Heterologous expression of cryptic biosynthetic gene cluster from Streptomyces prunicolor yields novel bicyclic peptide prunipeptin

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2021-01-08
	キーワード (Ja):
	キーワード (En):
	作成者: Unno, Kohta, Kodani, Shinya
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/00027860

1	Title: Heterologous expression of cryptic biosynthetic gene cluster from Streptomyces
2	prunicolor yields novel bicyclic peptide prunipeptin
3	Running headline: novel bicyclic peptide prunipeptin
4	Authors: Kohta Unno ¹ and Shinya Kodani ^{1,2*}
5	Affiliations: Graduate School of Integrated Science and Technology, Shizuoka
6	University, Shizuoka, Japan ¹ ; College of Agriculture, Academic Institute, Shizuoka
7	University, Shizuoka, Japan ²
0	*To whom correspondence should be addressed. Shinya Kadani, College of
ð	To whom correspondence should be addressed. Shiniya Kodani, Conege of
9	Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka
10	422-8529 Japan, Tel/Fax; +81(54)238-5008, E-mail; kodani.shinya@shizuoka.ac.jp,
11	ORCID:0000-0002-6792-1184

13 Abstract

14	Recently, ω -ester-containing peptides (OEPs) were indicated to be a class of
15	ribosomally synthesized and post-translationally modified peptides. Based on genome
16	mining, new biosynthetic gene cluster of OEPs was found in the genome sequence of
17	actinobacterium Streptomyces prunicolor. The biosynthetic gene cluster contained just
18	two genes including precursor peptide (pruA) and ATP-grasp ligase (pruB) coding
19	genes. Heterologous co-expression of the two genes was accomplished using expression
20	vector pET-41a(+) in <i>Escherichia coli</i> . As a result, new OEP named prunipeptin was
21	produced in this system. By site-directed mutagenesis experiment, a variant peptide
22	prunipeptin 15HW was obtained. The bridging pattern of prunipeptin 15HW was
23	determined by combination of chemical cleavage and MS experiments. As a result,
24	prunipeptin 15HW possessed bicyclic structure with an ester bond and an isopeptide
25	bonds. The novel ATP-grasp ligase PruB was indicated to catalyze two different
26	intramolecular bonds (ester and isopeptide bonds).

- **Keywords:** heterologous expression; ATP-grasp ligase; biosynthesis; ω-ester-
- 29 containing peptide

1. Introduction

32	Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a
33	class of naturally occurring peptides that includes more than twenty subclasses such as
34	lantibiotics (Budisa, N., 2013; Letzel, A. C. et al., 2014; Link, A. J., 2015; Li, K. et al.,
35	2016; Sardar, D. and Schmidt, E. W., 2016; Zhang, Y. et al., 2018a; Zhong, Z. et al.,
36	2020). Recently, new class of RiPPs: ω-ester-containing peptides (OEPs) was advocated
37	(Lee, H. et al., 2020). The BGCs of OEPs commonly contains minimum set of two
38	essential genes including precursor and ATP-grasp ligase coding genes. Bioinformatic
39	analysis on bacterial genomes disclosed a total of ~1500 candidate OEPs in 12 groups
40	(Lee, H. et al., 2020). Peptide named plesiocin was accomplished by in vitro synthesis
41	and heterologous expression of biosynthetic genes (group 2) derived from marine
42	myxobacterium Plesiocystis pacifica (Lee, H. et al., 2017; Lee, C. et al., 2020).
43	Interestingly, plesiocin contained four repeats of a distinct hairpin-like bicyclic structure
44	containing two ester bonds each and showed potent inhibitory activity against proteases.
45	Peptide named thuringinin (group 3) was produced using BGC derived from Bacillus
46	thuringiensis serovar huazhongensis in the same manner with plesiocin (Roh, H. et al.,
47	2019). Like plesiocin, thuringinin had three tandemly repeating hairpin-like structures
48	with two ester bonds each. However, the topology of ester bonds formation was

49	different from that of plesiocin. In addition, new OEPs (OEP4-1, OEP5-1, OEP6-1)
50	were produced using BGCs of group 4, 5, and 6, respectively (Lee, H. et al., 2020).
51	These OEPs mentioned above had diverse intramolecular bond formation patterns.
52	These data indicated that intramolecular bond forming patterns are mainly dependent on
53	the specificity of ATP-grasp enzyme of each group.
54	The BGCs of cyanobacterial peptides called microviridins (Ishitsuka, M. O. et al.,
55	1990; Okino, T. et al., 1995; Shin, H. J. et al., 1996; Murakami, M. et al., 1997; Fujii, K.
56	et al., 2000; Rohrlack, T. et al., 2003; Reshef, V. and Carmeli, S., 2006; Dehm, D. et al.,
57	2019) were classified into group 1 of OEPs (Lee, H. et al., 2020). The biosynthesis of
58	microviridins commonly contains two ATP-grasp ligases (MdnB and MdnC) to form
59	two ester and one isopeptide bonds in the molecule (Philmus, B. et al., 2008; Ziemert,
60	N. et al., 2008). The intramolecular macrocyclization mechanism of the core peptide in
61	microviridins is utilized with genetic engineering to generate new bioactive peptides
62	(Ziemert, N. et al., 2010; Weiz, A. R. et al., 2011; Gatte-Picchi, D. et al., 2014; Weiz,
63	A. R. et al., 2014; Reyna-Gonzalez, E. et al., 2016; Ahmed, M. N. et al., 2017; Zhang,
64	Y. et al., 2018b). There are many analogous BGCs of microviridin-type peptides found
65	in the genomes of cyanobacteria (Micallef, M. L. et al., 2015), although they are mostly
66	not explored. The distribution of BGCs of microviridin-type peptides was revealed in

