > A p.A66T 27 16 0.372

IV 644,214 A G 568.19 missense AGOS_
ADL032W

Aconitase (AgACO1) c.1367A >
G

p.D456G 10 16 0.615

V 1,328,
889

C A 922.19 missense AGOS_
AER374C

Subunit of the mitochondrial alpha-
ketoglutarate dehydrogenase (AgKGD1)

c.1837G > T p.D613Y 27 27 0.5

V 1,328,
948

G A 711.19 missense AGOS_
AER374C

Subunit of the mitochondrial alpha-
ketoglutarate dehydrogenase (AgKGD1)

c.1778C > T p.T593M 25 23 0.479

VI 810,404 G T 482.19 missense AGOS_
AFR207C

Subunit of succinate dehydrogenase
(AgSDH3)

c.200C > A p.S67Y 20 18 0.473

VI 1,103,
105

G A 636.19 missense AGOS_
AFR367W

Fumarate reductase (AgOSM1) c.622G > A p.A208T 21 19 0.475

VI 1,585,
840

G T 635.19 missense AGOS_
AFR629W

Aconitase (AgACO2) c.1894G > T p.D632Y 36 24 0.400

VII 1,652,
466

A G 970.19 missense AGOS_
AGR323C

E3-binding protein of pyruvate
dehydrogenase (AgPDX1) a

c.677 T > C p.L226P 16 28 0.636

VI 681,082 C T 624.19 missense AGOS_
AFR134C

Alpha subunit of succinyl-CoA ligase
(AgLSC1)

c.193G > A p.A65T 23 24 0.510

Mitochondria

II 324,797 A G 633.19 missense AGOS_
ABL038W

Mitochondrial aspartate aminotransferase
(AgAAT1)

c.224A > G p.D75G 20 19 0.487

II 325,256 C T 487.19 missense AGOS_
ABL038W

Mitochondrial aspartate aminotransferase
(AgAAT1)

c.683C > T p.T228M 25 18 0.419

IV 532,772 C A 1079.19 missense AGOS_
ADL087W

Cytochrome b reductase (AgCBR1)a c.155C > A p.T52N 25 34 0.576
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Table 2 Heterozygous mutations in genes involved in metabolisms (Continued)

Chromosome Position Wt
seq.

MT
seq

Quality Mutation Gene Product DNA
changes

Protein
changes

Read
number

MT
seq.
RatioWT

seq.
MT
seq.

IV 1,458,
400

G T 559.19 missense AGOS_
ADR417W

Mitochondrial aldehyde dehydrogenase
(AgALD4)

c.561G > T p.W187C 21 17 0.447

V 1,227,
029

G A 503.19 missense AGOS_
AER321W

Mitochondrial D-lactate dehydrogenase
(AgDLD1) a

c.190G > A p.A64T 11 15 0.577

VI 899,775 G A 668.19 missense AGOS_
AFR255W

Mitochondrial tRNA translation optimization
1 (MTO1) a

c.1423G >
A

p.G475S 27 22 0.449

VI 1,243,
899

C T 819.19 missense AGOS_
AFR447C

NADH:ubiquinone oxidoreductase (AgNDI1)
a

c.943G > A p.V315M 16 26 0.619

VII 1,441,
269

C A 874.19 missense AGOS_
AGR196W

Glutathione-disulfide reductase (AgGLR1) a c.1415C > A p.S472Y 27 28 0.509

Riboflavin metabolism

II 194,781 G T 733.19 missense AGOS_
ABL109W

Riboflavin kinase (AgFMN1) c.80G > T p.S27I 20 22 0.524

IV 182,017 G A 687.19 missense AGOS_
ADL296C

GTP cyclohydrolase II (AgRIB1) c.230C > T p.P77L 23 23 0.500

Glycine, serine, threonine metabolism

I 448,391 G A 962.19 missense AGOS_
AAR059C

Threonine synthase (AgTHR4) c.685C > T p.R229W 19 29 0.604

III 125,457 G A 821.19 missense AGOS_
ACL130C

Phosphoserine phosphatase (AgSER2) c.140C > T p.A47V 28 27 0.491

III 727,688 C T 572.19 missense AGOS_
ACR215C

Serine hydroxymethyltransferase (AgSHM2) c.593G > A p.R198Q 24 20 0.455

VII 1,057,
290

T C 592.19 missense AGOS_
AGR012C

Cystathionine beta-synthase (AgCYS4) c.269A > G p.K90R 16 19 0.543

VII 1,446,
998

A G 720.19 missense AGOS_
AGR200W

Threonine aldolase (AgGLY1) c.1088A >
G

p.Y363C 14 20 0.588

Branched-chain amino acid metabolism

I 305,862 G A 960.19 missense AGOS_
AAL021W

Small subunit of acetohydroxyacid synthase
(AgILV6)

c.140G > A p.S47N 25 29 0.537

I 305,877 G A 923.19 missense AGOS_
AAL021W

Small subunit of acetohydroxyacid synthase
(AgILV6)

c.155G > A p.S52N 28 30 0.517

I 306,395 G T 711.19 missense AGOS_
AAL021W

Small subunit of acetohydroxyacid synthase
(AgILV6)

c.673G > T p.G225C 23 22 0.489

II 729,493 G A 1028.19 missense AGOS_
ABR174W

Branched-chain amino acid biosynthesis
activator (AgLEU3)

c.704G > A p.G235D 23 33 0.589

II 730,278 G A 915.19 missense AGOS_
ABR174W

Branched-chain amino acid biosynthesis
activator (AgLEU3)

c.1489G >
A

p.A497T 22 26 0.542

VI 12,855 C A 543.19 missense AGOS_
AFL229W

2-isopropylmalate synthase (AgLEU4) c.1051C > A p.P351T 26 19 0.422

VII 1,381,
676

C T 564.19 missense AGOS_
AGR169W

3-isopropylmalate dehydratase (LEU1) c.226C > T p.H76Y 12 17 0.586

VII 1,382,
933

T C 745.19 missense AGOS_
AGR169W

3-isopropylmalate dehydratase (LEU1) c.1483 T >
C

p.S495P 26 25 0.490

Aromatic amino acid metabolism

II 206,627 C T 580.19 missense AGOS_
ABL102C

3-deoxy-D-arabino-heptulosonate-7-
phosphate (DAHP) synthase (AgARO3)

c.935G > A p.C312Y 28 18 0.391

II 799,743 C A 554.19 missense AGOS_
ABR209W

Anthranilate synthase (AgTRP2) c.982C > A p.L328I 15 16 0.516

VI 1,313,
765

T A 750.19 missense AGOS_
AFR485C

Tryptophan synthase (AgTRP5) c.1917A > T p.Q639H 33 29 0.468

VI 1,426,
745

G T 476.19 missense AGOS_
AFR548C

Aromatic aminotransferase I (AgARO8) c.544C > A p.P182T 29 16 0.356

Kato et al. BMC Genomics          (2020) 21:319 Page 7 of 17



Table 2 Heterozygous mutations in genes involved in metabolisms (Continued)

Chromosome Position Wt
seq.

MT
seq

Quality Mutation Gene Product DNA
changes

Protein
changes

Read
number

MT
seq.
RatioWT

seq.
MT
seq.

