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Highlights  32 

 33 

1. A protein with cryoprotective activity was purified from radish.  34 

2. The cryoprotective protein was identified as a vacuolar calcium-binding protein. 35 

3. The protein’s hydrophobic area was involved in its cryoprotective activity. 36 

 37 

Abstract  38 

A soluble protein fraction from radish (Raphanus sativus L.) taproot had cryoprotective 39 

activity for lactate dehydrogenase (LDH). The activity was found mainly in the heat-40 

stable fractions of soluble proteins. The cryoprotective protein, whose molecular mass 41 

was 43 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis, was obtained 42 

by successive chromatographies on TOYOPEARL SuperQ and TOYOPEARL DEAE. 43 

MALDI-TOF MS/MS analysis indicated that the purified protein was a radish vacuolar 44 

calcium-binding protein (RVCaB), which is reportedly related to calcium storage in the 45 

vacuoles of radish taproot. The purified RVCaB inhibited the cryoinactivation, 46 

cryodenaturation, and cryoaggregation of LDH. RVCaB had greater cryoprotective 47 

activity than general cryoprotectants. When RVCaB was divided into 15 segments (Seg01 48 
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to Seg15, 15 amino acids each), Seg03, which had a high hydrophobicity scale, showed 49 

remarkable cryoprotective activity. This indicated that RVCaB protected LDH from 50 

freezing and thawing damage presumably through a specific hydrophobic area (i.e., 51 

Seg03). 52 

 53 

Keywords Cryoprotection; Dehydrin; Intrinsically disordered proteins; Raphanus sativus 54 

L.; Vacuolar calcium-binding protein 55 

 56 

1. Introduction 57 

 58 

  The cold tolerance of plants is a crucial factor in determining plant production, 59 

vegetation formation, seed longevity, and so on [1, 2]. Knowledge of the molecular basis 60 

of cold tolerance has been applied to various technologies, such as postharvest storage 61 

and seed banks [3, 4]. The production of cryoprotectants, which can prevent damage to 62 

cells and biomolecules due to freezing, is involved in the cold responses of plants [5]. 63 

Compatible solutes such as betaine, proline, and sugars can act as cryoprotectants [6]. In 64 

addition, late embryogenesis abundant (LEA) proteins and cryoprotectins are known to 65 

be proteinous cryoprotectants [7, 8]. 66 

  LEA proteins were produced in the late stage of seed maturation and in growing plants 67 

exposed to various stresses, including cold [9-11]. Genetic analyses and transgenic studies 68 

demonstrated that the accumulation of LEA proteins was correlated with seed longevity 69 

and stress tolerance in plants [9-12]. Although LEA proteins have been known to prevent 70 

the freeze denaturation of cold-sensitive enzymes [13], there are few reports of plant 71 

proteins other than LEA proteins showing cryoprotective activities for such enzymes.  72 
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  Group 2 LEA proteins, also called dehydrins, are plant-specific and intrinsically 73 

disordered [9, 10]. Dehydrins are among the most-characterized LEA proteins. It has been 74 

repeatedly demonstrated that dehydrins are multifunctional: they protect freezing-75 

sensitive enzymes, and bind to various molecules (such as lipids, water, ions, and nucleic 76 

acids) [14-16]. Among these functions, cryoprotective activity is thought to be a major 77 

role of dehydrins, as many studies have previously reported the issue [e.g., 17-20]. 78 

Genetic and transgenic approaches have found that the expression of dehydrin genes 79 

reduced cold damage to plants [21-25]. The in vitro and in vivo evidence supported that 80 

dehydrins are related to establishing cold tolerance in plants. 81 

  Previously, we found that taproot of radish (Raphanus sativus L.) contained dehydrin, 82 

which was detected by an antibody against a KS-type dehydrin of Arabidopsis thaliana 83 