67	the genome sequences of bacteria belonging to the phyla proteobacteria, bacteroidetes,
68	and cyanobacteria (Ahmed, M. N. et al., 2017). Recently, we succeeded in heterologous
69	production of new microviridin-type peptide named grimoviridin using BGC of marine
70	proteobacterium Grimontia marina (Unno, K. et al., 2020). Microviridin analogous
71	peptides, marinostatins, were isolated as serine protease inhibitors from a marine
72	bacterium Algicola sagamiensis (Imada, C. et al., 1986; Takano, R. et al., 1991).
73	Marinostatins have bicyclic structures with two intramolecular ester bonds.
74	Marinostatins lack of isopeptide bond, although the bridging pattern of two ester bonds
75	of marinostatins is similar to that of microviridins. The solution structure of
76	marinostatin was determined by NMR spectroscopy, and its mechanism of inhibition
77	was proposed based on its 3D structure (Kanaori, K. et al., 2005; Taichi, M. et al.,
78	2010). The biosynthetic gene cluster (BGC) of marinostatin was cloned in <i>Escherichia</i>
79	coli (Miyamoto, K. et al., 1998). Recently, new marinostatin analogue named
80	marinostatin E was produced by heterologous expression of the BGC in E. coli (Unno,
81	K. et al., 2021).
82	Based on these back grounds, we accomplished heterologous production of new
83	bicyclic peptide named prunipeptin and the variants using BGC of actinobacterium

Streptomyces prunicolor. Here we describe production, isolation and structure

85 determination of prunipeptin and variants.

87 **2. Materials and Methods**

88 2.1. Construction of the expression vector pET-41a-13075

89	The gene cluster of prunipeptin (1190 bp, pruA and pruB), optimized for Escherichia
90	coli codon usage using algorism provided by Eurofins Genomics K.K. (Tokyo, Japan),
91	was chemically synthesized and inserted into the cloning vector pEX-K4J2 by Eurofins
92	Genomics K.K. (Tokyo, Japan) to provide pEX-K4J2-13075. The pEX-K4J2-13075
93	vector and the pET-41a(+) vector were double-digested with XbaI and HindIII-HF
94	(New England Biolabs, Ipswich, MA, USA), according to the manufacturer's
95	instructions. The two DNA products: DNA fragment (pruA and pruB) and digested
96	pET-41a(+) were ligated using Ligation-Convenience Kit (Nippon gene Co., Ltd.,
97	Tokyo, Japan) to afford the vector pET-41a-13075. <i>E. coli</i> DH5α cells were transformed
98	with 10 μ L of the ligation mixture by chemical competence transformation, and the cells
99	were plated on LB agar plates containing kanamycin (final concentration of 30 μ g/mL).
100	The vector pET-41a-13075 was purified using FastGene Plasmid Mini Kit (Nippon
101	Genetics Co., Ltd.). Finally, the vector pET-41a-13075 was transformed into the
102	expression host E. coli BL21(DE3) by chemical competence method, for the
103	heterologous expression of prunipeptin.

104 2.2. Site directed mutagenesis on pruA gene

105	All site directed mutagenesis was performed by the overlap extension PCR reactions
106	(Bryksin, A. V. and Matsumura, I., 2010). The DNA fragment containing mutation was
107	obtained by PCR method using pET-41a-13075 as template DNA and primer sets
108	possessing mutation (Table S1). In a PCR tube, 4.0 μL of dH2O, 5.0 μL of 2X KAPA
109	HiFi HotStart ReadyMix (Nippon Genetics Co., Ltd.), 0.3 μ L of primer-F and primer-R
110	(10 μM), 0.4 μL of the vector pET-41a-13075 (150 pg/ μL) were combined. DNA
111	amplification was performed according to the manufacturer's instructions. E. coli DH5a
112	cells were transformed with 10 μL of the PCR mixture by chemical competence
113	transformation, and the cells were plated on LB agar plates containing kanamycin (final
114	concentration of 30 μ g/mL). The vectors with mutation were purified using FastGene
115	Plasmid Mini Kit (Nippon Genetics Co., Ltd.). Sequencing was carried out by Fasmac
116	Co., Ltd. (Kanagawa, Japan).
117	2.3. Heterologous expression of prunipeptin and prunipeptin variants
118	The bacterium <i>E. coli</i> BL21(DE3) harboring the pET-41a-13075 vector or the pET-
119	41a-13075 vector with mutation was cultured using two plates of modified basal agar
120	medium containing kanamycin (30 μ g/mL, final concentration) and isopropyl- β -D-
121	thiogalactopyranoside (0.1 mM, final concentration) at 30 °C for 24 h. The modified
122	basal agar medium was prepared by adding the inorganic compounds (K ₂ SO ₄ , 2 g;

123 K₂HPO₄, 3 g; NaCl, 1 g; NH₄Cl, 5 g; MgSO₄·7H₂O, 80 mg; CuCl₂, 0.5 mg;

124	MnSO ₄ ·H ₂ O,	0.35 mg;	FeCl ₃ , 0.5 mg	; $CaCl_2 \cdot 2H_2O$, O	0.5 mg) an	d 15 g agar in 1 L of
-----	--------------------------------------	----------	----------------------------	------------------------------	------------	-----------------------

- distilled water with adjusting pH 7.3. After autoclaving, the medium was supplemented
- 126 with separately sterilized glucose and yeast extract solutions at final concentrations of
- 127 0.25% and 0.4%, respectively. The bacterial cells were harvested with a laboratory
- spatula and extracted by two times volume of MeOH. After centrifugation, the MeOH
- extract was subjected to preparative HPLC using Wakopak Handy ODS column (4.6 \times
- 130 250 mm, Fujifilm Wako Pure Chemical Co. Osaka, Japan) with gradient mode using
- 131 two solvents (solvent A: H₂O containing 0.05% TFA and solvent B: MeCN containing
- 132 0.05% TFA). The gradient was performed by increasing percentage of solvent B from
- 133 14% to 24% during 20 min. UV detector was set at 220 nm.
- 134 2.4. Isolation of a variant peptide prunipeptin 15HW
- 135 The bacterium *E. coli* BL21(DE3) harboring the expression vector with the mutation
- 136 (His to Trp in *pruA*) was cultured using 1 L of modified basal agar medium containing
- 137 kanamycin (30 μg/mL, final concentration) and isopropyl-β-D-thiogalactopyranoside
- 138 (0.1 mM, final concentration) at 30 °C for 24 h. The bacterial cells were harvested with
- a laboratory spatula and extracted by two times volume of MeOH. After centrifugation,
- 140 the MeOH extract was subjected to preparative HPLC using Wakopak Handy ODS

