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Hyperspectral reflectance sensing for quantifying leaf chlorophyll 

content in wasabi leaves using spectral pre–processing techniques and 

machine learning algorithms 

Changes in chlorophyll content can be a good indicator of disease as well as 

nutritional and environmental stresses on plants. Several pre–processing 

techniques have been proposed for reducing noise from spectral data to identify 

vegetation properties such as chlorophyll content. Machine learning algorithms 

have also been applied to assess biochemical properties; however, an approach 

integrating pre–processing techniques and machine learning algorithms has not 

been fully evaluated. Therefore, this study evaluates the effectiveness of five pre–

processing techniques used in conjunction with five machine learning algorithms 

for estimating chlorophyll content in two wasabi cultivars. Overall, incorporating 

pre–processing techniques was effective for obtaining estimated values with high 

accuracy. Analyses utilizing both pre–processing and machine learning 

performed best in 88 of 100 repetitions. The kernel–based extreme learning 

machine (KELM) and Cubist algorithms yielded the highest performance and 

achieved the highest accuracies in 54 and 26 of 100 repetitions, respectively. 
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1. Introduction 

Japanese horseradish (Eutrema japonicum), also called 'wasabi', belongs to the 

Brassicaceae family. Wasabi has been cultivated in Japan for more than a thousand 

years, and nearly half of the total wasabi rhizome consumed in Japan is produced in the 

Shizuoka Prefecture. There has been a recent increase in global demand for Japanese 

cuisine (Hege et al. 2019), leading to an increased demand for wasabi production. 

Wasabi requires specific growing conditions including north–facing gorges and an 

abundance of cold and clean flowing water. It takes at least 10 months to cultivate 

wasabi, and recent environmental climate changes have adversely affected wasabi 

production. In addition, optimal culture methods are poorly understood and its 



production depends on the experience of skilled farmers. Enhancing detection of 

nutritional and environmental stresses as well as diseases that result in lower yields may 

improve wasabi cultivation and facilitate its production by incipient farmers. 

Chlorophyll content can be indicative of plant physiological activity since it is 

an effective indicator of photosynthesis. Chlorophyll absorbs sunlight and uses the 

energy to synthesize carbohydrates from CO2 and H2O (Gitelson et al. 2006). 

Chlorophyll within the leaf also has a close relationship with nitrogen, an essential plant 

nutrient (Bojović and Aca 2009). Thus, changes in chlorophyll content are useful for 

detecting disease as well as nutritional and environmental stresses on plants (Datt 1999; 

Sims and Gamon 2002; Sonobe et al. 2018a; Sonobe et al. 2020a).  

Chlorophyll content can be precisely quantified using spectroscopic techniques 

such as ultraviolet and visible–light (UV–Vis) spectroscopy and high–performance 

liquid chromatography (HPLC). However, these techniques require bulky equipment, 

which limits their usefulness in the field (i.e. outside the laboratory; Kalaji et al. 2017). 

More portable equipment has been developed, such as the SPAD–502 Leaf Chlorophyll 

Meter (Konica Minolta Inc.), which determines the relative amount of chlorophyll by 

measuring the absorbance of the leaf in two wavelengths. These portable instruments, 

which can be used by non–experts, provide less expensive and less labour–intensive 

measurements than UV–Vis or HPLC and have been widely used in previous studies 

(Jacquemoud and Ustin 2019). Nevertheless, Peng et al. (1993) pointed out that 

variation in leaf thickness causes a variable relationship between SPAD readings and 

leaf dry weight, which can be different in cultivars, developmental stages and 

environmental conditions. On the contrary, leaf chlorophyll content and leaf dry weight 

are related to leaf reflectance over different spectral regions and some studies proposed 

methods for simultaneous determination of them  (Féret et al. 2008; Féret et al. 2011). 



Therefore, this issue may be addressed using hyperspectral remote sensing, an 

alternative tool for measuring chlorophyll content in the field (Amirruddin et al. 2020; 

Féret et al. 2008; Golhani et al. 2019; Vahtmae et al. 2018).  

To quantify vegetation properties, such as chlorophyll content, from remotely 

sensed data, regression techniques based on machine learning algorithms are becoming 

an attractive approach. Random forest (RF) and support vector machine (SVM) 

algorithms have been successfully applied for both classification and regression (Biau 

and Scornet 2016; Burges 1998). Powell et al. (2010) compared three statistical 

techniques including Reduced Major Axis regression, Gradient Nearest Neighbour 

imputation and RF, for their ability to predict biomass dynamics from Landsat data and 

showed that the two former techniques generally outperformed RF. Lu et al. (2019) 

found a high RF performance when comparing RF and Partial least square (PLS) 

regression for estimating chlorophyll from multispectral and hyperspectral data. On the 

other hand, Siegmann and Jarmer (2015) compared SVM, RF and partial least squares 

regression for assessing leaf area index (LAI) from wheat reflectance spectra acquired 

in 2011 and 2012. They showed that SVM provided the best results in the case of cross 

validation for the separate years although SVM also showed a clear decline in model 

performance for independent validation of the data set from both years. Further, a 

regression model based on SVM has been used for quantifying urban land cover 

(Okujeni et al. 2017), predicting leaf area index on a tropical grassland (Kiala et al. 