(AtHIRD11) [26]. The radish dehydrin existed mostly in the high-salt extract of cell 84 

debris that had been pelleted by centrifugation of radish taproot homogenates. After 85 

purification, the radish dehydrin designated as RsDHN (R. sativus dehydrin) showed 86 

cryoprotective activity for malate dehydrogenase [27]. Thereafter, it was revealed that the 87 

soluble fraction of the taproot homogenate had considerable cryoprotective activity, 88 

whereas the soluble fraction contained a small quantity of antigens for the anti-AtHIRD11 89 

antibody. This suggested that one or more cryoprotective proteins that are likely different 90 

from dehydrins might exist in the soluble fraction of the taproot homogenate.  91 

  In this paper, we report the purification of a cryoprotective protein from the soluble 92 

fraction of the taproot homogenate. The purified protein was identified as a radish 93 

vacuolar calcium-binding protein (RVCaB), which was proposed to be related to the 94 

sequestration of calcium in the vacuole. The protein was previously isolated from the 95 

vacuolar membranes of the radish taproot via ion exchange chromatography and gel 96 
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filtration chromatography [28]. Here, we proposed a simple purification protocol with a 97 

higher yield of RVCaB. In addition, we found that the cryoprotective site was located 98 

near the N-terminus of RVCaB. The putative mechanisms underlying the cryoprotective 99 

activity of RVCaB and its physiological roles in radish were discussed. 100 

  101 

2. Materials and methods 102 

 103 

2.1. Chemicals 104 

 105 

  Anion exchange resins, TOYOPEARL SuperQ-650M and TOYOPEARL DEAE-106 

650M, were purchased from Tosoh (Tokyo, Japan). Lactate dehydrogenase (LDH, rabbit 107 

muscle, recombinant) and nicotine adenine dinucleotide (NADH) were obtained from 108 

Oriental Yeast (Tokyo, Japan). 8-Anilino-1-naphthalene sulfonic acid (ANS) and 109 

dithiothreitol (DTT) were purchased from Sigma (Tokyo, Japan) and Wako (Osaka, 110 

Japan), respectively. 111 

 112 

2.2. Peptides 113 

 114 

  An automated solid phase peptide synthesizer (Tetras, Advanced ChemTech, Louisville, 115 

KY, USA) was used to prepare peptides (Seg01 to Seg15). The peptides were purified by 116 

an ultrafast liquid chromatograph (UFLC-20AB, Shimadzu, Kyoto, Japan) with a C18 117 

reversed-phase column (AltimaTM 4.6 x 250 mm). A linear gradient of acetonitrile (5-118 

95%) in 0.05% trifluoroacetic acid solution was performed for 25 min. The synthesized 119 

peptides were identified by mass spectrometry (LCMS-2020, Shimadzu) and lyophilized. 120 
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When the peptides were dissolved in solution for use, the peptide concentrations were 121 

determined from the dry weight. 122 

 123 

2.3. Purification of RVCaB 124 

 125 

  European red radish (R. sativus L.), obtained from a local food market in Shizuoka, 126 

Japan, was used for the purification of RVCaB. Radish taproot (26 g fresh weight) was 127 

ground by a food grater on ice. The squeezed juice, obtained by passing the ground root 128 

through double gauze, was centrifuged at 10,000 g for 10 min at 4 ℃. The supernatant 129 

was collected in a 50-ml centrifuge tube (TPP, Trasadingen, Switzerland) and then DTT 130 

was added to reach a concentration of 1 mM. This sample was considered the crude 131 

extract (20.5 mL). The crude extract was placed in an aluminum block heater (dry thermo 132 

unit DTU-1B, TAITEC, Saitama, Japan) which was controlled at 100 ℃ for 40 min. After 133 

cooling for 10 min on ice, the formed aggregates were precipitated by centrifugation (at 134 

10,000 g for 10 min at 4 ℃). The supernatant (20 mL, heat-stable fraction) was loaded 135 

onto the TOYOPEARL SuperQ-650M column (45 mm × 1.5 mm ID) at a flow rate of 1.2 136 

mL min-1. The column was washed with 10 mM Tris-HCl buffer (pH 7.5) containing 1 137 

mM DTT (running buffer). Bound proteins were eluted with a linear gradient of NaCl (0 138 

to 500 mM) in the running buffer by an Econo Gradient pump (Bio-Rad, Tokyo, Japan) 139 

at 1.5 mL min-1 for 25 min. The fraction size was approximately 3.3 mL. The 140 

cryoprotective fractions were combined (9.9 mL) and desalted by a gel filtration column 141 