VII 1,157,
861

G A 690.19 missense AGOS_
AGR066W

Pentafunctional aromatic polypeptide
(AgARO1)

c.3536G >
A

p.R1179H 22 21 0.488

VII 1,158,
247

G A 921.19 missense AGOS_
AGR066W

Pentafunctional aromatic polypeptide
(AgARO1)

c.3922G >
A

p.G1308S 29 31 0.517

Sulfur amino acid metabolism

I 361,523 G A 834.19 missense AGOS_
AAR010W

Transcriptional activator of sulfur
metabolism (AgMET28)

c.719G > A p.R240Q 28 25 0.472

II 259,309 C T 578.19 missense AGOS_
ABL077W

Beta subunit of sulfite reductase (AgMET5)
a

c.3002C > T p.A1001V 25 19 0.432

II 804,448 C T 685.19 missense AGOS_
ABR212C

Cobalamin-independent methionine
synthase (AgMET6)

c.499G > A p.G167S 25 23 0.479

III 259,886 C A 1053.19 missense AGOS_
ACL059C

Peroxisomal cystathionine beta-lyase
(AgSTR3)

c.1210G > T p.V404L 16 32 0.667

III 585,577 C A 547.19 missense AGOS_
ACR134W

Folylpolyglutamate synthetase (AgMET7) c.1135C > A p.L379M 25 17 0.405

IV 646,485 G A 838.19 missense AGOS_
ADL031W

O-acetyl homoserine-O-acetyl serine sulfhy-
drylase (AgMET17)

c.302G > A p.G101D 23 26 0.531

V 1,338,
633

G A 974.19 missense AGOS_
AER377C

Component of cytosolic iron-sulfur protein
assembly machinery (AgMET18)

c.1061C > T p.T354I 28 31 0.525

VI 1,699,
984

C A 936.19 missense AGOS_
AFR682C

L-homoserine-O-acetyltransferase (AgMET2) c.1045G > T p.A349S 20 32 0.615

VI 1,720,
007

C T 393.19 missense AGOS_
AFR692C

S-adenosylmethionine synthetase
(AgSAM2)

c.731G > A p.G244D 30 13 0.302

VII 1,511,
391

C A 892.19 missense AGOS_
AGR237C

Alpha subunit of assimilatory sulfite
reductase (AgMET10)

c.2268G > T p.E756D 22 28 0.560

VII 1,512,
792

C A 606.19 missense AGOS_
AGR237C

Alpha subunit of assimilatory sulfite
reductase (AgMET10)

c.867G > T p.E289D 27 22 0.449

VII 1,685,
571

G A 715.19 missense AGOS_
AGR343W

Component of cytosolic iron-sulfur protein
assembly (CIA) machinery

c.563G > A p.R188H 24 21 0.467

Other amino acid metabolism

III 169,882 C T 367.19 missense AGOS_
ACL096W

Proline utilization transactivator (AgPUT3) c.382C > T p.R128W 26 14 0.350

IV 98,235 C A 727.19 missense AGOS_
ADL346W

Alpha-aminoadipate reductase (AgLYS2) c.1648C > A p.L550M 27 23 0.460

VI 1,397,
559

C A 864.19 missense AGOS_
AFR534W

Small subunit of carbamoyl phosphate
synthetase (AgCPA1)

c.976C > A p.P326T 29 25 0.463

VII 389,521 C A 724.19 missense AGOS_
AGL165W

Proline oxidase (AgPUT1) a c.104C > A p.T35K 28 24 0.462

VII 1,708,
538

T G 528.19 missense AGOS_
AGR357W

Asparaginase (AgASP1) c.311 T > G p.I104R 19 17 0.472

Purine, pyrimidine nulceotide metabolism

I 558,677 G A 532.19 missense AGOS_
AAR120C

Phosphoribosyl-glycinamide transformylase
(AgADE8)

c.218C > T p.T73I 16 16 0.500

II 269,595 C A 593.19 missense AGOS_
ABL070C

Xanthine-guanine phosphoribosyl
transferase (AgXPT1)

c.232G > T p.D78Y 29 22 0.431

II 784,947 G A 618.19 missense AGOS_
ABR204C

AMP deaminase (AgAMD1) c.1553C > T p.T518I 38 21 0.356

III 132,857 C A 773.19 missense AGOS_
ACL121C

Trifunctional C1-tetrahydrofolate synthase
(AgADE3)

c.2067G > T p.R689S 21 25 0.543

III 214,069 A T 441.19 missense AGOS_
ACL077C

Ribose-5-phosphate isomerase (AgRKI1) c.17 T > A p.I6N 29 17 0.370

III 636,192 A T 711.19 missense AGOS_
ACR160C

Nicotinate phosphoribosyltransferase
(AgNPT1)

c.84 T > A p.N28K 26 24 0.480
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Table 2 Heterozygous mutations in genes involved in metabolisms (Continued)

Chromosome Position Wt
seq.

MT
seq

Quality Mutation Gene Product DNA
changes

Protein
changes

Read
number

MT
seq.
RatioWT

seq.
MT
seq.

III 654,234 C T 690.19 missense AGOS_
ACR170C

Uridylate kinase (AgURA6) c.152G > A p.R51H 14 21 0.600

III 715,325 G T 697.19 missense AGOS_
ACR210C

Phosphoribosylaminoimidazole carboxylase
(AgADE2)

C.926C > A p.A309D 23 21 0.477

III 832,220 C T 957.19 missense AGOS_
ACR263C

Bifunctional carbamoylphosphate
synthetase/aspartate transcarbamylase
(AgURA2)

c.2275G >
A

p.E759K 19 31 0.620

III 832,428 C T 745.19 missense AGOS_
ACR263C

Bifunctional carbamoylphosphate
synthetase/aspartate transcarbamylase
(AgURA2)

c.2067G >
A

p.M689I 27 23 0.460

IV 580,072 G T 461.19 missense AGOS_
ADL057W

Large subunit of ribonucleotide reductase
(AgRNR1)

c.2520G > T p.K840N 16 15 0.483

V 792,520 T C 1069.19 missense AGOS_
AER083C

5-phospho-ribosyl-1-pyrophosphate
synthetase (AgPRS1)

c.488A > G p.Q163R 24 33 0.578

VI 896,312 A T 502.19 missense AGOS_
AFR254C

Aminoimidazole ribotide synthetase and
glycinamide ribotide synthetase (AgADE5,7)

c.1654 T >
A

p.L552I 20 15 0.428

VI 978,821 C A 584.19 missense AGOS_
AFR297W

Myb-related transcription factor (AgBAS1) c.905C > A p.P302H 23 20 0.465

VII 108,330 G A 674.19 missense AGOS_
AGL320C

CTP synthase (AgURA7) c.1361C > T p.T454I 23 25 0.521

VII 430,379 G A 703.19 missense AGOS_
AGL146W

GTP cyclohydrolase (AgURC1) c.1247G >
A

p.G416D 27 21 0.438

VII 1,072,
826

T C 377.19 missense AGOS_
AGR022C

Nicotinic acid mononucleotide
adenylyltransferase (AgNMA1)

c.814A > G p.T272A 26 13 0.333

Fatty acid metabolism

I 564,702 G A 769.19 missense AGOS_
AAR124C

Carnitine acetyl-CoA transferase (AgCAT2) c.1736C > T p.S579F 19 23 0.548

IV 1,430,
996

G A 829.19 missense AGOS_
ADR403C

Oleate-activated transcription factor
(AgOAF1 or AgPIP2)

c.1405C > T p.R469C 22 26 0.542

IV 1,436,
329

G T 757.19 missense AGOS_
ADR405C

Oleate-activated transcription factor
(AgOAF1 or AgPIP2)

c.2170C > A p.L724I 35 28 0.444

IV 1,437,
793

G A 800.19 stop_
gained

AGOS_
ADR405C

Oleate-activated transcription factor
(AgOAF1 or AgPIP2)

c.706C > T p.Q236* 30 25 0.455

IV 1,443,
883

T A 729.19 nonsense AGOS_
ADR408W

Acetyl-coA synthetase (AgACS1) c.1128 T >
A

p.Tyr376* 21 23 0.523

V 794,683 T C 631.19 missense AGOS_
AER085C

Beta subunit of fatty acid synthetase
(AgFAS1) a

c.5837A >
G

p.K1946R 23 19 0.452

V 797,843 T G 419.19 missense AGOS_
AER085C

Beta subunit of fatty acid synthetase
(AgFAS1) a

c.2677A > C p.K893Q 38 15 0.283

V 797,858 C A 1299.19 missense AGOS_
AER085C

Beta subunit of fatty acid synthetase
(AgFAS1) a

c.2662G > T p.D888Y 14 38 0.731

VI 172,719 A T 746.19 missense AGOS_
AFL138W

Alpha subunit of fatty acid synthetase
(AgFAS2)