2016) and estimating leaf area index and green leaf chlorophyll density of rice using 

hyperspectral data (Yang et al. 2011). Recently, regression models based on the kernel–

based extreme learning machine (KELM) have performed well and KELM has been 

used for estimating leaf chlorophyll content from tea leaves (Sonobe et al. 2020b; 

Sonobe et al. 2018b). Cubist and Stochastic Gradient Boosting (SGB) algorithms have 



also been extended for estimating biomass (Breunig et al. 2020). Houborg and McCabe 

(2018) conducted LAI estimation via machine–learning and showed that the Cubist 

algorithm was generally superior to RF in predicting LAI. Wijesingha et al. (2020) 

showed a Cubist regression model proved best for estimating acid detergent fibre in 

forage while SVM estimated crude protein with the highest precision and accuracy. 

Despite the efficacy of these algorithms, insufficient training data can lead to 

overfitting, which can limit the usefulness of these methods for evaluating biochemical 

properties based on hyperspectral reflectance. Thus, this study examines the five 

aforementioned algorithms (RF, SVM, KELM, Cubist and SGM) to determine an 

optimal approach for analysing reflectance data obtained from wasabi. 

Besides regression algorithms, previous studies have applied pre–processing 

techniques to original data to better determine vegetation properties such as chlorophyll 

content. In general, pre–processing of original reflectance data is conducted to obtain 

uncontaminated data for further processing. Common spectral pre–processing 

techniques include scatter correction methods and spectral derivatives (Xu and Gowen 

2020). First derivative reflectance (FDR) analysis, in particular, is an effective 

technique for removing background effects and enhancing subtle spectral features 

(Meng et al. 2020) as well as enhancing weak spectral features which are effective for 

evaluating target parameters (Inoue et al. 2012). Notably, FDR has been used to detect 

specific points such as the green peak and the red edge inflection point (Cho and 

Skidmore 2006). As a result, various vegetation indices based on FDR have been 

proposed to estimate vegetation properties such as chlorophyll content (Penuelas et al. 

1994; Zarco–Tejada et al. 2003). Similarly, the continuum–removal (CR) 

transformation, which is a brightness normalization technique that fits a convex hull 

over the original reflectance data, has been applied to enhance spectral features and 



eliminate or reduce effects unrelated to the target’s properties of interest as well as 

improving signal to noise ratio and minimising data redundancy (Miller et al. 2020; 

Sanches et al. 2014). Mutanga et al. (2005) applied CR to evaluate total digestible 

nutrients (nitrogen, potassium, phosphorous, calcium and magnesium) of pastures using 

band depth ratios and stepwise regression and Li et al. (2020) used CR with multiple 

linear regression, principal component regression, PLS or SVM for leaf nitrogen content 

estimation. Standard normal variate (SNV) and multiplicative scatter correction (MSC) 

have also been used to reduce noise in raw reflectance data caused by light scattering 

and baseline drift (Liang et al. 2020). Feng and Makino (2020) conducted colour 

analysis in sausages after normalization, SNV, MSC, FDR and second derivative using 

PLS and then found that MSC made the prediction coefficient of determination up to 

0.78. Furthermore, Barnes et al. (1989) reported that SNV and then de–trending (DT) 

was effective at reducing the effect of additive interference of scattered light from 

particles. However, Aheto et al. (2020) showed pre–processing with SNV and MSC 

yielded lower values for predicting values of thiobarbituric acid reactive substances. 

Thus, this study evaluates the performance and applicability of five machine 

learning algorithms in conjunction with five pre–processing techniques for analysing 

the original reflectance data obtained from wasabi. Data treatment and algorithms were 

applied to the original data gathered from two wasabi cultivars grown in conditions of 

varying pH and sulphur ion concentration. Thus, we aim to identify an optimized 

method for detecting chlorophyll content in response to environmental and nutritional 

stresses and determine which data treatment strategies may be applicable to other 

spectral–based detection methods. 



2. Materials and methods 

2.1.Measurements and datasets 

The two popular wasabi cultivars, ‘Onimidori’ and ‘Mazuma’, were cultivated by 

hydroponics in a greenhouse at Shizuoka University in Shizuoka, Japan between 19 

December 2019 and 10 March 2020. A total of 79 leaves (39 and 40 leaves from 

‘Onimidori’ and ‘Mazuma’, respectively) were harvested from plant tops among 

expanding leaves. The wasabi clonal plants were transplanted and single individuals 

were placed in Wagner pots (0.02 m²) containing 3 L of tap water adjusted to pH 6.0 

using HCl and NaOH, and were continuously aerated. After 1 week, slightly modified 

0.1×Hoagland solutions (Hoagland and Arnon, 1950), used as standard nutrient 

solutions, were supplied stepwise for 1 week each at 1:100 and 1:10 concentrations to 

allow the plants to adjust to the hydroponic system. After that, the following 

experiments were performed. Ten samples (5 from each cultivar) were cultivated under 

standard conditions for wasabi using a nutrient mixture of 0.1×Hoagland solution (pH 

6). Different pH values (pH 5, 7, 8 and 9) were applied to samples of 5 leaves for each 

pH condition and cultivar to assess the influence of pH on mineral absorption changes. 