141	column (4.6 \times 250 mm, Fujifilm Wako Pure Chemical Co.) with isocratic mode (flow
142	rate: 1 mL/min, solvent: 17% MeCN containing 0.05% TFA). HPLC purification was
143	performed repeatedly with the UV detector set at 220 nm to obtain prunipeptin
144	(retention time: 14.0 min). The yield was 2.0 mg from 1 L culture.
145	2.5. Alkaline hydrolysis of prunipeptin 15HW
146	Prunipeptin 15HW (0.5 mg) was dissolved in 0.1 N NaOH solution (0.8 mL). The
147	solution was incubated for 30 min at room temperature, followed by neutralization with
148	addition of 1 N HCl solution (80 μ L). The mixture was subjected to HPLC analysis to
149	obtain ester opened prunipeptin 15HW. HPLC purification was performed using
150	Wakopak Handy ODS column (4.6 \times 250 mm, Fujifilm Wako Pure Chemical Co.) with
151	gradient mode using two solvents (solvent A: H ₂ O containing 0.05% TFA and solvent
152	B: MeCN containing 0.05% TFA). The gradient was performed by increasing
153	percentage of solvent B from 18% to 23% during 20 min. UV detector was set at
154	220 nm.
155	2.6. Treatment of prunipeptin 15HW with BNPS-skatole

- 156 Prunipeptin 15HW (0.3 mg) was dissolved in 90% acetic acid (0.5 mL). BNPS-
- skatole (1.0 mg) was added followed by incubation at 90 °C for 1 h. The solution was
- 158 evaporated using rotary evaporator. After complete removal of solvent by freeze dryer,

159	CHCl ₃ and H ₂ O was added to the reaction mixture to perform two-layer partition. After
160	centrifugation (10000 rpm, for 1 min), H ₂ O layer was separated and subjected to HPLC
161	purification. HPLC purification was performed using Wakopak Handy ODS column
162	$(4.6 \times 250 \text{ mm}, \text{Fujifilm Wako Pure Chemical Co.})$ with gradient mode using two
163	solvents (solvent A: H ₂ O containing 0.05% TFA and solvent B: MeCN containing
164	0.05% TFA). The gradient was performed by increasing percentage of solvent B from
165	10% to 30% during 20 min. UV detector was set at 220 nm.
166	2.7. Mass spectrometry experiments
167	Accurate MS and in-source collision-induced dissociation (CID) experiments were
168	performed using LC-TOF-MS (JMS-T100LC, JEOL). The peptides were dissolved in
169	aqueous MeCN solution (10-20%). The measurements were performed following the
170	manufacturer's instructions.
171	2.8. Protease inhibitory assay
172	Protease inhibitory assays (trypsin, chymotrypsin, and elastase) were performed
173	following to the previous report (Unno, K. et al., 2020).
174	

3. Results

3.1. Analysis of the BGCs of OEP in group 11

177	In the group 11 of OEPs, 534 BGCs were indicated to be distributed over
178	actinobacteria, mainly in streptomycetes (Lee, H. et al., 2020). The BGCs of the group
179	11 commonly contain of two genes including a precursor coding gene and ATP-grasp
180	ligase coding gene. The alignment of amino acid sequences of precursor coding genes
181	of streptomycetes was shown in Fig. 1. Normally, a precursor peptide has leader peptide
182	region to N-terminus and core peptide region at C-terminus. The leader peptide region is
183	required for recognition of modification enzyme. After modification on core peptide
184	region, the leader peptide region is cleaved off. The peptides seemed to have several
185	conserved motifs (QPFALNYARPA, LNYAR, PYXYD, QLNVXAA) in leader peptide
186	region of N-terminus. In precursor encoding gene, the core peptide region commonly
187	had the consensus RE(L/V)GTTTSTAGSKTHFDD at C-terminus. To obtain new OEP
188	biosynthesized by this class of BGC, the BGC of Streptomyces prunicolor was chosen
189	to be a target for cloning and co-expression in Escherichia coli.
190	3.2. Production of prunipeptin by heterologous expression
191	The BGC of S. prunicolor included a precursor encoding gene pruA (accession
192	number: WP_019056920.1) and ATP-grasp ligase encoding gene <i>pruB</i> (accession

193	number: WP_019056921.1). The DNA sequence of each gene was optimized for
194	expression according to codon usage of <i>E. coli</i> , and DNA sequence was chemically
195	synthesized (Fig. S1). The DNA sequence (1190 bp) including <i>pruA</i> and <i>pruB</i> was
196	integrated into expression vector pET-41a(+) to give pET-41a-13075 (Fig. S2). The
197	vector pET-41a-13075 was cloned in <i>E. coli</i> DH5a. The vector pET-41a-13075 was
198	transformed into E. coli BL21(DE3). The bacterium E. coli BL21(DE3) possessing the
199	vector pET-41a-13075 was cultured on modified basal agar medium containing
200	kanamycin and isopropyl- β -D-thiogalactopyranoside (IPTG) at 30 °C for 24 h. The cells
201	were harvested with a laboratory spatula and extracted with double volume of MeOH
202	and the MeOH extract was analyzed by HPLC and ESI-MS. The transformant was
203	indicated to produce several analogous peptides (Fig. S3 and S4). Among them, we
204	isolated the highest yielding peptide named prunipeptin. The accurate ESI-MS analysis
205	of prunipeptin showed ion peak at $[M + 2H]^{2+} m/z$ 866.3945 (the calculated m/z value
206	was 866.3947), which indicated the molecular formula of $C_{73}H_{110}N_{20}O_{29}$ (Fig. S5). In-
207	source CID analysis on prunipeptin (Table S2 and Fig. S6) indicated amino acid
208	sequence of ELGTTT at <i>N</i> -terminus (Fig. 2A) by <i>y</i> series ions ($y11-y16$). We proposed
209	that prunipeptin had the amino acid sequence of ELGTTTSTAGSKTHFDD with
210	removal of two unit of H ₂ O, considering the molecular formula. Since prunipeptin had