c.7A > T p.M3L 19 26 0.578

VI 175,856 C A 656.19 missense AGOS_
AFL138W

Alpha subunit of fatty acid synthetase
(AgFAS2)

c.3144C > A p.F1048L 21 21 0.500

VI 1,507,
650

T A 742.19 missense AGOS_
AFR592W

1-acyl-sn-glycerol-3-phosphate
acyltransferase (AgSLC1)

c.832A > T p.L278M 21 22 0.512

VII 421,657 G T 728.19 missense AGOS_
AGL148C

Acetyl-coA synthetase (AgACS2) c.772C > A p.Q258K 24 24 0.500

VII 422,089 C T 804.19 missense AGOS_
AGL148C

Acetyl-coA synthetase (AgACS2) c.340G > A p.A114T 25 26 0.510

VII 913,244 C A 553.19 missense AGOS_
AGL060W

3-hydroxyacyl-CoA dehydrogenase and
enoyl-CoA hydratase (AgFOX2)

c.814C > A p.P272T 25 17 0.405

Kato et al. BMC Genomics          (2020) 21:319 Page 9 of 17



mutations were also detected in genes involved in heme
biosynthesis and sulfur metabolism (Table 2).
We detected homozygous mutations in the AgSHM2,

AgARO2, AgILV2, and AgLYS5 genes involved in amino
acid biosynthesis (Table 1). Heterozygous mutations in
genes involved in amino acid metabolism were concen-
trated in glycine, serine, and threonine metabolism;
branched-chain amino acid biosynthesis; and aromatic
amino acid biosynthesis (Table 2). In our previous study,
the increased expression of AgTRP2 (ABR209W) and
AgTRP5 (AFR485C) was observed in MT strain by a prote-
omic analysis. AgTRP2 and AgTRP5 are annotated as
anthranilate synthase and tryptophan synthase, respectively,
which belong to the tryptophan biosynthetic pathway.
These results suggest that these amino acid metabolic path-
ways may be linked to riboflavin production in A. gossypii.
Several heterozygous mutations were detected in genes

involved in sulfur amino acid metabolism. In particular,
the sulfur amino acid biosynthesis pathway contains

heterozygously mutated genes in the MT strain {AgMET5
(AGOS_ABL077W), AgMET6 (AGOS_ABR212C),
AgSTR3 (AGOS_ACL059C), AgMET17 (AGOS_
ADL031W), AgMET2 (AGOS_AFR682C), AgSAM2
(AGOS_AFR692C), AgMET10 (AGOS_AGR237C)}.
Mainly, genes encoding all enzymes that catalyze homo-
cysteine in S. cerevisiae, except the adenosylhomocystei-
nase encoded by the AgSAH1 gene, were heterozygously
mutated. These results suggest that methionine metabol-
ism, which consists of one-carbon metabolism together
with folate metabolism, may be associated with riboflavin
production in A. gossypii. The AgMET10 and AgMET5
genes encode alpha and beta subunits of sulfite reductase
in S. cerevisiae, respectively, which are both flavoproteins.
It was previously reported that riboflavin production

in A. gossypii was improved by disruption of the
AgURA3 gene, which leads to blockage of the pyrimidine
biosynthetic pathway in this organism [33]. In the MT
strain, several genes in the pyrimidine biosynthetic path-
way have heterozygous mutations (Table 2). These re-
sults suggest that pyrimidine metabolism, including the
pyrimidine de novo and salvage pathways, may be asso-
ciated with riboflavin production in A. gossypii. In the
purine biosynthetic pathway, the AgRKI1 (AGOS_
ACL077C), AgRPS1 (AGOS_AER083C), AgADE5,7
(AGOS_AFR254C), AgADE8 (AGOS_AAR120C), and
AgADE2 (AGOS_ACR210C) genes have heterozygous
mutations in the MT strain. Moreover, the AgBAS1 gene

Table 2 Heterozygous mutations in genes involved in metabolisms (Continued)

Chromosome Position Wt
seq.

MT
seq

Quality Mutation Gene Product DNA
changes

Protein
changes

Read
number

MT
seq.
RatioWT

seq.
MT
seq.

Heme biosynthesis

I 380,486 A C 573.19 missense AGOS_
AAR021W

Protoporphyrinogen oxidase (AgHEM14) a c.617A > C p.E206A 30 21 0.412

II 203,080 T C 1002.19 missense AGOS_
ABL104C

5-aminolevulinate synthase (AgHEM1) c.1397A >
G

p.E466G 18 31 0.633

V 1,281,
270

T A 552.19 nonsense AGOS_
AER351W

Uroporphyrinogen-III synthase (AgHEM4) c.762 T > A p.Y254* 19 20 0.513

VII 1,608,
654

A AG 453.15 frameshift AGOS_
AGR298C

S-adenosyl-L-methionine uroporphyrinogen
III transmethylase (AgMET1)

c.1412dupC p.A472fs 19 19 0.500

Other flavoprotein

III 660,436 G T 853.19 missense AGOS_
ACR175W

Sulfhydryl oxidase (AgERV2) a c.441G > T p.W147C 28 28 0.500

IV 94,090 G A 485.19 missense AGOS_
ADL348W

Endoplasmic oxidoreductin1 (AgERO1) a c.386G > A p.S129N 20 18 0.474

Folate metabolism

VII 1,665,
459

G A 658.19 missense AGOS_
AGR330W

Aminodeoxychorismate lyase (AgABZ2) c.208G > A p.V70M 29 23 0.442

VII 1,674,
504

C A 813.19 missense AGOS_
AGR335C

GTP-cyclohydrolase I (AgFOL2) c.343G > T p.D115Y 30 25 0.455

These heterozygous mutations are a subset among all 1382 heterozygous mutations which are shown in Table S2
aFlavoproteins
*Translation stops here

Table 3 Number of mutated genes encoding flavoproteins

Totala Homozygous Heterozygous Mutation rate

FAD-dependent 36 1 (1) 11 (9) 33.3%

FMN-dependent 16 1 (1) 2 (1) 18.8%
aTotal number of each flavoproteins is showed based on the reference by
Gudipati et al. [42]
Each bracket indicates the number of mutated genes encoding
mitochondrial proteins
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(AGOS_AFR297W), which encodes the transcription
factor for regulation of the purine and glycine biosyn-
thesis pathways in A. gossypii [45], also has one hetero-
zygous mutation. These heterozygous mutations may
partially force the restriction of purine biosynthesis,
which is important for riboflavin production in A. gossy-
pii. This limited purine biosynthesis in A. gossypii was
also reported by Ledesma-Amaro et al., who showed the
downregulation of purine biosynthesis during riboflavin
production [43].
In addition to mutations in genes involved in metabolic

pathways in A. gossypii, 17 heterozygous mutations in genes
involved in DNA repair were detected (Table 4). In particu-
lar, genes involved in mismatch DNA repair {AgMSH2
(AGOS_AAL093C), AgMSH3 (AGOS_ADR168C), AgMSH6

(AGOS_AGR116W), AgMLH1 (AGOS_AFL199C),
AgMLH2 (AGOS_AFR226C), AgMLH3 (AGOS_AAL093C),
and AgPMS1 (AGOS_AER421W)} were heterozygously mu-
tated. These proteins function cooperatively to repair DNA
mismatches in S. cerevisiae. Among MutS homologs, genes
encoding AgMSH2, AgMSH3 and AgMSH6 had heterozy-
gous mutations, but no mutation was detected in genes en-
coding AgMSH1, AgMSH4 and AgMSH5. ScMSH2,
ScMSH3 and ScMSH6 of S. cerevisiae function to maintain
nuclear genome stability [46]. In contrast, ScMSH1 func-
tions in mitochondria, and ScMSH4 and ScMSH5 function
during meiosis [47, 48]. These results suggest that the heter-
ologous mutations in AgMSH2, AgMSH3 and AgMSH6
may compromise the DNA mismatch repair pathway and
contribute to the maintenance of DNA mismatches and

Table 4 Heterozygous mutations in genes involved in DNA repair

Chromosome Position WT
seq.