In addition to the standard condition of sulphur ion concentration (1×S), which is 0.58 

mM SO4
2–, conditions of zero (0×S), half (0.5×S) and 1.5 times (1.5×S) the standard 

sulphur concentration were applied to 5 leaves for each condition and cultivar, except 

for 0×S (4 and 5 leaves from ‘Onimidori’ and ‘Mazuma’, respectively). 

Reflectance data at 1 nm steps across the entire wavelength domain from 400 to 

2500 nm were obtained using the FieldSpec4 (Analytical Spectral Devices Inc., USA) 

from a leaf clipping. Some spectral drift was observed at two wavelengths (1000 and 

1800 nm) due to inherent variations caused by the three detectors including visible and 

near–infrared (VNIR) portions of the electromagnetic spectrum, short wave infrared 



(SWIR1 and SWIR2). The splice correction function within the ViewSpec Pro Software 

(Analytical Spectral Devices Inc., USA) was applied to minimize this inconsistency 

(Prasad et al. 2015). It is well known that leaf chlorophyll content mainly affects the 

reflectance in the 400 to 780 nm region (Féret et al. 2017) and this region was used to 

avoid redundant analyses. 

To precisely quantify chlorophyll content (Chla+b), leaves were freeze–dried, 

ground and analysed using dual–beam scanning ultra violet–visible spectrophotometers 

(UV–1900, Shimadzu, Japan) and Porra’s method (Porra et al. 1989). 

Dimethylformamide was used to prepare extracts from which chlorophyll–a (Chl–a) 

and b (Chl–b) contents (in μg ml–1) were calculated according to the following 

Equations (1 to 3) with the chlorophyll unit converted to μg cm–2 using the area of leaf 

discs: 

Chl–a (μg ml–1) = 12.00 × (A663.8 – A750) – 3.11 × (A646.8 – A750) (1) 

Chl–b (μg ml–1) = 20.78 × (A646.8 – A750) – 4.88 × (A663.8 – A750) (2) 

Chla+b = Chl–a + Chl–b      (3) 

where A is the absorbance, and the subscripts are the wavelengths (in nm). 

The measurements were divided into three groups (a training dataset (50%), a 

validation dataset (25%) and a test data dataset (25%)) using a stratified sampling 

approach (Hastie et al. 2009). To ensure robust results, this approach was repeated 100 

times before pre–processing the original reflectance and generating the regression 

models based on machine learning algorithms. 

2.2. Pre–processing of the raw reflectance data 

To generate regression models with high accuracy, the following five pre–processing 

methods were evaluated based on their success in previous studies. Table 1 includes 



abbreviations of the pre–processing techniques and machine learning algorithms used in 

this study.  

 

Please put Table 1 about here 

 

1) First derivative reflectance (FDR) processing was selected to remove background 

effects from plain spectral features and to reduce systematic errors in spectral data (Tsai 

and Philpot 1998). As a result, some FDR–based indices (Datt 1999; Zarco–Tejada et 

al. 2003) and the sum of derivative values (Elvidge and Chen 1995; Filella et al. 1995) 

have been proposed. 

2) The continuum–removed (CR) spectra of plants has been utilized to identify changes 

in the shapes of absorption features in relation to an abundance of biochemical 

properties such as chlorophyll content (Sanches et al. 2014). 

3) De–trending (DT) is a row–wise transformation that allows correction for 

wavelength–dependent scattering effects by fitting a second–degree polynomial through 

each spectrum. It is also effective for accounting for the variation in baseline shift and 

curvilinearity (Barnes et al. 1989). 

4) Multiplicative scatter correction (MSC) has been used to compensate for additive or 

multiplicative effects or a combination of the two in spectral data (Maleki et al. 2007). 

MSC requires a reference spectrum and an average spectrum whose wavelength–

dependent perturbations are separated from the residual spectral data. This correction is 

composed of two steps: i) regression of each spectrum against the mean spectrum based 

on ordinary least squares and ii) the calculation of the corrected spectrum. 



5) Standard normal variate (SNV) has been effective for baseline correction and 

reducing scattering effects by subtracting the averaged value of each spectrum and 

dividing it by the experimental standard deviation (Genkawa et al. 2015). 

To identify which wavelengths were significantly influenced by pH conditions 

or sulphur ion concentration (S strength) (p < 0.05), we employed a stepwise linear 

discriminant analysis (Burns and Burns 2008; Draper 1998). In this technique, we 

adopted a combination of forward and backward stepwise regression in a multiple 

regression model, which was used to select suitable predictor wavelengths among the 

different treatments. The results were evaluated regarding their overall accuracies 

(OAs), which is the total classification accuracy. All methods were implemented using 

R version 3.5.0 (R Core Team 2020). 