211	two units of Asp at C-terminus, the two units of Asp were expected to form ester or
212	isopeptide bonds with Ser, Thr, or Lys. We speculated that the cyclic structure was the
213	reason why fragmentation was not observed in the sequence of STAGSKTHFDD by in-
214	source CID analysis.
215	3.3. Production of prunipeptin variants by site directed mutagenesis experiments
216	To determine amino acid residue involved in ester or isopeptide bond formation in
217	prunipeptin, site directed mutagenesis experiment (Bryksin, A. V. and Matsumura, I.,
218	2010) to the vector pET-41a-13075 was performed to substitute 7 th Ser, 8 th Thr, 11 th
219	Ser , 12 th Lys, 13 th Thr with Ala in prunipeptin, respectively (Fig. 3). In the case of
220	substitution of 8 th Thr, 11 th Ser, and 13 th Thr, the Ala-substituted prunipeptin was
221	detected by HPLC and ESI-MS (Fig. S7 and S8) in the extract of transformant
222	harboring the vector with mutation (Fig. 3). In the case of one amino acid substitution of
223	7 th Ser, 12 th Lys, 16 th Asp, and 17 th Asp, the expected peptide was not detected by
224	HPLC (Fig. S7) in the extracts of transformants (Fig. 3). With the site directed
225	mutagenesis experiments, one of intramolecular bonds was designed not to be formed.
226	We speculated that the site directed mutagenesis experiments (7 th Ser, 12 th Lys, 16 th
227	Asp, and 17 th Asp) leaded to production of incompletely modified peptide or non-
228	modified peptide degradable by endogenous proteases of Escherichia coli. Thus, the

amino acid residue of 7th Ser and 12th Lys were proposed to form ester or isopeptide
bond with 16th or 17th Asp, although bridging pattern was not clear.

3.4.Structure determination of prunipeptin 15HW

232	Analysis of amino acid sequence of ring structure in peptide is difficult, because it
233	normally does not give fragmentation by MS/MS experiment. And ring structure of
234	peptide often gives resistance against proteases. Normally, reagents for chemical
235	cleavage such as BNPS-skatole are used to open the ring structure. For structure
236	determination of cyclic peptides such as actinokineosin (Takasaka, N. et al., 2017) and
237	achromosin (Kaweewan, I. et al., 2017), reaction using BNPS-skatole was indicated to
238	be efficient to open the ring structures by cleaving peptide bond at C-terminus of Trp.
239	To introduce Trp into the ring structure, substitution of His to Trp was performed by
240	site directed mutagenesis experiment of the plasmid pET-41a-13075 (Fig. 3). The
241	transformant harboring the vector with mutation for substitution (His to Trp) produced
242	the expected peptides (Fig. S9) including one amino acid substituted prunipeptin
243	variants named prunipeptin HW (amino acid sequence: ELGTTTSTAGSKTWFDD)
244	and its truncated peptide named prunipeptin 15HW (amino acid sequence:
245	GTTTSTAGSKTWFDD). The molecular formula of peptides was confirmed by
246	accurate ESI-MS, which indicated both peptides had two units of H2O removal from

247	expected molecular formula of the linear peptides as same as prunipeptin (Fig. S10).
248	Unexpectedly, the transformant harboring vector with mutation for substitution (His to
249	Trp) produced prunipeptin 15HW with the yield of about 5 times larger amount
250	compared to that of prunipeptin (Fig. S11). For structure determination, prunipeptin
251	15HW (2.0 mg) was isolated from 1 L culture of the transformant (Fig. S12). NMR
252	analysis was performed using DMSO- d_6 as solvent, however it was difficult to analyze
253	due to broadness of NMR spectrum. The in-source CID Analysis on prunipeptin 15HW
254	(Table S3 and Fig. S13) indicated the sequence of GTTT for N-terminus (Fig. 2B). The
255	cyclic part of prunipeptin 15HW did not give fragmentation as same as prunipeptin. To
256	determine isopeptide bond pattern, alkaline hydrolysis was performed on prunipeptin
257	15HW. As a result, ester cleaved prunipeptin 15HW was obtained by HPLC (Fig. 2C
258	and S14A). To determine bridging pattern, In-source CID Analysis on ester cleaved
259	prunipeptin 15HW was performed (Table S4 and Fig. S15). As a result, ion series
260	$y_{6}+H_{2}O-y_{14}$ was detected, which indicated the amino acid sequence of GTTTSTAGS
261	at N-terminus (Fig. 2C). In addition, an ion $b14$ was detected, that indicated the
262	isopeptide bond between 10 th Lys and 14 th Asp. To determine the amino acid sequence
263	in the ring (KTWFD), treatment of BNPS-skatole was performed (Fontana, A., 1972;
264	Crimmins, D. L. et al., 2005). As a result, Trp C-terminus cleaved prunipeptin 15HW