MT
seq

Quality Mutation Gene Product DNA
changes

Protein
changes

Read number MT
seq
ratio

WT
seq.

MT
seq.

I 177,825 G T 533.19 missense AGOS_
AAL093C

DNA mismatch repair protein
(AgMLH3)

c.1516C >
A

p.L506M 22 17 0.436

IV 997,942 T G 729.19 missense AGOS_
ADR168C

DNA mismatch repair protein
(AgMSH3)

c.2937A >
C

p.K979N 39 23 0.371

IV 998,607 G A 982.19 nonsense AGOS_
ADR168C

DNA mismatch repair protein
(AgMSH3)

c.2272C >
T

p.Q758* 22 29 0.569

IV 1,446,
658

G T 747.19 missense AGOS_
ADR411W

Checkpoint protein (AgRAD17) c.358G > T p.D120Y 32 24 0.429

V 486,710 G A 711.19 missense AGOS_
AEL075W

DNA polymerase delta subunit 3
(AgPOL32)

c.490G >
A

p.A164T 18 22 0.550

V 1,239,
357

C A 411.19 missense AGOS_
AER327C

Uracil-DNA glycosylase
(AgUNG1)

c.757G > T p.A253S 27 16 0.372

V 1,445,
972

G A 869.19 missense AGOS_
AER421W

DNA mismatch repair protein
(AgPMS1)

c.1762G >
A

p.A588T 23 28 0.549

VI 65,368 C T 587.19 missense AGOS_
AFL199C

DNA mismatch repair protein
(AgMLH1)

c.320G >
A

p.C107Y 20 20 0.500

VI 677,447 G A 967.19 nonsense AGOS_
AFR133C

single-stranded DNA
endonuclease (AgRAD2)

c.2143C >
T

p.Q715* 25 30 0.545

VI 677,525 C A 743.19 missense AGOS_
AFR133C

single-stranded DNA
endonuclease (AgRAD2)

c.2065G >
T

p.D689Y 27 28 0.509

VI 834,113 A G 889.19 missense AGOS_
AFR220W

DNA helicase/Ubiquitin ligase
(AgRAD5)

c.2419A >
G

p.S807G 18 25 0.581

VI 834,860 G T 678.19 nonsense AGOS_
AFR220W

DNA helicase/Ubiquitin ligase
(AgRAD5)

c.3166G >
T

p.E1056* 29 22 0.431

VI 848,262 A G 828.19 missense AGOS_
AFR226C

DNA mismatch repair protein
(AgMLH2)

c.1882
T > C

p.F628L 26 31 0.544

VI 1,528,
970

C T 1142.19 nonsense AGOS_
AFR603C

DNA mismatch repair protein
(AgMSH2)

c.2711G >
A

p.W904* 18 36 0.667

VI 1,529,
553

G A 1151.19 missense AGOS_
AFR603C

DNA mismatch repair protein
(AgMSH2)

c.2128C >
T

p.P710S 12 33 0.733

VII 1,278,
725

T G 786.19 missense AGOS_
AGR116W

DNA mismatch repair protein
(AgMSH6)

c.1005
T > G

p.N335K 24 25 0.510

VII 1,368,
167

C T 788.19 missense AGOS_
AGR162C

DNA repair protein (AgRAD4) c.1214G >
A

p.R405Q 17 23 0.575

*Translation stops here
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accumulation of heterologous mutations in the genome of
A. gossypii during disparity mutagenesis and rapid evolution
of A. gossypii to the riboflavin-overproducing mutant MT
strain. Previous papers have shown that heterologous muta-
tions of the ScMSH2 gene showed mutator phenotypes in
diploid yeasts and suppression of the mismatch repair path-
way and proofreading-deficient DNA polymerase ε in hu-
man cells, leading to the accumulation of numerous
mutations [49, 50]. However, the riboflavin production level
in MT was stable during 14 passages [13].
As mentioned above, MT strain never produced its

haploid spores. Some heterozygous mutations were
found in genes involved in the sporulation (Table 5).
Two putative 1,3-β-D-glucan synthase genes (AGOS_
ACL181C, AGOS_AAR053W) had heterozygous muta-
tions. Especially, AGOS_AAR053W had one frameshift
mutation which may have great influences on the pro-
tein function. In S. cerevisiae, FKS2 is a 1,3-β-D-glucan
synthase during its sporulation and FKS2 and FKS3
works in spore wall assembly [51]. In addition, FKS2
binds to a sporulation-specific kinase, SMK1 [52]. Hetero-
zygous mutations of AGOS_ACL181C and AGOS_
AAR053W may have some influences on the sporulation in
MT strain. Moreover, we found heterozygous mutations in
AgIME2 (AGOS_AFR076W) and AgKAR4 (AGOS_
AFR736C) genes. Disruption of AgIME2 gene or AgKAR4
gene leads to the deficiency of its sporulation in A. gossypii
[53]. These heterozygous mutations may also be one of the
reasons for the sporulation deficiency in MT strain.
Gene Ontology (GO) enrichment analysis was per-

formed (Supplementary materials Tables S3, S4 and S5)
in the set of genes containing homozygous or heterozy-
gous mutations. Over-represented GO terms are ATP
binding, Protein binding and ATPase activity. Especially,
in “ATP binding”, all 22 ATP-dependent helicase genes
have a single heterologous mutation, respectively. It was
recently reported that RNA helicases have the relation-
ship with aging and life span of cells [54]. Mutations of
all RNA helicase genes support the suggestion that ribo-
flavin production in A. gossypii may be associated with
the aging of cells. Interestingly, we also found 25 mutated
genes among 139 genes in “oxidation-reduction process”
(Supplementary materials Table S3) and no mutated gene
was in “mitochondrion”. This result suggests that oxida-
tive stress is more associated with the riboflavin over-
production in MT strain than the mitochondrial dysfunc-
tion and supports the previous study showing a
riboflavin-overproducing A. gossypii mutant is vulnerable
to photoinduced oxidative DNA damage and accumulate
ROS [23], leading to the aging of cells. On the other
hand, “Ribosome”, “Translation”, “Structural constituent
of ribosome” and “Intracellular” were under-represented.
These GO terms contain ribosomal proteins involved in
translation (Supplementary materials Tables S5). Mutations

of genes encoding these proteins are lethal in organisms
and, therefore, these GO terms were under-presented.

Effect of temperature on riboflavin production in MT strain
By genomic analysis of the MT strain, one homozygous
mutation in the AgHSP104 gene (AGOS_AGL036C),
which causes a nonsense mutation, was detected (Table
1). This mutation generates the mutated AgHSP104,
composed of 355 amino acid residues at its N-terminus.
HSP104 in fungi contributes to the thermotolerance and
disaggregation of denatured and aggregated proteins,
ethanol tolerance and survival in the stationary phase
[55]. We confirmed this nonsense mutation in the MT
strain by DNA sequencing (Fig. 3a). In addition, other
four homozygous mutations in the MT strain were also
confirmed by DNA sequencing (Data not shown). These
results validate the results of the genomic analysis. The
WT and MT strains were cultivated on YD medium at
28 and 37 °C. The growth and riboflavin production in
WT cultivated at 37 °C were slightly lower than those in
WT cultivated at 28 °C (Fig. 3b). However, the growth of
and riboflavin production in the MT strain were dramat-
ically reduced at 37 °C compared to those at 30 °C, and
the MT strain was not able to grow normally. These re-
sults reflected the generation of truncated AgHSP104 in
the MT strain, leading to loss of thermotolerance, even
at 37 °C. This result also confirms the presence of the
homozygous mutation in the AgHSP104 gene of the MT
strain. Which corresponds, a homozygous missense mu-
tation was found in AgPMT1 gene (AGOS_ADR279C)
(Supplementary materials Table S1). This encodes a pu-
tative O-mannosyltransferase which is essential for the
cell wall integrity by O-glycosylation of cell wall manno-
proteins. In Aspergillus, the disruption of the genes
caused the high sensitivity of growth temperature and
low cell wall integrity [56, 57]. This mutation may also
partially contribute to the high sensitivity of growth
temperature in MT strain.