2.3. Regression model 

The regression models based on machine learning algorithms included random forest 

(RF), support vector machine (SVM), kernel–based extreme learning machine (KELM), 

Cubist and Stochastic Gradient Boosting (SGB). These were evaluated for estimating 

chlorophyll content from hyperspectral reflectance data. To remove non–informative 

variables and generate better and simpler prediction models, we applied variable 

selection techniques. Previous studies showed that a method based on the genetic 

algorithm (GA), which is an adaptive heuristic search algorithm centred on the 

evolutionary ideas of natural selection and genetics, was superior to three variable 

selection techniques including the Martens uncertainty test and interval partial least 

square regression (Villar et al. 2017). Thus, we adopted a GA in this study. For tuning 

the hyperparameters of the machine learning algorithms, Bayesian optimisation has 

been applied using the Gaussian process (Snoek et al. 2015; Yan 2016). 



RF is an ensemble nonparametric technique wherein the samples used for model 

generation are randomly selected from training data by the bootstrap method, and a 

decision tree is generalized based on the binomial variance using a Gini index (Breiman 

2001). As user–defined hyperparameters, the number of trees and the number of 

variables used to split the nodes are well known. Additionally, the following three 

hyperparameters are also optimized: the minimum number of unique cases in a terminal 

node, the maximum depth to which a tree should be grown, and the number of random 

splittings. This was done using the “randomForestSRC” package (Ishwaran 2007). 

SVM is often applied with the Gaussian radial basis function (RBF) kernel and 

its efficacy has been demonstrated for resolving problems in high dimensions and with 

local minima (Ding et al. 2016). In particular, it remains highly functional even with a 

limited volume of training data (Breunig et al. 2020). The regularisation parameter C 

and the kernel bandwidth σ are considered as user–defined hyperparameters using the 

“e1071” package (Meyer et al. 2017). The high performance of RF and SVM has been 

reported in many studies and could thus be considered benchmarks in this study 

(Hobley et al. 2018; Wang et al. 2013). 

The extreme learning machine (ELM), which is based on a single hidden layer 

feedforward neural network, has been widely applied for prediction, faulty diagnosis, 

recognition, classification and signal processing (Li et al. 2016). The RBF kernel has 

been used instead of attempting to fit a non–linear model (Huang et al. 2012), 

particularly in some earlier studies, which showed that the RBF kernel may be 

advantageous (Sonobe et al. 2018b). Although some improvements have been 

documented, KELM already possesses significant robustness due to its use of few 

hyperparameters (i.e. the regulation coefficient (RC) and the kernel parameter (KP)) and 



few optimisation constraints, which has been shown to be an advantage in regression 

applications (Maliha et al. 2018). 

Cubist is a rule–based model tree approach where leaves are represented by a 

multi–variate linear regression model wherein the rules are calibrated based on one or 

more variables or thresholds of the unique subset of explanatory variables. Although 

predictions are conducted based on the linear regression model at the terminal node of 

the tree, the prediction from the linear model in the previous node of the tree is also 

considered. The number of committee models, i.e. boosting iterations, and the number 

of neighbours used for correcting the model predictions were thus optimised in this 

study using the ‘Cubist’ package (Kuhn et al. 2020). 

Regression models based on SGB are sequentially generated from the gradient 

of the loss function of the previous tree, building a new tree from a random sub–sample 

of the dataset for each iteration. In other words, a tree is built from a random sub–

sample from the training data to improve the model. In this algorithm, a fraction of the 

training data is used, avoiding over–fitting of the training data as well as improving the 

computation speed and prediction accuracy (Friedman 2002). SGB was applied using 

the ‘gbm’ package (Greenwell et al. 2019) with the following four hyperparameters 

being optimized: the number of iterations and the number of basis functions in the 

additive expansion, the maximum depth of each tree, the learning rate and the minimum 

number of observations in the terminal nodes of the trees. 

2.4. Statistical criteria 

Evaluations of the estimation accuracy of each method were based on the root mean 

square error (RMSE) and the ratio of performance to deviation (RPD, Equation (4)) 

(Williams 1987). 

RPD =
(SD)

(RMSE)
  (4) 



where SD is the standard deviation of the real chlorophyll content as calculated from the 

test data measurements. Based on the RPD values, the methods are categorised into 

three groups: category A (RPD > 2.0), category B (1.4 ≤ RPD ≤ 2.0) and category C 

(RPD < 1.4). For evaluating the efficiencies of the number of variables, a data 

envelopment analysis (DEA), which is a nonparametric method for the estimation of 

production frontiers, was conducted using the ‘Benchmarking’ package (Bogetoft and 

Otto 2020) and by substituting the number of variables and RPD values for the input 

and output components. Black box data–based sensitivity analysis (DSA) was also used 

for the fitted models to clarify which narrow–bands were effective in the supervised 

learning methods (Cortez and Embrechts 2013). 