265	was obtained (Fig. 2D and S14B). By the reaction of BNPS-skatole the Trp residue in a
266	peptide is oxidized and transforms to 3-oxiindole with spirolactone (Fontana, A., 1972).
267	By the in-source CID Analysis, ions of <i>y</i> 8– <i>y</i> 11, <i>b</i> 10, <i>b</i> 11, and <i>y</i> '5 were detected (Table
268	S5 and Fig. S16), which confirmed the structure of Trp C-terminus cleaved prunipeptin
269	15HW (Fig. 2D). The bridging pattern of prunipeptin 15HW was determined to have
270	ester bond (5 th Ser and 15 th Asp) and isopeptide bond (10 th Lys and 14 th Asp), as shown
271	in Fig. 2B. The bridging pattern of prunipeptin was also proposed to be as shown in
272	Fig. 2A.
273	3.5. Protease inhibitory assay of prunipeptin 15HW
274	As other cyclic peptides microviridins (Ishitsuka, M. O. et al., 1990; Okino, T. et al.,
275	1995; Shin, H. J. et al., 1996; Murakami, M. et al., 1997; Fujii, K. et al., 2000;
276	Rohrlack, T. et al., 2003; Reshef, V. and Carmeli, S., 2006; Dehm, D. et al., 2019) were
277	reported to possess inhibitory activity against proteases, we accomplished protease
278	inhibitory assay against trypsin, chymotrypsin, elastase using prunipeptin 15HW. As a
279	result, prunipeptin 15HW showed no inhibitory activity against all testing proteases at
280	the concentration of 65 μ M (Table S6).
281	

282 4. Discussion

In the biosynthesis of microviridin B, the two ATP-grasp ligases, MdnB and MdnC 283 forms two ester bonds and one isopeptide bond in the molecule (Ziemert, N. et al., 284 2008; Hemscheidt, T. K., 2012). The function of MdnC was determined to be the 285 formation of two ester bonds, and the other modification enzyme, MdnB, was shown to 286 function as a ligase for isopeptide bond (Li, K. et al., 2016). In the biosynthesis of 287 microviridin, two enzymes are individually responsible for formation of two different 288 bonds (ester and isopeptide bond). Interestingly, ATP-grasp ligase of the group 5 289 intramolecularly catalyzes two ester bonds and one isopeptide bond to give OEP5-1 290 (Lee, H. et al., 2020). In the present study, we indicated that ATP-grasp ligase PruB also 291 had bifunctional function to form one ester and one isopeptide bonds in the molecule. 292 The bridge formation patterns of OEP5-1 and prunipeptin showed low similarity. The 293 amino acid sequences of PruB and ATP-grasp ligase for OEP5-1 (accession number: 294 GAJ78971.1) were compared by Blastp search. As a result, the amino acid sequences of 295 two proteins showed low similarity (25 % similarity) and no conserved region was 296 found on alignment (Table S7). 297 298 The reaction mechanism of ATP-grasp ligase MdnC was studied based on the structure obtained by X-lay crystallography (Li, K. et al., 2016). The X-lay 299

300	crystallography analysis of MdnC indicated that leader sequence was recognized by
301	pocket between a helix α 7 and a hairpin β 9 β 10. The core peptide region is recruited into
302	the active pocket close to ATP-binding site. In the core peptide, phosphorylation of side
303	chain carboxyl residue of Asp/Glu is occurred by phosphate transfer from ATP. The
304	hydroxyl group of Thr or Ser attacks the mixed carboxylate-phosphate anhydride to
305	generate the ester bond. The same mechanism was proposed in the case of other OEPs
306	(Lee, H. et al., 2020). ATP-grasp ligases in the groups 3, 4, and 6 catalyzes formation of
307	esters to give the peptides, thuringinin, OEP4-1, and OEP6-1 from precursor peptides.
308	Interestingly, ATP-grasp ligases in groups 3, 4, and 6 exerted ability of forming an
309	intramolecular isopeptide bond when the core peptide sequence in the precursor was
310	swapped to that of other groups (Lee, H. et al., 2020). However, the mature peptides
311	derived from the swapped core peptides possessed the noncanonical bridging pattern of
312	isopeptide bond formation. The diverse topologies of intramolecular bridges of groups
313	of OEPs were summarized in Fig. 4A. In the present study, prunipeptin (OEP in group
314	11) had novel bridging pattern with ester and isopeptide bonds, which indicated that
315	ATP-grasp ligase PruB possessed novel reaction specificity of ligation on the substrate.
316	We proposed that PruB also function in the same manner with other ATP-grasp ligases.
317	The phosphorylation of side chain carboxyl residue of two Asp residues in the precursor

318	peptide were occurred by phosphate transfer from ATP (Fig. 4B). The hydroxyl group
319	of Ser and amino residue of side chain of Lys function as nucleophile to the mixed
320	carboxylate-phosphate anhydride, resulting in formation of the ester and isopeptide
321	bonds, respectively (Fig. 4B). The ring topology of OEPs was indicated to be governed
322	by both the core sequence and the ATP-grasp enzyme (Lee, H. et al., 2020). The
323	mechanism of ATP-grasp ligase to exert this specificity on the topology is not clarified
324	so far.
325	In conclusion, we produced new bicyclic peptide named prunipeptin and variant
326	peptides. The peptide prunipeptin contained one ester and isopeptide bond in the
327	molecule. The bridging pattern of ester and isopeptide bonds is novel, which indicated
328	that ATP-grasp ligase PruB possessed unique specificity on formation of each bond. To
329	clarify the mechanism of formation of two different bonds by one enzyme, X-lay
330	crystallography experiment of the enzyme is needed.
331	
332	Author contribution statement
333	KU carried out the experiments and wrote the manuscript. SK designed the experiments
334	and wrote the manuscript. All the authors gave intellectual input and critically revised

the manuscript. 335

337 Acknowledgements

- 338 This study was supported by the Japan Society for the Promotion of Science by Grants-
- in-aids (grant number 20K05848) and Takahashi Industrial and Economic Research
- 340 Foundation.
- 341