(NAP-25, GE Healthcare, Tokyo, Japan) equilibrated with the running buffer. The sample 142 

was applied to the TOYOPEARL DEAE-650M column (40 mm × 1.5 mm ID) at a flow 143 

rate of 1.2 mL min-1. After the column was washed with the running buffer, linear gradient 144 



7 
 

elution was performed as described above except that the change in NaCl concentration 145 

was from 0 to 250 mM at a flow rate of 1.0 mL min-1. The active fractions were combined, 146 

desalted, and stored at -20 ℃ until use. The cryoprotective activity of the purified protein 147 

was stable under this storage condition. 148 

  The amount of protein was determined from the band intensities in sodium dodecyl 149 

sulphate-polyacrylamide gel electrophoresis (SDS‐PAGE). The gel was stained with 150 

Coomassie brilliant blue (Bio-Safe, Bio-Rad). The data for the electrophoretogram were 151 

obtained by the Fusion Solo S imaging system (Vilber Lourmat, Collégien, France). 152 

ImageJ software (https://imagej.nih.gov/ij/) was applied to quantify the protein bands. 153 

Bovine serum albumin was used as a standard.     154 

 155 

2.4. Protein identification 156 

 157 

  The purified protein was identified by using matrix-assisted laser desorption ionization 158 

time-of-flight mass spectrometry tandem mass spectrometry (MALDI-TOF MS/MS) with 159 

the oMALDI-Qq-TOF MS/MS QSTAR Pulsar i system (Applied Biosystems, Foster, CA, 160 

USA). PEAKS de novo sequencing software was applied to predict the amino acid 161 

sequence of the protein's fragments. A peak whose m/z was 2302 was matched to 162 

ATADVEQVTPAAAEHVEVTPPK (acetylated at the N-terminus). A Mascot search 163 

(http://www.matrixscience.com) and a BLAST analysis 164 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) indicated that the sequence was matched only to 165 

a radish vacuolar calcium-binding protein (RVCaB, accession AB035900). 166 

 167 

2.5. Cryoprotective activities 168 
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 169 

  Cryoprotective activities were evaluated by the inhibition of cryoinactivation of LDH. 170 

In some cases, the inhibition of cryodenaturation and the inhibition of cryoaggregation of 171 

the enzyme were also tested. The following experiments were performed according to our 172 

previous methods [29] with some modifications. 173 

  The inhibitory activity of LDH cryoinactivation was determined as follows. In brief, 174 

the test solutions (30 μL) were mixed with the LDH solution (20 µL, 0.34 µM as a 175 

monomer in 10 mM Tris-HCl buffer pH 7.5) in 1.5-mL plastic tubes. In the case of 176 

peptides (Seg01-Seg15), the test solutions contained the peptides at a concentration of 177 

275 μg mL-1. Thus, the peptide concentration in all the tubes was 165 μg mL-1. The tubes 178 

were immersed in liquid N2 for 1 min and then in a water bath at 25±2oC for 3 min. This 179 

freezing and thawing process was done three times, and then the LDH activity was 180 

measured. The samples (4 µL) were added to the reaction solutions (196 µL), i.e., 9.5 mM 181 

Tris-HCl pH 7.5, 0.58 mM sodium pyruvate, and 60 µM NADH, in a 96-well microplate. 182 

Changes in absorbance at 340 nm were recorded at 25 oC by using a microplate reader 183 

(Varioskan Flash, Thermo Fisher Scientific, Tokyo, Japan). In most cases, the LDH 184 

activities were decreased to approximately 20% of the initial activities by the freezing 185 

and thawing treatment. To evaluate the cryoprotective activity, a value of relative 186 

cryoprotective activity was used. The range of decrease in LDH activity after freezing 187 

and thawing was standardized as 100% of relative cryoinactivation. For example, if a 188 

sample recovered 70% of relative cryoinactivation, the relative cryoprotection value was 189 