3. Results 

3.1. Chlorophyll content after each treatment 

Figure 1 shows box plots of the chlorophyll content at different pH conditions for the 

two cultivars. Chlorophyll content per leaf area (cm2) ranged from 2.91 to 35.40 and a 

significant negative correlation was observed between pH value and chlorophyll content 

(r = –0.592, p < 0.001 for chlorophyll). The degree of concentration of hydrogen ions 

(pH) had a stronger effect on Mazuma chlorophyll content (r = –0.740, p < 0.001 for 

chlorophyll) than on Onimidori (r = –0.416, p < 0.05). As such, significant differences 

in Mazuma chlorophyll content were observed between pH values of 5 and 8, 5 and 9, 6 

and 8 and 6 and 9. By contrast, there were no significant differences in Onimidori 

chlorophyll content (p < 0.05, Tukey–Kramer test). No significant difference in 

chlorophyll content was observed between the two cultivars under the same pH 

conditions (p > 0.05, Tukey–Kramer test). 

 



Please put Figure 1 about here 

 

The relationships between S strength and chlorophyll content for the two 

cultivars are shown in Figure 2. Without sulphur, the chlorophyll content for Onimidori 

and Mazuma were 16.69 ± 2.66 and 16.14 ± 1.96 μg cm–2 (mean ± SD), respectively. 

However, 0.5 × S increased the chlorophyll content to 30.88 ± 3.65 and 31.16 ± 3.65 μg 

cm–2 for Onimidori and Mazuma, respectively. Compared to the samples without 

sulphur, chlorophyll content increased significantly as sulphur concentrations were 

increased (0 × S; p < 0.05, Tukey–Kramer test). However, there were no significant 

differences between the samples treated with different sulphur concentrations within 

both cultivars (p > 0.05, Tukey–Kramer test). There were also no significant differences 

between the two cultivars treated with the same S strength (p > 0.05, Tukey–Kramer 

test). 

 

Please put Figure 2 about here 

 

3.2. Reflectance under different conditions 

The mean reflectance spectra for each pH and S strength are shown in Figures 3 and 4. 

The reflectance values of leaves near the green peak (520 to 540 nm) increased with pH 

for both cultivars until a pH of 8 and decreased at pH 9. Regarding the S strength, 

reflectance values near the green peak became smaller with increasing S strength except 

for 0.5×S. Stepwise discriminant analysis (p < 0.05) showed that reflectance values at 

410, 466, 468 and 683 nm were useful for identifying samples of 5 different pH 

conditions (OA = 0.660), while reflectance values at 423, 427, 455, 612, 615 and 694 

nm were useful for S strengths (OA = 0.897) regardless of the cultivar analysed. When 



the samples were grouped by cultivar, reflectance values at 402, 414, 466, 473, 480, 759 

and 780 nm (OA =1.00) for Onimidori and at 716 nm (OA = 0.460) for Mazuma were 

selected to discriminate pH conditions. Reflectance values at 502, 658 and 691 nm (OA 

= 0.842) for Onimidori and at 698 nm (OA = 0.600) for Mazuma were selected to 

identify S strengths. 

 

Please put Figure 3 about here 

Please put Figure 4 about here 

 

3.3. Accuracy validation 

Tables 2 and 3 show statistics for the RPD and RMSE values, respectively, calculated 

using regression models based on machine learning algorithms. The mean RPD values 

of RF were greater than 1.4 for each regression model, which means the models belong 

to category B, achieving an RMSE of 3.503 ± 0.525, 2.835 ± 0.560, 2.932 ± 0.513, 

2.715 ± 0.488, 2.824 ± 0.607 and 2.619 ± 0.493 μg cm–2 for the original reflectance of 

FDR, CR, DT, MSC and SNV, respectively. As such, RF was the only algorithm 

capable of estimating chlorophyll content from original reflectance spectra as well as 

spectra pre–processed by the five techniques. In particular, the combination of RF and 

DT was consistently greater than 2.063, placing the regression models in category A. 

However, KELM may be the most promising algorithms when FDRs have been applied 

for pre–processing since the minimum RPD value was 2.292. For SVM and SGB, their 

mean RPD values were consistently greater than 1.4; however, they sometimes resulted 

in poor estimation results. 

 



Please put Table 2 about here 

Please put Table 3 about here 

 

3.4. Efficiency and sensitivity analysis 

Figure 5 shows the results of DEA and the variables of MSC possessed the lowest 

efficiencies among the pre–processing techniques. The efficiencies of SVM were not 

suitable and some outliers were confirmed for all the pre–processing techniques, while 

those of RF were the most suitable among all the machine learning algorithms.  

The importance at 20 nm interval as assessed by DSA is shown in Figure 6. 

Generally, the importance at wavelengths shorter than 420 nm was smaller, although a 

peak of importance was confirmed over 420 to 440 nm for SGB when DT or MSC were 

applied. The highest importance values were observed over the green peak (500 to 560 

nm) or REIP (680 to 720 nm) for all algorithms. At the green peak, the importance was 

larger than that at the REIP for the original reflectance. However, the importance at the 

REIP was highest when FDR was applied, although this tendency was obscured for 

SVM and KELM. As with the original reflectance, similar trends in importance were 

observed for CR, MSC and SNV; however, the peak at 720 to 740 nm was larger for CR 

than for MSC and SNV. 