342 **Conflict of interest**

343 The authors declare that they have no conflict of interest.

345 **References**

- Ahmed, M. N., Reyna-Gonzalez, E., Schmid, B., Wiebach, V., Sussmuth, R. D.,
- 347 Dittmann, E., Fewer, D. P., 2017. Phylogenomic analysis of the microviridin
- 348 biosynthetic pathway coupled with targeted chemo-enzymatic synthesis yields potent
- protease inhibitors. ACS Chem. Biol. 12, 1538–1546.
- 350 https://doi.org/10.1021/acschembio.7b00124
- 351 Bryksin, A. V.Matsumura, I., 2010. Overlap extension PCR cloning: a simple and
- reliable way to create recombinant plasmids. Biotechniques 48, 463–465.
- 353 <u>https://doi.org/10.2144/000113418</u>
- Budisa, N., 2013. Expanded genetic code for the engineering of ribosomally synthetized
- and post-translationally modified peptide natural products (RiPPs). Curr. Opin.
- 356 Biotechnol. 24, 591–598. <u>https://doi.org/10.1016/j.copbio.2013.02.026</u>
- 357 Crimmins, D. L., Mische, S. M., Denslow, N. D., 2005. Chemical cleavage of proteins
- in solution. Curr. Protoc. Protein Sci. Chapter 11, Unit 11.4.
- 359 https://doi.org/10.1002/0471140864.ps1104s40
- 360 Dehm, D., Krumbholz, J., Baunach, M., Wiebach, V., Hinrichs, K., Guljamow, A.,
- 361 Tabuchi, T., Jenke-Kodama, H., Sussmuth, R. D., Dittmann, E., 2019. Unlocking the
- 362 spatial control of secondary metabolism uncovers hidden natural product diversity in

- 363 Nostoc punctiforme. ACS Chem. Biol. 14, 1271–1279.
- 364 <u>https://doi.org/10.1021/acschembio.9b00240</u>
- 365 Fontana, A., 1972. Modification of tryptophan with BNPS-skatole (2-(2-
- nitrophenylsulfenyl)-3-methyl-3-bromoindolenine). Methods Enzymol. 25, 419–423.
- 367 <u>https://doi.org/10.1016/S0076-6879(72)25037-6</u>
- ³⁶⁸ Fujii, K., Sivonen, K., Naganawa, E., Harada, K.-i., 2000. Non-toxic peptides from
- toxic cyanobacteria, *Oscillatoria agardhii*. Tetrahedron 56, 725–733.
- 370 <u>https://doi.org/10.1016/S0040-4020(99)01017-0</u>
- 371 Gatte-Picchi, D., Weiz, A., Ishida, K., Hertweck, C., Dittmann, E., 2014. Functional
- analysis of environmental DNA-derived microviridins provides new insights into the
- diversity of the tricyclic peptide family. Appl. Environ. Microbiol. 80, 1380–7.
- 374 <u>https://doi.org/10.1128/AEM.03502-13</u>
- Hemscheidt, T. K., 2012. Microviridin biosynthesis. Methods Enzymol. 516, 25-35.
- 376 https://doi.org/10.1016/B978-0-12-394291-3.00023-X
- 377 Imada, C., Hara, S., Maeda, M., Simidu, U., 1986. Amino acid sequences of
- marinostatins C-1 and C-2 from marine *Alteromonas* sp. Bull. Japan. Soc. Sci. Fish. 52,
- 379 1455–1459. <u>https://doi.org/10.2331/suisan.52.1455</u>
- Ishitsuka, M. O., Kusumi, T., Kakisawa, H., Kaya, K., Watanabe, M. M., 1990.

- 381 Microviridin. A novel tricyclic depsipeptide from the toxic cyanobacterium *Microcystis*
- 382 *viridis*. J. Am. Chem. Soc. 112, 8180–8182. <u>https://doi.org/10.1021/ja00178a060</u>
- 383 Kanaori, K., Kamei, K., Taniguchi, M., Koyama, T., Yasui, T., Takano, R., Imada, C.,
- Tajima, K., Hara, S., 2005. Solution structure of marinostatin, a natural ester-linked
- protein protease inhibitor. Biochemistry 44, 2462–2468.
- 386 <u>https://doi.org/10.1021/bi048034x</u>
- 387 Kaweewan, I., Ohnishi-Kameyama, M., Kodani, S., 2017. Isolation of a new
- antibacterial peptide achromosin from *Streptomyces achromogenes* subsp.
- *achromogenes* based on genome mining. J. Antibiot. (Tokyo) 70, 208–211.
- 390 <u>https://doi.org/10.1038/ja.2016.108</u>
- Lee, C., Lee, H., Park, J. U., Kim, S., 2020. Introduction of bifunctionality into the
- 392 multidomain architecture of the omega-ester-containing peptide plesiocin. Biochemistry
- 393 59, 285-289. <u>https://doi.org/10.1021/acs.biochem.9b00803</u>
- Lee, H., Park, Y., Kim, S., 2017. Enzymatic cross-linking of side chains generates a
- modified peptide with four hairpin-like bicyclic repeats. Biochemistry 56, 4927-4930.
- 396 <u>https://doi.org/10.1021/acs.biochem.7b00808</u>
- 397 Lee, H., Choi, M., Park, J. U., Roh, H., Kim, S., 2020. Genome mining reveals high
- topological diversity of omega-ester-containing peptides and divergent evolution of

- ATP-grasp macrocyclases. J. Am. Chem. Soc. 142, 3013–3023.
- 400 <u>https://doi.org/10.1021/jacs.9b12076</u>
- 401 Letzel, A. C., Pidot, S. J., Hertweck, C., 2014. Genome mining for ribosomally
- 402 synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria.
- 403 BMC Genomics 15, 983. <u>https://doi.org/10.1186/1471-2164-15-983</u>
- Li, K., Condurso, H. L., Li, G., Ding, Y., Bruner, S. D., 2016. Structural basis for
- 405 precursor protein-directed ribosomal peptide macrocyclization. Nat. Chem. Biol. 12,
- 406 973–979. <u>https://doi.org/10.1038/nchembio.2200</u>
- Link, A. J., 2015. Biosynthesis: Leading the way to RiPPs. Nat. Chem. Biol. 11, 551–2.
- 408 https://doi.org/10.1038/nchembio.1862
- 409 Micallef, M. L., D'Agostino, P. M., Sharma, D., Viswanathan, R., Moffitt, M. C., 2015.
- 410 Genome mining for natural product biosynthetic gene clusters in the Subsection V
- 411 cyanobacteria. BMC Genomics 16, 669. <u>https://doi.org/10.1186/s12864-015-1855-z</u>
- 412 Miyamoto, K., Tsujibo, H., Hikita, Y., Tanaka, K., Miyamoto, S., Hishimoto, M.,
- 413 Imada, C., Kamei, K., Hara, S., Inamori, Y., 1998. Cloning and nucleotide sequence of
- the gene encoding a serine proteinase inhibitor named marinostatin from a marine
- 415 bacterium, Alteromonas sp. strain B-10-31. Biosci. Biotechnol. Biochem. 62, 2446–
- 416 2449. <u>https://doi.org/10.1271/bbb.62.2446</u>