70%. This type of data representation was applied to Fig. 1C, Fig. 2B, and Fig. 5. Besides 190 

that, when the inhibition of LDH cryoinactivation by different concentrations of RVCaB 191 

was tested, the initial enzymatic activity of LDH (before freezing and thawing) was 192 
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relativized to 100%. This representation was done in Fig. 4A and Fig. 6A. 193 

  LDH cryodenaturation was assessed by an ANS fluorescence probe, which can 194 

quantify hydrophobicity on the protein surface. Mixtures containing ANS (10 µM), LDH 195 

(4 µM), RVCaB (corresponding concentrations), and 10 mM sodium phosphate buffer pH 196 

7.0 were prepared in a total volume of 250 µL in 1.5-ml plastic tubes. After the three 197 

freezing and thawing cycles, fluorescence was detected in the 96-well plates (Ex 350 nm 198 

and Em 470 nm, Varioskan Flash). The increment of fluorescence enhanced by freezing 199 

and thawing in the sample containing no RVCaB was standardized as 100% (Fig. 4B and 200 

Fig. 6B). 201 

  The cryoaggregation of LDH was measured by turbidity. Test solutions (250 µL) 202 

consisting of 4 µM LDH, corresponding concentrations of RVCaB, and 10 mM Tris-HCl 203 

buffer pH 7.5 were prepared in 1.5-ml plastic tubes. The solution was treated with the 204 

three freezing−thawing cycles described above, after which turbidity was determined in 205 

a 96-well microplate (415 nm, Bio-Rad iMark). The increment of absorbance by freezing 206 

and thawing in the sample without RVCaB was standardized as 100% (Fig. 4C and Fig. 207 

6C). 208 

  209 

3. Results 210 

 211 

  Cryoprotective activities were determined by the inhibition of cryoinactivation of 212 

lactate dehydrogenase (LDH), a model of cryosensitive enzymes [30]. After the 213 

homogenates from the radish taproot were centrifuged, the soluble fraction was analyzed 214 

by SDS-PAGE (Fig. 1A, lane Sf). This fraction contained various proteins and showed 215 

apparent cryoprotective activity (Fig. 1C, Sf). Since cryoprotective proteins (e.g., 216 
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dehydrins) were known to be highly hydrophilic and thus heat stable, we decided to 217 

prepare the heat-stable fraction from the soluble fraction to obtain the cryoprotective 218 

proteins. Consequently, most of cryoprotective activity was maintained (approximately 219 

87% of the activity in the soluble fraction) in the heat-stable fraction (Fig. 1C, Hs). SDS-220 

PAGE analysis indicated that the heat-stable fraction contained a major protein whose 221 

molecular mass was approximately 43 kDa (Fig. 1A, lane Hs, an arrowhead). 222 

  Subsequently, an anion exchange chromatography (TOYOPEARL SuperQ) was 223 

applied. Proteins were eluted with a linear gradient of NaCl (0.0 - 0.5 M) (Fig. 1B). 224 

Fraction number 7, which showed the highest cryoprotective activity among the eluate 225 

fractions (Fig. 1C), primarily contained the 43 kDa protein (Fig. 1B, an arrowhead). The 226 

43 kDa protein was also found in the 6th and 8th fractions, in which considerable 227 

cryoprotective activities were detected. On the other hand, fraction numbers 4, 5, and 9-228 

13 showed cryoprotective activities even though they did not contain the 43 kDa protein, 229 

suggesting that proteins other than the 43 kDa protein and/or nonprotein molecules might 230 

contribute to the cryoprotective activity of the heat-stable fraction. However, we focused 231 

on the 43 kDa protein because its presence was predominant and reproducibly observed 232 

in the cryoprotective fractions. Fraction numbers 6, 7, and 8 were combined for the 233 

subsequent chromatography (TOYOPEARL DEAE). The results demonstrated that the 234 

amounts of the 43 kDa protein were well correlated with the cryoprotective activities 235 

through the eluate fractions (Fig. 2). The purity of the 43 kDa protein was 94.7%, and the 236 

yield on the basis of cryoprotective activity was 10% (Table 1). 237 

  A MALDI-TOF MS/MS analysis with a de novo sequencing method revealed that the 238 