 

Please put Figure 5 about here 

Please put Figure 6 about here 



4. Discussion 

4.1. Optimal machine learning algorithms 

After 100 repetitions, the best and worst algorithms of each round were determined 

based on the RPD value (Table 4). Although the RF algorithm consistently gave 

acceptable results based on RPD values (Table 2) and previous studies have reported on 

its satisfactory performance for estimating vegetation properties (Liu et al. 2017; Powell 

et al. 2010), it was determined to be the best algorithm only 14, 7, 8, 19 and 17 times for 

FDR, CR, DT, MSC and SNV. The KELM and Cubist algorithms consistently 

performed best owing to their high predication abilities for the test data, which was 

independent data for generating and optimizing the regression models. The sizes of the 

training dataset, which was used to generate the regression models, and validation 

dataset, which was used to optimize the hyperparameters of the machine learning 

algorithms, were 32 and 16 samples, respectively. KELM performed best for all 

techniques except for the original reflectance data; however, it was also the worst 

performer once each for original reflectance, CR and DT, five times for MSC and twice 

for SNV (however, the RPD values were still more than 1.5 except for MSC). By 

contrast, SGB and SVM generally performed the worst and SGB was never selected as 

a best algorithm. Results revealed that SGB showed a low sensitivity to outliers, which 

is effective for unbalanced training datasets and provides robustness when dealing with 

interactions (Friedman 2002). Therefore, SGB avoids problems arising from a wrong 

learning rate, which is an important hyperparameter and determines the size of steps by 

sampling a fraction of the training data (Friedman 2002). However, this process 

decreases the sample size for generating regression models, and so, especially when the 

size of the training data is small, SGB can be inadequate. SVM and KELM are both 

kernel–based algorithms, although SVM was clearly inferior to KELM. For kernel–



based algorithms, incorrect selection of hyperparameters related to kernel function 

causes a decrease in the estimation accuracy (Horvath 2003). In this study, the variance 

of KP appeared smaller than σ, which implies that the Bayesian optimization sometimes 

resulted in local solutions for tuning the hyperparameters of SVM. Thus, there is some 

potential for improving the SVM estimation accuracies by using other optimization 

methods which can provide alternative local solutions for tuning hyperparameter 

combinations. 

 

Please put Table 4 about here 

 

4.2. Best combinations of pre–processing techniques and machine learning 

algorithms 

The optimal combinations of pre–processing techniques and machine learning 

algorithms are shown in Table 5. After application of the pre–processing techniques, the 

absolute values of correlation coefficient over the green peak (r = –0.923, –0.789, –

0.954, –0.961, –0.932 and –0.935 at 550 nm for original reflectance, FDR, CR, DT, 

MSC and SNV) or REIP (r = –0.783, –0.952, –0.957, –0.698, –0.938 and –0.936 at 725 

nm for original reflectance, FDR, CR, DT, MSC and SNV) increased. At these 

wavelengths, the relationships between chlorophyll content and reflectance could be 

measured. As a result, out of 100 repetitions, using a combination of pre–processing 

techniques and machine learning algorithms resulted in the best results 88 times 

whereas applying machine learning algorithms to reflectance data alone (without pre–

processing) only resulted in optimal results 12 times (Table 5). The combination of DT 

and KELM was selected as the best solution for estimating chlorophyll content 15 times 

and DT was the most selected pre–processing technique: 31 times in total (15 times 



with KELM, 9 times with Cubist, 4 times with RF and 3 times with SVM). Barnes et al 

(1989) pointed out that DT was effective for removing the effects of baseline shift and 

curvilinearity from the original reflectance of powdered or densely packed samples. The 

potential of DT for estimating chlorophyll content was also confirmed in this study. 

SNV, which also adjusts for baseline shifts between samples, was effective for 

removing multiplicative interferences of scatter and particle size (Ng et al. 2020) and 

SNVs were selected 24 times. Compared to these techniques, the advantages of MSC, 

which also adjusts for baseline shifts between samples by minimizing additive and 

multiplicative effects in reflectance (Rinnan et al. 2009), were not corroborated. Some 

studies have reported successfully using MSC for hyperspectral data over the visible 

near–infrared and short–wave infrared range with high performance (Liang et al. 2020); 

however, this technique tends to hide some weaker spectral features, which leads to 

unsatisfactory results. In our study, leaf–scale measurements were conducted using leaf 

clippings and additive and multiplicative effects on reflectance might be small. FDR 

was effective for enhancing resolution and correcting baseline shifts in hyperspectral 

data (Bruning et al. 2020) and it was selected 13 times due to these advantages. Next, 

CR was selected as the best 9 times (7 times for KELM and 8 times for Cubist). 

 

Please put Table 5 about here 

 

5. Conclusions 

Pre–processing of reflectance is a potentially useful tool for improving estimation 

accuracies of chlorophyll content. However, the influences of the selected pre–

processing techniques and machine learning algorithms have been obscure. The superior 

usefulness of de–trending (DT) was confirmed and the combination of DT and kernel–



based extreme learning machine (KELM) was most effective for estimating chlorophyll 

content. 