417	Murakami, M., Sun, Q., Ishida, K., Matsuda, H., Okino, T., Yamaguchi, K., 1997.
418	Microviridins, elastase inhibitors from the cyanobacterium Nostoc minutum (NIES-26).
419	Phytochemistry 45, 1197–1202. <u>https://doi.org/10.1016/S0031-9422(97)00131-3</u>
420	Okino, T., Matsuda, H., Murakami, M., Yamaguchi, K., 1995. New microviridins,
421	elastase inhibitors from the blue-green alga Microcystis aeruginosa. Tetrahedron 51,
422	10679-10686. https://doi.org/10.1016/0040-4020(95)00645-O
423	Philmus, B., Christiansen, G., Yoshida, W. Y., Hemscheidt, T. K., 2008. Post-
424	translational modification in microviridin biosynthesis. Chembiochem 9, 3066–3073.
425	https://doi.org/10.1002/cbic.200800560
426	Reshef, V.Carmeli, S., 2006. New microviridins from a water bloom of the
427	cyanobacterium Microcystis aeruginosa. Tetrahedron 62, 7361-7369.
428	https://doi.org/10.1016/j.tet.2006.05.028
429	Reyna-Gonzalez, E., Schmid, B., Petras, D., Sussmuth, R. D., Dittmann, E., 2016.

. .

тт

01.

1 · TZ

т7

-. . .

- Leader peptide-free in vitro reconstitution of microviridin biosynthesis enables design 430
- of synthetic protease-targeted libraries. Angew. Chem. Int. Ed. Engl. 55, 9398-9401. 431
- https://doi.org/10.1002/anie.201604345 432

. .

- Roh, H., Han, Y., Lee, H., Kim, S., 2019. A topologically distinct modified peptide with 433
- multiple bicyclic core motifs expands the diversity of microviridin-like peptides. 434

- 435 Chembiochem 20, 1051–1059. <u>https://doi.org/10.1002/cbic.201800678</u>
- 436 Rohrlack, T., Christoffersen, K., Hansen, P. E., Zhang, W., Czarnecki, O., Henning, M.,
- 437 Fastner, J., Erhard, M., Neilan, B. A., Kaebernick, M., 2003. Isolation, characterization,
- 438 and quantitative analysis of microviridin J, a new *Microcystis* metabolite toxic to
- 439 Daphnia. J. Chem. Ecol. 29, 1757–1770. <u>https://doi.org/10.1023/a:1024889925732</u>
- 440 Sardar, D.Schmidt, E. W., 2016. Combinatorial biosynthesis of RiPPs: docking with
- 441 marine life. Curr. Opin. Chem. Biol. 31, 15–21.
- 442 <u>https://doi.org/10.1016/j.cbpa.2015.11.016</u>
- 443 Shin, H. J., Murakami, M., Matsuda, H., Yamaguchi, K., 1996. Microviridins D-F,
- serine protease inhibitors from the cyanobacterium Oscillatoria agardhii (NIES-204).
- 445 Tetrahedron 52, 8159–8168. https://doi.org/10.1016/0040-4020(96)00377-8
- 446 Taichi, M., Yamazaki, T., Kawahara, K., Motooka, D., Nakamura, S., Harada, S.,
- 447 Teshima, T., Ohkubo, T., Kobayashi, Y., Nishiuchi, Y., 2010. Structure-activity
- relationship of marinostatin, a serine protease inhibitor isolated from a marine organism.
- 449 J. Pept. Sci. 16, 329–336. <u>https://doi.org/10.1002/psc.1244</u>
- 450 Takano, R., Imada, C., Kamei, K., Hara, S., 1991. The reactive site of marinostatin, a
- 451 proteinase inhibitor from marine *Alteromonas* sp. B-10-31. J. Biochem. 110, 856–858.
- 452 https://doi.org/10.1093/oxfordjournals.jbchem.a123678

- 453 Takasaka, N., Kaweewan, I., Ohnishi-Kameyama, M., Kodani, S., 2017. Isolation of a
- 454 new antibacterial peptide actinokineosin from Actinokineospora spheciospongiae based
- 455 on genome mining. Lett. Appl. Microbiol. 64, 150–157.
- 456 <u>https://doi.org/10.1111/lam.12693</u>
- 457 Unno, K., Nakagawa, H., Kodani, S., 2021. Heterologous production of new protease
- 458 inhibitory peptide marinostatin E. Biosci. Biotech. Biochem., in print.
- 459 Unno, K., Kaweewan, I., Nakagawa, H., Kodani, S., 2020. Heterologous expression of a
- 460 cryptic gene cluster from Grimontia marina affords a novel tricyclic peptide
- 461 grimoviridin. Appl. Microbiol. Biotechnol. 104, 5293–5302.
- 462 <u>https://doi.org/10.1007/s00253-020-10605-z</u>
- 463 Weiz, A. R., Ishida, K., Makower, K., Ziemert, N., Hertweck, C., Dittmann, E., 2011.
- Leader peptide and a membrane protein scaffold guide the biosynthesis of the tricyclic
- 465 peptide microviridin. Chem Biol 18, 1413-21.
- 466 <u>https://doi.org/10.1016/j.chembiol.2011.09.011</u>
- 467 Weiz, A. R., Ishida, K., Quitterer, F., Meyer, S., Kehr, J. C., Muller, K. M., Groll, M.,
- 468 Hertweck, C., Dittmann, E., 2014. Harnessing the evolvability of tricyclic microviridins
- to dissect protease-inhibitor interactions. Angew. Chem. Int. Ed. Engl. 53, 3735–3738.
- 470 https://doi.org/10.1002/anie.201309721