43 kDa protein contained the amino acid sequence ATADVEQVTPAAAEHVEVTPPK. 239 

According to a BLAST search, the sequence totally matched that of the corresponding 240 
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site (A2TADVEQVTPAAAEHVEVTPPK23) of a radish vacuolar calcium-binding 241 

protein (RVCaB, accession AB035900) (Fig. 3). Considering a previous report that 242 

detected RVCaB at the size of 43 kDa in SDS-PAGE [28], we confirmed that RVCaB was 243 

the cryoprotective protein purified from radish taproot. RVCaB was first isolated from 244 

the vacuoles of radish taproot [28]. The theoretical molecular weight of RVCaB was 245 

27094 and the isoelectric point was calculated as 4.1 (Supplementary Fig. 1A). A previous 246 

report described that RVCaB in SDS-PAGE (43 kDa) was larger than the theoretical 247 

molecular mass (27 kDa), because generally acidic proteins slowly migrated in SDS-248 

PAGE [28]. The protein had small amounts of hydrophobic residues and neither aromatic 249 

nor cysteine residues (Supplementary Fig. 1B). Analysis by using secondary structure 250 

prediction software suggested that RVCaB had a primarily coiled structure 251 

(Supplementary Fig. 1C). Indeed, RVCaB was demonstrated to be an intrinsically 252 

disordered protein (IDP) in the previous study [31].   253 

  The concentration dependence of the cryoprotective activities of RVCaB was analyzed 254 

(Fig. 4). Although the LDH activity was reduced to approximately 20% of the initial 255 

activity after the freezing and thawing treatment, this reduction was mitigated by RVCaB 256 

in a concentration-dependent manner (Fig. 4A). The protection dose 50% (PD50) value 257 

was 1.8 μM. Cryodenaturation was recorded by the fluorescence of ANS, which is a 258 

hydrophobicity indicator during the denaturation process of proteins. Cryoaggregation 259 

was determined by the turbidity of the protein solution. RVCaB inhibited the 260 

cryodenaturation and cryoaggregation of LDH (Fig. 4B, C). The PD50 values for 261 

cryodenaturation and cryoaggregation were 1.5 and 1.4 μM, respectively.  262 

  Finally, cryoprotective sites of RVCaB were investigated. RVCaB had two repeat 263 

sequences, from E91 to E120 and from E121 to E150, which were totally identical (Fig. 264 
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3, represented by yellow highlights). In this work, the sequence was divided into 15 265 

segments designated Seg01 to Seg15 (15 amino acids each). Seg07 and Seg08 covered 266 

the repeat sequences. The inhibitory activities of these segments for the cryoinactivation 267 

of LDH were determined (Fig. 5). As a result, four segments, Seg02, Seg03, Seg06, and 268 

Seg14, showed cryoprotective activities, with Seg03 being the most potent. This suggests 269 

that Seg03 was a major cryoprotective site of RVCaB. Seg03 inhibited the 270 

cryoinactivation, cryodenaturation, and cryoaggregation of LDH (Fig. 6). However, 271 

higher concentrations were needed in Seg03 than in RVCaB in order to examine the 272 

cryoprotective activities. The PD50 values for cryoinactivation, cryodenaturation, and 273 

cryoaggregation were 21, 17, and 21 μM, respectively. 274 

 275 

4. Discussion 276 

 277 

  Here we report that a cryoprotective protein was purified from radish taproot and 278 

identified as RVCaB, a radish vacuolar calcium-binding protein. The protein was obtained 279 

from the soluble fraction of taproot via heat treatment and two-step anion exchange 280 

chromatographies. The purity of the final sample was approximately 95% (Table 1). 281 

Previous purification procedures required the isolation of vacuolar membranes, ion 282 

exchange chromatography, and gel filtration chromatography [28], indicating that the 283 

present purification method was simpler than the previous one. In a previous report, 100 284 

μg of RVCaB was prepared from 2 kg of taproot [28]. In our method, on the other hand, 285 