Taken together, these results show that hyperspectral reflectance has great 

potential as a tool for detecting chlorophyll content within wasabi. Furthermore, treating 

these data with pre–processing techniques and machine learning algorithms can 

improve qualifying plant appearance, effects of environmental stresses and effects of 

ingredients before plant cultivation. These techniques could thus be used to improve the 

usability of portable devices and subsequent agricultural management, thereby 

facilitating quality control and plant maintenance for less experienced farmers. 
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Lists of the Figures 

Figure 1. Box plots of chlorophyll content as a function of pH for the two cultivars. 

 

Figure 2. Box plots of chlorophyll content for different sulphur concentrations (S 

strengths). 

 

Figure 3. Mean reflectance spectra for each pH condition for (a) Onimidori and (b) 

Mazuma. 



 

Figure 4. Mean reflectance spectra for each S strength (sulphur concentration) for (a) 

Onimidori and (b) Mazuma. 
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Figure 5. Violin plots of efficiencies of number of variables based on Data envelopment 

analysis after 100 replicates for random forest (RF), support vector machine (SVM), 

kernel–based extreme learning machine (KELM), Cubist and Stochastic Gradient 

Boosting (SGB) from (a) original reflectance, (b) first derivative reflectance (FDR), (c) 

continuum–removal (CR), (d) de–trending (DT), (e) multiplicative scatter correction 

(MSC) and (f) standard normal variate (SNV). 
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Figure 6. Data-based sensitivity analyses (DSA) results for random forest (RF), support 

vector machine (SVM), kernel–based extreme learning machine (KELM), Cubist and 

Stochastic Gradient Boosting (SGB) from (a) original reflectance, (b) first derivative 

reflectance (FDR), (c) continuum–removal (CR), (d) de–trending (DT), (e) 

multiplicative scatter correction (MSC) and (f) standard normal variate (SNV). 

Importance is expressed in percentage and values were averaged over 100 replicates. 
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Lists of the Tables 

Table 1. List of abbreviations of pre–processing techniques and machine learning 

algorithms. 

Abbreviation Explanation 

FDR first derivative reflectance 

CR continuum-removed spectra 

DT de-trending 

MSC multiplicative scatter correction 

SNV standard normal variate 

RF random forest 

SVM support vector machine 

KELM kernel-based extreme learning machine 

Cubist Cubist 

SGB stochastic gradient boosting 

 

Table 2. Ratio of performance to deviation (RPD) for each regression model (statistical 

results are based on 100 repetitions). 
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 RF SVM KELM Cubist SGB  RF SVM KELM Cubist SGB 

Minimum 1.645  0.087  1.600  1.921  1.187   1.933  0.739  2.292  1.163  1.211  

Median 2.303  1.771  3.296  3.348  1.800   2.889  2.240  3.357  2.882  1.918  

Mean 2.339  1.980  3.282  3.412  1.800   2.917  2.271  3.415  2.670  1.916  

Maximum 3.133  4.405  4.819  5.040  2.706   4.308  4.871  5.092  4.296  2.588  

Standard deviation 0.329  0.933  0.663  0.571  0.271   0.444  0.870  0.508  0.795  0.288  

Skewness 0.133  0.616  –0.328  0.153  0.395   0.262  0.244  0.706  –0.366  –0.195  

Kurtosis –0.793  –0.370  0.057  0.033  0.820   0.253  –0.486  0.558  –1.049  –0.287  

  CR   DT 

 RF SVM KELM Cubist SGB  RF SVM KELM Cubist SGB 

Minimum 1.924  0.423  1.593  1.813  1.141   2.063  0.244  1.519  1.575  1.075  

Median 2.708  1.894  3.308  2.981  1.755   2.931  2.229  3.453  3.399  2.068  

Mean 2.819  2.049  3.296  3.079  1.778   3.039  2.291  3.510  3.389  2.036  

Maximum 4.371  4.870  5.049  4.623  2.450   4.297  4.974  5.556  4.867  2.934  

Standard deviation 0.482  0.908  0.598  0.619  0.280   0.470  1.083  0.670  0.647  0.385  

Skewness 0.833  0.482  -0.173  0.405  0.147   0.581  0.309  0.197  –0.187  –0.135  

Kurtosis 0.711  –0.441  0.670  –0.314  –0.258    0.131  –0.740  0.772  –0.196  –0.599  

 MSC  SNV 

 RF SVM KELM Cubist SGB  RF SVM KELM Cubist SGB 

Minimum 1.736  0.223  0.512  0.915  0.622   1.782  0.581  1.881  1.884  1.183  

Median 2.951  1.820  3.295  3.110  1.834   3.121  1.918  3.354  3.384  1.926  

Mean 2.945  1.985  3.245  2.991  1.819   3.151  2.138  3.401  3.361  1.961  

Maximum 4.295  4.649  5.251  4.809  2.602   4.516  4.253  5.057  5.419  3.021  

Standard deviation 0.499  0.943  0.773  0.829  0.446   0.472  1.004  0.609  0.569  0.339  

Skewness 0.021  0.683  –0.413  –0.121  –0.382   0.197  0.531  0.125  0.063  0.285  

Kurtosis –0.173  –0.292  1.203  –0.586  –0.200    0.792  –0.909  0.031  1.220  0.802  

 

Table 3. Root-mean-square error (RMSE, μg cm-2) for each regression model (statistical 

results are based on 100 repetitions). 