Effect of iron for the riboflavin production in MT strain
In Tables 2 and 3, many heterozygous mutations were
detected in genes encoding proteins involved in mito-
chondrial function and DNA. Iron-sulfur (Fe/S) clusters
are required for TCA cycles, the electron transfer chain
and fatty acid oxidation in mitochondria and DNA re-
pair in nucleus [58, 59]. Therefore, the addition of iron
ion for the MT strain cultivation was investigated. Fe3+

enhanced the growth of mycelia and riboflavin produc-
tion in the MT strain (Fig. 4a) also in the presence of
glycine, which is well-known for the improvement of the
riboflavin production in A. gossypii. Addition of Fe3+ and
Fe3+ + glycine improved the riboflavin production of
MT strain by 1.6 and 2.0 fold, respectively although we
were not able to find its significant differences. (Fig. 4b).
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Table 5 Heterozygous mutations in genes involved in sporulation

Chromosome Position WT
seq.

MT
seq

Quality Mutation Gene Product DNA
changes

Protein
changes

Read
number

MT
seq
ratioWT

seq.
MT
seq.

III 41,510 T G 1253.19 missense AGOS_
ACL181C

1,3-beta-D-glucan synthase
(AgFKS1 or AgGSC2)

c.4596A > C p.Lys1532Asn 23 37 0.617

II 101,053 T G 878.19 missense AGOS_
ABL159W

Component of the septin ring
(AgSHS1)

c.1229 T > G p.Ile410Ser 20 29 0.592

IV 649,360 G A 886.19 missense AGOS_
ADL029W

Component of the meiotic outer
plaque of the spindle pole body
(AgSPO74)

c.374G > A p.Ser125Asn 19 26 0.578

V 965,295 A ACAG 1023.15 disruptive_
inframe_
insertion

AGOS_
AER177W

Transcription factor targeting
filamentation genes (AgTEC1)

c.1518_
1520dupGCA

p.Gln507dup 21 28 0.571

IV 1,263,
702

G T 982.19 missense AGOS_
ADR317C

Dual-specificity kinase (AgMPS1) c.2228C > A p.Thr743Asn 24 31 0.564

VI 1,158,
992

A G 1022.19 missense AGOS_
AFR400C

N-formyltyrosine oxidase (AgDIT2) c.635 T > C p.Ile212Thr 25 32 0.561

III 48,243 C A 765.19 missense AGOS_
ACL179C

Meiosis-specific protein (AgSPO77) c.1601G > T p.Arg534Ile 18 23 0.561

VI 1,225,
184

A C 753.19 missense AGOS_
AFR436C

Component of the septin ring
(AgCDC11)

c.371 T > G p.Val124Gly 21 25 0.543

I 436,519 A AT 935.15 frameshift AGOS_
AAR053W

1,3-beta-D-glucan synthase
(AgGSC2 or AgFKS1 or AgFKS3)

c.916_
917insT

p.Arg306fs 24 28 0.538

VI 1,531,
918

T C 659.19 missense AGOS_
AFR604C

Component of the meiotic outer
plaque of the spindle pole body
(AgSPO21)

c.2531A > G p.Gln844Arg 18 20 0.526

VI 1,288,
694

G T 943.19 missense AGOS_
AFR469W

t-SNARE protein (AgSEC9) c.918G > T p.Glu306Asp 27 29 0.518

VI 672,483 C T 645.19 missense AGOS_
AFR130W

Protein involved in the control of
meiotic nuclear division (AgSSP1)

c.121C > T p.Leu41Phe 20 21 0.512

IV 1,456,
401

G T 500.19 missense AGOS_
ADR416W

Mitotic exit network scaffold
protein (AgNUD1)

c.1263G > T p.Gln421His 16 16 0.500

VI 639,702 C T 610.19 missense AGOS_
AFR111C

Component of the septin ring
(AgCDC3)

c.203G > A p.Gly68Asp 22 22 0.500

VII 1,087,
176

G A 676.19 missense AGOS_
AGR031W

Transcriptional repressor (AgNRG1
or AgNRG2)

c.107G > A p.Ser36Asn 25 24 0.490

VI 1,225,
449

A T 596.19 missense AGOS_
AFR436C

Component of the septin ring
(AgCDC11)

c.106 T > A p.Ser36Thr 25 21 0.457

V 1,436,
486

G A 466.19 missense AGOS_
AER416C

EH domain-containing protein
(AgEND3)

c.4C > T p.Pro2Ser 21 17 0.447

VI 566,815 A C 758.19 missense AGOS_
AFR076W

Serine/threonine protein kinase
(AgIME2)

c.1142A > C p.Tyr381Ser 30 24 0.444

IV 1,423,
888

G A 643.19 missense AGOS_
ADR400W

Gamma-tubulin small complex
receptor (AgSPC72)

c.278G > A p.Ser93Asn 24 19 0.442

IV 650,376 A T 523.19 missense AGOS_
ADL029W

Component of the meiotic outer
plaque of the spindle pole body
(AgSPO74)

c.1390A > T p.Ile464Phe 26 19 0.422

VII 394,750 G A 560.19 missense AGOS_
AGL162C

Sm-like protein (AgSEC1) c.1972C > T p.Pro658Ser 26 19 0.422

III 506,687 T G 578.19 missense AGOS_
ACR083C

Meiosis-specific component of the
spindle pole body (AgDON1 or
AgCUE5)

c.237A > C p.Arg79Ser 28 18 0.391

III 38,740 C A 576.19 missense AGOS_
ACL182C

1,3-beta-glucanosyltransferase
(AgGAS2)

c.1161G > T p.Glu387Asp 40 21 0.344

VI 1,794,
575

A C 577.19 missense AGOS_
AFR736C

Transcription factor required for
response to pheromones
(AgKAR4)

c.422 T > G p.Phe141Cys 46 21 0.313
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Specific riboflavin production of MT strain in the pres-
ence of Fe3+ and Fe3+ + glycine were also improved by
1.4 and 1.3 fold, respectively although we were not able
to find its significant differences. These results indicate
that Fe3+ and glycine enhanced the riboflavin production
by the improvement of its growth. Flavoproteins in
mitochondria of yeasts function in redox processes via
the transfer of electrons [41]. In addition, the flavin in
flavoproteins participates in iron metabolism. We found
two homozygous mutations (AgARO2, AgILV2) and 13
heterozygous mutations (AgSDH1, AgPDX1, AgNDI1,
AgDLD1, AgCBR1, AgGLR1, AgMTO1, AgMET5,
AgPUT1, AgFAS1, AgHEM14, AgERV2, and AgERO1) in
genes encoding putative flavoproteins. Most of these fla-
voproteins may localized in mitochondria (Tables 1, 2
and 3). We previously reported that lactate and pyruvate
was produced more in MT strain than WT strain in the
minimum medium and succinate was decreased in MT
strain compared to WT stain [16]. In addition, gene ex-
pression of most of genes involved in TCA cycle was
down-regulated in MT strain cultivated compared to
WT stain [13]. In Fig. 4, the growth and riboflavin pro-
duction in MT strain were enhanced by the addition of
iron ion, which is involved in mitochondrial functions
with flavoproteins [41, 58, 59]. This result also supports
the relationship of riboflavin production with the mito-
chondrial dysfunction. The addition of Fe2+ had no ef-
fect on the riboflavin production in WT strain (Data not
shown).