11 mg of RVCaB was purified from 26 g of taproot. This indicates that the purification 286 

efficiency of the present method was at least 4000 times higher than that of the previous 287 

method. Radish is a Brassicaceae vegetable that has been widely produced in Asia and 288 
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Europe [32]. Thus, using our purification procedure, RVCaB can be prepared as a 289 

cryoprotectant from excessively produced radish. Circular dichroism (CD) analysis 290 

previously determined that the RVCaB structure was disordered [31]. RVCaB purified in 291 

the present study was also shown to be disordered by CD (Supplementary Fig. 2A), 292 

suggesting that our purification procedures did not affect the structural characteristics of 293 

RVCaB. 294 

  A comparison of our results against those of previous studies reveals that the 295 

cryoprotective characteristics of RVCaB were similar to those of dehydrins, except that 296 

the two amino acid sequences were totally distinct from one another. It is worth 297 

mentioning that both RVCaB and dehydrins are IDPs [16, 31], which are highly 298 

disordered in solution and hence heat stable. Both proteins were rich in hydrophilic amino 299 

acids, although some hydrophobic amino acids were found. RVCaB and dehydrins 300 

inhibited the cryoinactivation of LDH. Figure 4A shows that the protection dose 50% 301 

(PD50) value of RVCaB was approximately 1.8 μM (49 mg L-1, calculated from a 302 

molecular weight of 27110). On the other hand, the corresponding value of AtHIRD11 303 

(an Arabidopsis dehydrin) was approximately 2.6 μM (28 mg L-1, calculated from a 304 

molecular weight 10796) [27], indicating that the two proteins inhibited the LDH 305 

cryoinactivation to similar degrees. Moreover, their cryoprotective activities were 306 

remarkably high, because the cryoprotection of common cryoprotectants such as 307 

trehalose, proline, and glycine betaine occurred at concentrations of around 10 g L-1 [26]. 308 

Taken together, the present and previous results suggest that similar mechanisms, which 309 

might be related to the length of the disordered region, underlie the cryoprotective 310 

activities of RVCaB and dehydrins. 311 

  We found that Seg03 (V31AAAVVADSAPAPVT45) was the major cryoprotective site 312 
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of RVCaB (Fig. 5). Although the whole range of the amino acid sequence of RVCaB was 313 

predicted to be highly disordered (Supplementary Fig. 3A, IUpred2A software [33]), 314 

some hydrophobic areas were localized in the sequence (Supplementary Fig. 3B, 315 

ProtScale software [34]). Intriguingly, the region corresponding to Seg03 was predicted 316 

to be the most hydrophobic area through the sequence. The CD analysis demonstrated 317 

that the structure of Seg03 was disordered (Supplementary Fig. 2B), suggesting that the 318 

hydrophobic amino acids of Seg03 were likely to have been exposed to the solution. 319 

Seg02, Seg06, and Seg14, which had low but significant cryoprotective activities, tended 320 

to show hydrophobicity. Also, AtHIRD11 (98 amino acids in length) had two 321 

cryoprotective segments, AtHIRD11_NK1 (M1AGLINKIGDALHIG15) and 322 

AtHIRD11_Kseg (H41KEGIVDKIKDKIHG55), in which most hydrophobic amino acids 323 

of the dehydrin were located [29]. AtHIRD11_Kseg was AtHIRD11's K-segment, which 324 

is a conserved sequence in all dehydrins. It was demonstrated that hydrophobic amino 325 

acids were required for the cryoprotective activity of the K-segment [35]. Thus, 326 

hydrophobic amino acids may be related to the cryoprotective activities of RVCaB and 327 

dehydrins.  328 

  Here, a putative mechanism for the cryoprotection of LDH by RVCaB was represented 329 

(Fig. 7). It has been reported that, during the freezing and thawing process, hydrophobic 330 

areas (i.e., hydrophobic patches) were exposed on the surface of LDH. The hydrophobic 331 

patches may also have been formed during the deconstruction of tetrameric LDH due to 332 

freezing and thawing. After that, LDH aggregated via the hydrophobic patches [36] (Fig. 333 