 Original reflectance   FDR 

 RF SVM KELM Cubist SGB  RF SVM KELM Cubist SGB 

Minimum 2.485  1.826  1.747  1.718  2.862   1.689  1.851  1.655  1.878  3.045  

Median 3.480  4.471  2.459  2.380  4.506   2.690  3.448  2.375  2.826  4.147  

Mean 3.503  5.870  2.566  2.423  4.556   2.835  4.253  2.398  3.378  4.291  

Maximum 4.969  91.484  5.267  4.583  6.233   4.494  11.765  3.349  7.208  6.240  

Standard deviation 0.525  9.029  0.639  0.448  0.643   0.560  2.133  0.332  1.312  0.689  

Skewness 0.649  8.543  1.900  1.557  0.136   0.872  1.315  0.349  1.124  0.831  

Kurtosis 0.274  77.882  3.964  4.502  –0.150   0.700  0.902  0.199  0.082  0.229  

 CR   DT 

 RF SVM KELM Cubist SGB  RF SVM KELM Cubist SGB 

Minimum 1.899  1.778  1.670  1.774  2.959   1.739  1.770  1.517  1.602  2.744  

Median 2.907  4.018  2.427  2.697  4.489   2.706  3.568  2.286  2.391  3.987  

Mean 2.932  4.970  2.524  2.712  4.630   2.715  4.853  2.383  2.476  4.093  

Maximum 4.279  20.648  4.957  4.625  6.947   4.449  35.463  6.041  5.280  6.679  

Standard deviation 0.513  2.950  0.526  0.548  0.743   0.488  4.144  0.571  0.603  0.814  

Skewness 0.210  2.364  2.104  0.781  0.495   0.705  4.478  2.952  1.837  0.974  

Kurtosis –0.353  8.324  6.819  0.718  0.550    1.108  28.162  15.250  4.815  0.936  

 MSC  SNV 

 RF SVM KELM Cubist SGB  RF SVM KELM Cubist SGB 

Minimum 1.933  1.581  1.605  1.721  2.678   1.646  1.718  1.654  1.343  2.431  

Median 2.689  4.511  2.467  2.568  4.370   2.597  4.292  2.395  2.393  4.130  



Mean 2.824  5.307  2.734  2.957  4.787   2.619  4.758  2.443  2.474  4.214  

Maximum 4.988  39.615  16.330  9.465  13.303   4.680  14.806  4.064  4.596  6.299  

Standard deviation 0.607  4.172  1.547  1.141  1.659   0.493  2.471  0.484  0.536  0.718  

Skewness 1.151  5.639  6.922  2.716  2.248   1.261  1.284  1.157  1.748  0.643  

Kurtosis 1.473  43.079  56.931  10.903  7.071    3.081  2.462  1.556  3.938  0.702 

 

Table 4. Best– and worst–performing algorithms after 100 repetitions for original 

reflectance and five pre–processing techniques. Results presented are number of times 

per 100 repetitions. 

Original reflectance  FDR 

Algorithm 
Selected times 

Net score (best - worst) 
 

Algorithm 
Selected times 

Net score (best - worst) 
Best Worst  Best Worst 

RF 0 4 –4  RF 14 0 14 

SVM 3 49 –46  SVM 7 33 –26 

KELM 45 1 44  KELM 65 0 65 

Cubist 52 0 52  Cubist 14 17 –3 

SGB 0 46 –46  SGB 0 50 –50 

CR  DT 

Algorithm 
Selected times 

Net score (best - worst) 
 

Algorithm 
Selected times 

Net score (best - worst) 
Best Worst  Best Worst 

RF 7 1 6  RF 8 2 6 

SVM 8 42 –34  SVM 11 42 –31 

KELM 54 1 53  KELM 49 1 48 

Cubist 31 0 31  Cubist 32 2 30 

SGB 0 56 –56  SGB 0 53 –53 

MSC  SNV 

Algorithm 
Selected times 

Net score (best - worst) 
 

Algorithm 
Selected times 

Net score (best - worst) 
Best Worst  Best Worst 

RF 19 0 19  RF 17 0 17 

SVM 7 44 –37  SVM 8 52 –44 

KELM 45 5 40  KELM 41 2 39 

Cubist 29 2 27  Cubist 34 0 34 

SGB 0 49 –49  SGB 0 46 –46 

 

Table 5. Optimal combinations of pre–processing techniques and machine learning 

algorithms after 100 repetitions. 

Pre-processing Algorithm Times 

DT KELM 15 

SNV KELM 10 

DT Cubist 9 

FDR KELM 8 

SNV Cubist 8 

CR KELM 7 

MSC KELM 7 

Original reflectance KELM 7 

DT RF 4 

SNV RF 4 



DT SVM 3 

MSC Cubist 3 

Original reflectance Cubist 3 

CR Cubist 2 

FDR RF 2 

FDR SVM 2 

Original reflectance SVM 2 

SNV SVM 2 

FDR Cubist 1 

MSC RF 1 

 