Conclusion
In this study, we analyzed the genomic sequence of the
riboflavin-overproducing mutant MT strain and detected
some intriguing homozygous and heterozygous mutations
in the coding sequences of the MT genome. The

homozygous and heterozygous mutations were concen-
trated in genes encoding proteins involved in the TCA
cycle, mitochondrial functions, sulfur metabolism and
DNA mismatch repair. The discovery of many hetero-
zygous mutations indicates that mutants with many
heterozygous mutations cannot be isolated by conven-
tional mutagenesis methods, such as the use of muta-
gens and genetic engineering. Disparity mutagenesis is
a promising tool for the creation of new types of
eukaryotic mutants in various research fields and
manufacturing industries. Additionally, the genomic
analysis and GO enrichment analysis showed the rela-
tionship of the riboflavin production in MT strain with
oxidative stress and the aging of cells, supporting the
previous result that the accumulation of ROS and DNA
damages appeared in other A.gossypii riboflavin-
overproducing mutant [23].

Methods
Strains and cultivation
A. gossypii ATCC10895, which was purchased from
American Type Culture Collection (ATCC), was used as
a wild-type strain (WT strain). The A. gossypii w122032
mutant (MT strain) was previously isolated by disparity
mutagenesis in the presence of H2O2, itaconate and ox-
alate [13] and used as a mutant strain in this study.
These strains were maintained at 28 °C in YD medium
(1% yeast extract, 1% glucose, pH 6.8). Chemically de-
fined medium (15 g/L glucose as a carbon source, 1.5 g/
L asparagine, 0.75 g/L KH2PO4, 0.1 g/L myo-inositol, pH
6.8) was used as a minimal medium [16]. To cultivate A.
gossypii in flasks, mineral ions (4.4 mg/L CoCl2·6H2O,
18.0 mg/L MnCl2·4H2O, 44.0 mg/L ZnSO4·7H2O, 10.1
mg/L MgSO4·7H2O, 27.0 mg/L FeCl3·6H2O, 21.9 mg/L
CaCl2·6H2O, and 2.7 mg/L CuSO4·5H2O) were added to

Fig. 3 Growth and riboflavin production of MT strain. a Sequence of AgHSP104 gene in the MT strain. The gene sequence was confirmed by
Sanger method. b Growth of and riboflavin production in WT and MT on YD medium at 28 and 37 °C for 5 d
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the minimal medium. Cultivation was carried out using
a 500-ml flask (working volume 50ml) with an agitation
rate of 120 rpm at 28 °C. The chemically defined
medium was used for cultivation on agar plates. Each
amino acid was used to supplement the media at 1 mM.

Assay
The amount of riboflavin was determined according to a
previous protocol [16]. Briefly, 0.8 mL of the culture
broth was thoroughly mixed with 0.2 mL of 1 N NaOH.
A 0.4-mL aliquot of the resulting solution was neutral-
ized with 1 mL of 0.1 M potassium phosphate buffer
(pH 6.0), and the absorbance of the solution at a wave-
length of 444 nm was measured. The riboflavin concen-
tration was calculated with an extinction coefficient of
1.04 × 10− 2 M− 1 cm− 1 (127 mg riboflavin/L at ABS444).

Genome analysis
Genomic DNA was extracted from mycelia cultivated in
YD medium during the logarithmic phase using the
DNeasy Plant Mini Kit (Qiagen, Venlo, Netherlands)
and fragmented using a Covaris Acoustic Solubilizer
(Covaris, Woburn, MA, USA). Genomic libraries were
prepared using the TruSeq Nano DNA Library Prep Kit
(Illumina, San Diego, CA, USA) and sequenced using a
MiSeq system (Illumina) at the Instrumental Research
Support Office, Research Institute of Green Science and
Technology, Shizuoka University.

Paired-end reads (2 × 301 bp) were cleaned up using
Trimmomatic ver. 0.36 [60] by trimming adapter se-
quences, low-quality reads (quality score, < 15), and the
final 301 bases, followed by filtering reads less than
150 bp. High-quality reads were aligned to the refer-
ence genome of A. gossypii ATCC10895 using BWA-
MEM ver. 0.7.12 [61]. Aligned reads were sorted and
duplicates were marked using Picard Tools ver. 2.8.0
(http://broadinstitute.github.io/picard/). The Genome
Analysis Toolkit ver. 3.7 [62] was used to call variants,
SNPs and short insertions/deletions (indels). The vari-
ants identified by HaplotypeCaller in GATK were fil-
tered using Variant Filtration under the following
settings: QualByDepth (QD) < 6.0; RMSMappingQual-
ity (MQ) < 50; Quality (QUAL) < 100. Annotation of
each variant and its functional effect was predicted
using SnpEff ver. 4.3 T [63] with the default database of
“Ashbya_gossypii”. All proteins of A. gossypii were an-
notated using HMMER 3.1b2 (http://hmmer.org)
against Pfam database 32.0 [64]. GO terms associated
with Pfam entries were assigned using the pfam2go
mapping file (http://www.geneontology.org/external2
go/pfam2go, version date of 2019/06/01). Two-sided
Fisher’s exact test was performed to find the GO terms
over- and under-represented in the homozygously and
heterozygously mutated genes. The significance thresh-
old of over- and under-represented GO terms was de-
fined as a false discovery rate (FDR) of 0.05.

Fig. 4 Growth and riboflavin production in the WT and MT strains in the presence of Fe3+ and glycine. a Growth of WT and MT strains on the
minimum medium plate containing Fe3+ and glycine. Fe3+ and glycine were supplemented at 27 mg/L and 1mM, respectively. b Riboflavin
production of MT strain n minimal medium supplemented with 27mg/L Fe3+ and 1 mM glycine. The amount of riboflavin and dry cell was
measured at 4 days. Metal ions except for Fe3+ were not supplemented in both cultivations

Kato et al. BMC Genomics          (2020) 21:319 Page 15 of 17

http://broadinstitute.github.io/picard/
http://hmmer.org
http://www.geneontology.org/external2go/pfam2go
http://www.geneontology.org/external2go/pfam2go


Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6709-7.

Additional file 1: Table S1. All 33 homozygous mutations detected in
the coding sequences of the MT genome. Table S2. All 1377
heterozygous mutations detected in coding sequences of the MT
genome. Table S3. Gene Ontology (GO) enrichment analysis of the
genes containing mutations. Table S4. Genes assigned over-represented
Gene Ontology. Table S5. Genes assigned under-represented Gene
Ontology.

Abbreviations
AHAS: Acetohydroxyacid synthase; Chr: Chromosome; FAD: Flavin adenine
dinucleotide; FDR: False discovery rate; FMN: Favin mononucleotide;
GO: Gene ontology; ICL: Isocitrate lyase; indels: insertions/deletions;
MQ: RMSMappingQuality; ORF: Open reading frame; PPTase: 4′-
Phosphopantetheinyl transferase; PRPP: Phosphoribosyl pyrophosphate;
QD: QualByDepth; QUAL: Quality; ROS: Reactive oxygen species; SHMT: Serine
hydroxymethyltransferase; SNP: Single-nucleotide polymorphisms;
SNV: Single-nucleotide variant

Acknowledgements
Not applicable.

Authors’ contributions
TK, HAE and EYP conceived and designed this research and the experiments.
JA and AY performed the experiments. HD carried out the genomic analysis
of the WT and the MT strain. TK, DH and EYP wrote this manuscript. All
authors read and approved the final manuscript.

Funding
This study was supported by the functional strengthening fund of Research
Institute of Green Science and Technology, Shizuoka University.