471	Zhang, `	Y.,	Chen,	М.,	Bruner,	S.	D.,	Ding,	Υ.,	2018a.	Heterologous	production of	
-----	----------	-----	-------	-----	---------	----	-----	-------	-----	--------	--------------	---------------	--

- 472 microbial ribosomally synthesized and post-translationally modified peptides. Front.
- 473 Microbiol. 9, 1801. <u>https://doi.org/10.3389/fmicb.2018.01801</u>
- 474 Zhang, Y., Li, K., Yang, G., McBride, J. L., Bruner, S. D., Ding, Y., 2018b. A
- 475 distributive peptide cyclase processes multiple microviridin core peptides within a
- 476 single polypeptide substrate. Nat. Commun. 9, 1780. <u>https://doi.org/10.1038/s41467-</u>
- 477 <u>018-04154-3</u>
- Zhong, Z., He, B., Li, J., Li, Y. X., 2020. Challenges and advances in genome mining of
- ribosomally synthesized and post-translationally modified peptides (RiPPs). Synth.
- 480 Syst. Biotechnol. 5, 155–172. <u>https://doi.org/10.1016/j.synbio.2020.06.002</u>
- Ziemert, N., Ishida, K., Liaimer, A., Hertweck, C., Dittmann, E., 2008. Ribosomal
- 482 synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria. Angew. Chem. Int.
- 483 Ed. Engl. 47, 7756–7759. <u>https://doi.org/10.1002/anie.200802730</u>
- Ziemert, N., Ishida, K., Weiz, A., Hertweck, C., Dittmann, E., 2010. Exploiting the
- 485 natural diversity of microviridin gene clusters for discovery of novel tricyclic
- depsipeptides. Appl. Environ. Microbiol. 76, 3568–3574.
- 487 <u>https://doi.org/10.1128/AEM.02858-09</u>
- 488

489 **Figure legends**

- 490 Fig. 1. Alignment of amino acid sequences of precursor peptides in the group 11 of
- 491 OEPs, bold letters indicates conserved amino acids.
- 492 Fig. 2. In-source CID analysis on (A) prunipeptin, (B) prunipeptin 15HW, (C) ester
- 493 cleaved prunipeptin 15HW, (D) Trp C-terminus cleaved prunipeptin 15HW
- 494 Fig. 3. Amino acid substitution experiments in prunipeptin by site directed mutagenesis
- in the gene *pruA*, +: production of prunipeptin variant, -: no production
- 496 Fig. 4. (A) Bridging patterns of OEPs. Line indicates ester bond. Botted line indicates
- 497 isopeptide bond. (B) Proposed macrocyclization mechanism in prunipeptin
- 498 biosynthesis.
- 499
- 500

501

503 Figure 1

504	S.	prunicolor	MQPFALNYARPAAQLELSAPYTYDSGLQLNVLADGRVAAHDLALLRELGTTTSTAGSKTHFDD
	S.	mirabilis	MQPFALNYARPA AELEVTAPY VYD SGLQLNV LVDGRVAACD LALLRE LGTTTSTAGSKTHFDD
505	S.	antibioticus	MQPFALNYARPA AQSESTTPY VYD SGRQLNV LSDGRIAAHD LALLRE LGTTTSTAGSKTHFDD
303	S.	regalis	MQPFALNYARPA AELEVSTPY VYDSGLQLNV LSDGRIAA RDHALMRELGTTTSTAGSKTHFDD
	S.	cyaneus	MQPFALNYARPA AELEVSAPY VYDSGLQLNV LRDGRIAA RDHGLLRE LGTTTSTAGSKTHFDD CONSTRAINT ACLEVSAPY VYDSGLQLNV LRDGRIAA RDHGLLRE LGTTTSTAGSKTHFDD CONSTRAINT CONSTRAI
	S.	bicolor	MQPFALNYARPA AELEVSTPY VYDSGLQLNV LRDGRIAACD HALMRE LGTTTSTAGSKTHFDD
	S.	chartreusis	MQPFALNYARPA AELEVTTPY VYD SGMQLNV LRDGRIAA RDHALMRE LGTTTSTAGSKTHFDD
	s.	fulvoviolaceus	MQPFALNYARPA AELKATIPY AYDSGLQLNV LRDGRIAA RDHALLRE LGTTTSTAGSKTHFDD
	S.	griseorubiginosus	MQPFALNYARPA AVLEASTPY VYDSGRQLNV LMDGRVAA RDHALMRE LGTTTSTAGSKTHFDD
	S.	kebangsaanensis	MQPFALNYARPA VEREVTTPY VYDSGLQLNV TVDGRIAA SDHALLRELGTTTSTAGSKTHFDD
	S.	viridochromogenes	MQPFALNYARPAVELEAVIPYVYDAGLQLNVLLDGRVAACDFAVLREVGTTTSTAGSKTHFDD
	S.	prasinus	MQPFALNYARPARELTASTPYVYDSGLQLNVLVDGRVAACDHALLREVGTTTSTAGSKTHFDD

Fig. 1 Unno&Kodani

Fig. 2. Unno&Kodani

510 Figure 3

511		1		7			12					
512	Sequence	ΕLGΤ	ТΤ	S	ΤAG	S	Κ	Τ	Η	F	D	D
	Amino acid			\downarrow	\downarrow	\downarrow	↓	\downarrow	\downarrow		↓	↓
	substitution			A	A	A	A	A	W		A	A
	Production			_	+	+	-	+	+		-	-

Fig. 3. Kodani et al.

513 Figure 4