7). The hydrophobic Seg03 of RVCaB may hinder the hydrophobic self-association with 334 

cryo-damaged LDH. However, it is likely that the hydrophobic effect by Seg03 was not 335 

the only factor that determined the cryoprotective activity of RVCaB, because the PD50 336 
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value of Seg03 (21 μM) was approximately 12 times higher than that of RVCaB. A large 337 

hydrodynamic radius due to the disordered nature of the structure might contribute to the 338 

cryoprotective activity of RVCaB. On this point, RVCaB might stabilize LDH on the basis 339 

of a preferential exclusion mechanism [37, 38] and an extended molecular shield 340 

mechanism [39, 40] as well, both of which have been established as mechanisms of 341 

protein protection. In the case of dehydrins, the cryoprotective activities were attributed 342 

basically to the large hydrodynamic radius [41, 42], whereas transient hydrophobic 343 

interaction without binding is needed to facilitate the cryoprotective activities [29]. In 344 

addition, LEA proteins and small heat shock proteins, both of which prevent protein 345 

denaturation, have been known to possess disordered regions [43]. Taken together, the 346 

previous and present results suggested that the disordered nature is a crucial factor for 347 

protective IDPs, including RVCaB.  348 

  Finally, a physiological role of RVCaB in radish was discussed. RVCaB was found 349 

mainly in the taproot of radish and was little detected in leaves [44]. Since RVCaB has 350 

been found in the vacuolar lumen of the taproot, it has been suggested that RVCaB 351 

contributed to the sequestration of calcium ion to the interior of vacuoles [28, 45]. Here, 352 

we added cryoprotective activity to RVCaB's functions. Generally, radish is grown in 353 

autumn and harvested in winter. Since the radish taproot mainly consists of parenchymal 354 

cells whose interiors are filled with vacuoles, preventing damage to vacuoles is important 355 

for the taproot. Moreover, taproot is a crucial organ for the storage of nutrients for the 356 

following spring. The cryoprotective protein RVCaB may be produced to reduce damage 357 

to taproot from the cold of winter.  358 
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 533 

Figure legends 534 

 535 

Fig. 1. Separation of heat-stable proteins of radish taproot by an anion exchange chromatography 536 

(TOYOPEARL SuperQ). (A) SDS-PAGE analysis of soluble fraction (Sf) and heat-stable fraction 537 

(Hs) of radish. (B) SDS-PAGE analysis of elution fractions of TOYOPEARL SuperQ 538 

chromatography. The heat-stable fraction was applied to chromatography, and bound proteins 539 

were eluted with gradients of NaCl from 0 to 0.5 M. (C) Relative cryoprotective activities for 540 

lactate dehydrogenase (LDH). Cryoprotective activities of samples were measured three times 541 

(means ± SD). Bf means buffer blank. Arrowheads indicate the positions of the 43 kDa protein. 542 
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 543 

Fig. 2. Separation of heat-stable proteins of radish taproot by anion exchange chromatography 544 

(TOYOPEARL DEAE). (A) SDS-PAGE analysis of input sample (Is), unbound fraction (Ub), 545 

and elution fractions of TOYOPEARL DEAE chromatography. Bound proteins were eluted with 546 

gradients of NaCl from 0 to 0.25 M. Arrowhead indicates 43 kDa protein. (B) Relative 547 

cryoprotective activities for LDH. Cryoprotective activities of samples were measured three times 548 

(means ± SD). Bf means buffer blank.  549 

 550 

Fig. 3. Amino acid sequence of RVCaB. The sequence of RVCaB (GenBank accession no. 551 

AB035900) [28] was divided into 15 segments (Seg01 to Seg15). An open bar indicates the 552 

position of a peptide fragment identified by MALDI-TOF MS/MS analysis with de novo 553 

sequencing. Yellow indicates the repeat sequences of Seg07 and Seg08. 554 

 555 

Fig. 4. Cryoprotective activities of RVCaB. Cryoinactivation (A), cryodenaturation (B), and 556 

cryoaggregation (C) of LDH were inhibited by RVCaB. Relative enzymatic activity, relative 557 

fluorescence intensity, and relative turbidity are shown in cryoinactivation, cryodenaturation, and 558 

cryoaggregation, respectively. In the graphs, relative values after freezing and thawing (F/T) and 559 

before F/T are exhibited as broken lines. Data represent means ± SD (four experiments). Asterisks 560 

indicate significant differences (p < 0.05) from 0 μM RVCaB in the corresponding graphs. 561 