Availability of data and materials
The raw reads for A. gossypii strain WT and MT have been deposited in the
DDBJ Sequence Read Archive (DRA) under the accession no. DRA008709.
Additionally, they can be also accessed via NCBI (https://www.ncbi.nlm.nih.
gov/sra/?term=DRA008709).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Green Chemistry Research Division, Research Institute of Green Science and
Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
2Department of Agriculture, Graduate School of Integrated Science and
Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
3Instrumental Research Support Office, Research Institute of Green Science
and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
4Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia
(UTM), 81310 UTM, Johor Bahru, Malaysia.

Received: 29 July 2019 Accepted: 30 March 2020

References
1. Revuelta JL, Ledesma-Amaro R, Lozano-Martinez P, Díaz-Fernández D, Buey

RM, Jiménez A. Bioproduction of riboflavin: a bright yellow history. J Ind
Microbiol Biotechnol. 2017;44:659–65.

2. Dietrich FS, Voegeli S, Brachar S, Lerch A, Gates K, Steiner S, Mohr C,
Pohlmann R, Luedi P, Choi S, Wing RA, Flavier A, Gaffney TD, Philippsen P.

The Ashbya gossypii genome as a tool for mapping the ancient
Saccharomyces cerevisiae genome. Science. 2004;304:304–7.

3. Schmitz HP, Philippsen P. Evolution of multinucleated Ashbya gossypii
hyphae from a budding yeast-like ancestor. Fungal Biol. 2011;115:557–68.

4. Schmidt G, Stahmann KP, Kaesler B, Sahm H. Correlation of isocitrate lyase
activity and riboflavin formation in the riboflavin overproducer Ashbya
gossypii. Microbiology. 1996;142:419–26.

5. Sugimoto T, Morimoto A, Nariyama M, Kato T, Park EY. Isolation of an
oxalate-resistant Ashbya gossypii stain and its improved riboflavin
production. J Ind Microbiol Biotechnol. 2010;37:57–64.

6. Schwechheimer SK, Park EY, Revuelta JL, Becker J, Wittmann C.
Biotechnology of riboflavin. App Microbiol Biotechnol. 2016;100:2107–19.

7. Ledesma-Amaro R, Serrano-Amatriain C, Jiménez A, Revuelta JL. Metabolic
engineering of riboflavin production in Ashbya gossypii through pathway
optimization. Microb Cell Factories. 2015;14:163.

8. Schlüpen C, Santos MA, Weber U, De Graaf A, Revuelta JL, Stahmann KP.
Disruption of the SHM2 gene, encoding one of two serine
hydroxymethyltransferase isozymes, reduces the flux from glycine to serine
in Ashbya gossypii. Biochem J. 2003;369:263–73.

9. Jiménez A, Santos MA, Pompejus M, Revuelta JL. Metabolic engineering of
the purine pathway for riboflavin production in Ashbya gossypii. Appl
Environ Microbiol. 2005;71:5743–51.

10. Jiménez A, Santos MA, Revuelta JL. Phosphoribosyl pyrophosphate
synthetase activity affects growth and riboflavin production in Ashbya
gossypii. BMC Biotechnol. 2008;8:67.

11. Schwechheimer SK, Becker J, Peyriga L, Portais JC, Sauer D, Müller R, Hoff B,
Haefner S, Schröder H, Zelder O, Wittmann C. Improved riboflavin
production with Ashbya gossypii from vegetable oil based on 13C metabolic
network analysis with combined labeling analysis by GC/MS, LC/MS, 1D,
and 2D NMR. Metab Eng. 2018;47:357–73.

12. Schwechheimer SK, Becker J, Peyriga L, Portais JC, Wittmann C. Metabolic
flux analysis in Ashbya gossypii using 13C-labeled yeast extract: industrial
riboflavin production under complex nutrient conditions. Microb Cell
Factories. 2018;17:162.

13. Park EY, Ito Y, Nariyama M, Sugimoto T, Lies D, Kato T. The improvement of
riboflavin production in Ashbya gossypii via disparity mutagenesis and DNA
microarray analysis. Appl Microbiol Biotechnol. 2011;91:1315–26.

14. Furusawa M, Doi H. Promotion of evolution: disparity in the frequency of strand-
specific misleading between the lagging and leading DNA strands enhances
disproportionate accumulation of mutations. J Theor Biol. 1992;157:127–33.

15. Furusawa M, Doi H. Asymmetrical DNA replication promotes evolution:
disparity theory of evolution. Genetica. 1998;102:333–47.

16. Jeong BY, Wittmann C, Kato T, Park EY. Comparative metabolic flux analysis
of an Ashbya gossypii wild type strain and a high riboflavin-producing
mutant strain. J Biosci Bioeng. 2015;119:101–6.

17. Nieland S, Stahmann KP. A developmental stage of hyphal cells shows
riboflavin overproduction instead of sporulation in Ashbya gossypii. Appl
Microbiol Biotechnol. 2013;97:10143–53.

18. Philippsen P, Kaufmann A, Schmitz HP. Homologues of yeast polarity genes
control the development of multinucleated hyphae in Ashbya gossypii. Curr
Opin Microbiol. 2005;8:370–7.

19. Anderson CA, Roberts S, Zhang H, Kelly CM, Kendall A, Lee C, Gerstenberger
J, Koenig AB, Kabeche R, Gladfelter AS. Ploidy variation in multinucleate cells
changes under stress. Mol Biol Cell. 2015;26:1129–40.

20. Ganley AR, Ide S, Saka K, Kobayashi T. The effect of replication initiation on
gene amplification in the rDNA and its relationship to aging. Mol Cell. 2009;
35:683–93.

21. Ganley AR, Kobayashi T. Ribosomal DNA and cellular senescence: new
evidence supporting the connection between rDNA and aging. FEMS Yeast
Res. 2014;14:49–59.

22. Deregowska A, Adamczyk J, Kwiatkowska A, Gurgul A, Skoneczny M,
Skoneczna A, Szmatola T, Jasielczuk I, Magda M, Rawska E, Pabian S, Panek
A, Kaplan J, Lewinska A, Wnuk M. Shifts in rDNA levels act as a genome
buffer promoting chromosome homeostasis. Cell Cycle. 2015;14:3475–87.

23. Silva R, Aguiar TQ, Oliveira R, Domingues L. Light exposure during growth
increases riboflavin production, reactive oxygen species accumulation and
DNA damage in Ashbya gossypii riboflavin-overproducing strains. FEMS
Yeast Res. 2019;19:foy114.

24. Scarsdale JN, Kazanina G, Radaev S, Schirch V, Wright HT. Crystal structure of
rabbit cytosolic serine hydroxymethyltransferase at 2.8 Å resolution:
mechanistic implications. Biochemistry. 1999;38:8347–58.

Kato et al. BMC Genomics          (2020) 21:319 Page 16 of 17

https://doi.org/10.1186/s12864-020-6709-7
https://doi.org/10.1186/s12864-020-6709-7
https://www.ncbi.nlm.nih.gov/sra/?term=DRA008709
https://www.ncbi.nlm.nih.gov/sra/?term=DRA008709


25. Fu TF, Hunt S, Schirch V, Safo MK, Chen BH. Properties of human and rabbit
cytosolic serine hydroxymethyltransferase are changed by single nucleotide
polymorphic mutations. Arch Biochem Biophys. 2005;442:92–101.

26. Quevillon-Cheruel S, Leulliot N, Meyer P, Graille M, Bremang M, Blondeau K,
Sorel I, Poupon A, Janin J, van Tilbeurgh H. Crystal structure of the
bifunctional chorismate synthase from Saccharomyces cerevisiae. J Biol
Chem. 2004;279:619–25.

27. Pang SS, Duggleby RG. Expression, purification, characterization and
reconstitution of the large and small subunits of yeast acetohydroxyacid
synthase. Biochemistry. 1999;38:5222–31.

28. Pang SS, Duggleby RG, Guddat LW. Crystal structure of yeast
acetohydroxyacid synthase: a target for herbicidal inhibitors. J Mol Biol.
2002;317:1249–62.