 562 

Fig. 5. Relative cryoprotective activities of RVCaB segments for LDH. Cryoprotective activities 563 

of samples were measured four times (means ± SD). Bf means buffer blank. Asterisks indicate 564 

significant differences (p < 0.05) from Bf. 565 

 566 

Fig. 6. Cryoprotective activities of Seg03. Cryoinactivation (A), cryodenaturation (B), and 567 

cryoaggregation (C) of LDH were inhibited by Seg03. Relative enzymatic activity, relative 568 
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fluorescence intensity, and relative turbidity are shown in cryoinactivation, cryodenaturation, and 569 

cryoaggregation, respectively. In the graphs, relative values after freezing and thawing (F/T) and 570 

before F/T are exhibited as broken lines. Data represent means ± SD (four experiments). Asterisks 571 

indicate significant differences (p < 0.05) from 0 μM Seg03 in the corresponding graphs. 572 

 573 

Fig. 7. Putative mechanism of cryoprotective activity of RVCaB for LDH. Native LDH (blue 574 

ellipses) was damaged due to freezing and thawing (A). Although LDH is a tetrameric enzyme, 575 

the scheme was simplified. During the freezing and thawing process, hydrophobic patches 576 

(yellow ellipses) may form on the LDH surface [36]. LDH was then inactivated, denatured, and 577 

aggregated (B). After RVCaB was added, RVCaB may have protected LDH via the hydrophobic 578 

attractions between the hydrophobic areas (e.g., Seg03) of RVCaB and hydrophobic patches of 579 

LDH (C). 580 

 581 

 582 

 583 

 584 

Cryoprotective 
activity (U)*

Volume
(mL)

Protein
(mg)

Purity
(%)

Purification
factor (-fold)

Activity yield 
(%)

Crude soluble fraction 1,201 20.5 199.0 1.4 1 100
Heat-stable fraction 1,045 20.0 30.2 15.3 11 87
TOYOPEARL SuperQ 347 9.9 30.0 33.1 24 29
TOYOPEARL DEAE 119 9.9 10.7 94.7 67 10

Table 1  Purification of cryoprotective protein from radish taproot.

Table 1.  Osuda et al.

*One U represents 2% of relative cryoprotective activity for LDH in 1 mL.
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Supplementary Fig. 1. Sequence properties of RVCaB. A) Theoretical molecular weight and theoretical isoelectric point. They were calculated by Compute
pI/Mw (https://web.expasy.org/compute_pi/). B) Types of amino acids. It was produced by PSIPRED 4.0 (http://bioinf.cs.ucl.ac.uk/psipred/). C) Secondary
structures predicted by PSIPRED 4.0.

Title: An intrinsically disordered radish vacuolar calcium-binding protein (RVCaB) showed cryoprotective activity for lactate dehydrogenase with its
hydrophobic region.
Authors: Osuda H, Sunano Y, Hara M*
*hara.masakazu@shizuoka.ac.jp
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Supplementary Fig. 2. Circular dichroism (CD) spectra of purified RVCaB (A) and synthesized Seg03 peptide (B). Samples which were prepared in 10 mM
Tris-HCl pH 7.5 at the concentration of 1.7 μM (46 mg L-1) were analyzed by using a spectropolarimeter (J-820, Jasco, Tokyo, Japan). Scan range from 195
to 250 nm, scan speed 100 nm min-1, resolution 1 nm, and cell width 2 mm. Secondary structures predicted from the CD data by K2D3 software
(http://cbdm-01.zdv.uni-mainz.de/~andrade/k2d3/) are inserted in the graph.
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Supplementary Fig. 3. Disorder and hydrophobicity of RVCaB. (A) Disordered regions of RVCaB was predicted by IUpred2A (https://iupred2a.elte.hu/).
(B) Hydrophobicity scale of RVCaB was produced by ProtScale (https://web.expasy.org/protscale/). Horizontal bars indicate the positions of segments
which had cryoprotective activities (Seg02, Seg03, Seg06, and Seg14). The most potent cryoprotective segment was Seg03 (a red bar).
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