29. Ehmann DE, Gehring AM, Walsh CT. Lysine biosynthesis in Saccharomyces
cerevisiae: mechanism of α-aminoadipate reductase (Lys2) involves
posttranslational phosphopantetheinylationby Lys5. Biochemistry. 1999;38:
6171–7.

30. Kim JM, Song HY, Choi HJ, So KK, Kim DH, Chae KS, Han DM, Jahng KY.
Characterization of NpgA, a 4′-phosphopantetheinyl transferase of
Aspergillus nidulans, and evidence of its involvement in fungal growth and
formation of conidia and cleistothecia for development. J Microbiol. 2015;
53:21–31.

31. Márquez-Fernández O, Trigos A, Ramos-Balderas JL, Viniegra-González G,
Deising HB, Aguirre J. Phosphopantetheinyl transferase CfwA/NpgA is
required for Aspergillus nidulans secondary metabolism and asexual
development. Eukaryot Cell. 2007;6:710–20.

32. Kurt JE, Exinger F, Erbs P, Jund R. New insights into the pyrimidine salvage
pathway of Saccharomyces cerevisiae: requirement of six genes for cytidine
metabolism. Curr Genet. 1999;36:130–6.

33. Silva R, Aguiar TQ, Domingues L. Blockage of the pyrimidine biosynthetic
pathway affects riboflavin production in Ashbya gossypii. J Biotechnol. 2015;
193:37–40.

34. Wasserstrom L, Dünkler A, Walther A, Wendland J. The APSES protein Sok2
is a positive regulator of sporulation in Ashbya gossypii. Mol Microbiol. 2017;
106:949–60.

35. Wilkie AO. The molecular basis of genetic dominance. J Med Genet. 1994;
31:89–98.

36. Drabkin M, Birk OS, Birk R. Heterozygous versus homozygous phenotype
caused by the same MC4R mutation: novel mutation affecting a large
consanguineous kindred. BMC Med Genet. 2018;19:135.

37. Coppin E, Gelsi-Boyer V, Morelli X, Cervera N, Murati A, Pandolfi PP,
Birnbaum D, Nunés J. Mutational analysis of the DOK2 haploinsufficient
tumor suppressor gene in chronic myelomonocytic leukemia (CMML).
Leukemia. 2014;29:500–2.

38. Rizzo JM, Tarsio M, Martínez-Muñoz GA, Kane PM. Diploids heterozygous for
a vma13Δ mutation in Saccharomyces cerevisiae highlight the importance of
V-ATPase subunit balance in supporting vacuolar acidification and silencing
cytosolic V1-ATPase activity. J Biol Chem. 2007;282:8521–32.

39. Simone PD, Pavlov YI, Borgstahl GE. ITPA (inosine triphosphate
pyrophosphatase): from surveillance of nucleotide pools to human disease
and pharmacogenetics. Mutat Res. 2013;753:131–46.

40. Smardová J, Smarda J, Koptíková J. Functional analysis of p53 tumor
suppressor in yeast. Differentiation. 2005;73:261–77.

41. Gudipati V, Koch K, Lienhart WD, Macheroux P. The flavoproteome of the
yeast Saccharomyces cerevisiae. Biochim Biophys Acta. 2014;1844:535–44.

42. Ledesma-Amaro R, Kerkhoven EJ, Revuelta JL, Nielsen J. Genome scale
metabolic modeling of the riboflavin overproducer Ashbya gossypii.
Biotechnol Bioeng. 2014;111:1191–9.

43. Mack M, van Loon APGM, Hohmann HP. Regulation of riboflavin
biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/
flavin adenine dinucleotide synthase encoded by ribC. J Bacteriol. 1998;180:
950–5.

44. Henriques BJ, Olsen RK, Bross P, Gomes CM. Emerging roles for riboflavin in
functional rescue of mitochondrial β-oxidation flavoenzymes. Curr Med
Chem. 2010;17:3842–54.

45. Mateos L, Jiménez A, Revuelta JL, Santos MA. Purine biosynthesis, riboflavin
production, and trophic-phase span are controlled by a Myb-related
transcription factor in the fungus Ashbya gossypii. Appl Environ Microbiol.
2006;72:5052–60.

46. Boiteux S, Jinks-Robertson S. DNA repair mechanisms and the bypass of
DNA damage in Saccharomyces cerevisiae. Genetics. 2013;193:1025–64.

47. Mookerjee SA, Lyon HD, Sia EA. Analysis of the functional domains of the
mismatch repair homologue Msh1p and its role in mitochondrial genome
maintenance. Curr Genet. 2005;47:84–99.

48. Pochart P, Woltering D, Hollingsworth NM. Conserved properties between
functionally distinct MutS homologs in yeast. J Biol Chem. 1997;272:30345–9.

49. Drotschmann K, Clark AB, Tran HT, Resnick MA, Gordenin DA, Kunkel TA.
Mutator phenotypes of yeast strains heterozygous for mutations in the
MSH2 gene. Proc Natl Acad Sci U S A. 1999;96:2970–5.

50. Hodel KP, de Borja R, Henninger EE, Campbell BB, Ungerleider N, Light N,
Wu T, LeCompte KG, Goksenin AY, Bunnell BA, Tabori U, Shlien A, Pursell ZF.
Explosive mutation accumulation triggered by heterozygous human pol ε
proofreading-deficiency is driven by suppression of mismatch repair. Elife.
2018;7:e32692.

51. Ishihara S, Hirata A, Nogami S, Beauvais A, Latge JP, Ohya Y. Homologous
subunits of 1,3-beta-glucan synthase are important for spore wall assembly
in Saccharomyces cerevisiae. Eukaryot Cell. 2007;6:143–56.

52. Neiman AM. Sporulation in the budding yeast Saccharomyces cerevisiae.
Genetics. 2011;189:737–65.

53. Wasserstrom L, Lengeler KB, Walther A, Wendland J. Molecular determinants
of sporulation in Ashbya gossypii. Genetics. 2013;195:87–99.

54. Park S, Park HEH, Son HG, Lee SJV. The role of RNA helicases in aging and
lifespan regulation. Transl Med Aging. 2017;1:24–31.

55. Grimminger-Marquard V, Lashuel HA. Structure and function of the
molecular chaperone Hsp104 from yeast. Biopolymers. 2009;93:252–76.

56. Zhou H, Hu H, Zhang L, Li R, Ouyang H, Ming J, Jin C. O-
Mannosyltransferase 1 in Aspergillus fumigatus (AfPmt1p) is crucial for cell
wall integrity and conidium morphology, especially at an elevated
temperature. Eukaryot Cell. 2007;6:2260–8.

57. Goto M, Harada Y, Oka T, Matsumoto S, Takegawa K, Furukawa K. Protein O-
mannosyltransferases B and C support hyphal development and
differentiation in Aspergillus nidulans. Eukaryot Cell. 2009;8:1465–74.

58. Stehling O, Lill R. The role of mitochondria in cellular iron-sulfur protein
biogenesis: mechanisms, connected processes, and diseases. Cold Spring
Harb Perspect Biol. 2013;5:a011312.

59. Paul BT, Manz DH, Torti FM, Torti SV. Mitochondria and Iron: current
questions. Expert Rev Hematol. 2017;10:65–79.

60. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina
Sequence Data. Bioinformatics. 2014;30:btu170.

61. Li H. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv. 2013:1303–3997 v1 [q-bio.GN]; arXiv.org.

62. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The genome
analysis toolkit: a MapReduce framework for analyzing next-generation DNA
sequencing data. Genome Res. 2010;20:1297–303.

63. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X,
Ruden DM. A program for annotating and predicting the effects of single
nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila
melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6:80–92.

64. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M,
Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L,
Piovesan D, Tosatto SCE, Finn RD. The Pfam protein families database in
2019. Nucleic Acids Res. 2019;47:D427–32.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Kato et al. BMC Genomics          (2020) 21:319 Page 17 of 17


