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Abstract  

Much literature exists for rock-paper-scissors (RPS) game. It is well known in a 

single habitat that spatial models are more stable than well-mixed population. However, 

the mechanism of spatial stabilization has been unclear. In the present article, we study 

multilayer model of RPS game in a patchy environment; respective patches are set as 

lattices. The predation probability of one of three species is assumed to be reduced as a 

parameter. Simulations on two-layer system reveal the opposite result to those on a single-

habitat system. Namely, the well-mixed population becomes stable. In contrast, extinction 

occurs by random migration in spatially-explicit model, when the reduced predation 

probability is below a certain critical value. The extinction in spatial model is found to be 

caused by the collapse of a kind of swarm intelligence (SI). In RPS system, large swarms 

of each species are automatically protected from its predator. Such a self-organized 

protection is one of the simplest examples of SI. We also discuss some serious problems 

for random migration.   
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1. Introduction 

 Rock-paper-scissors (RPS) game has increased interest in various fields (Bazeia et al., 

2021; Abu-Akel et al., 2020; Li et al., 2020; Dyson et al., 2020; Epstein and Hadany, 2019; Ryan 

et al., 2020; Douglas and Das, 2019; . Kabir and Tanimoto, 2020). The game has long been studied 

in relation to biodiversity (Itoh, 1973; Tainaka, 1988; Reichenbach et al., 2007; Szabó and Fáth, 

2007; Avelino et al., 2012a; 2012b: Liao et al., 2019; Nagatani, 2019; Park et al., 2020). Concrete 

example of RPS relations are males of lizard (Sinervo and Lively, 1996), strains of micro-

organism (Kerr et al., 2002), marine organisms (Buss, 1980) and plant systems (Lankau and 

Strauss, 2007). A food chain in small ecosystem, called "microcosms" (Beyers and Odum, 1993), 

also represents a kind of RPS game; e.g. the system composed of producer, consumer and 

decomposers. The producer utilizes decomposers, but it is eaten by the consumer; when the 

consumer dies, they become nutrition for decomposers. We consider RPS game as follows 

(Frachebourg et al., 1996; Reichenbach and Mobilia, 2007; Claussen and Traulsen, 2008; 

Szolnoki et al. 2014; Szolnoki and Perc, 2016):  

       R + S →      R + R    (rate a),         (1a) 

       S + P →      S + S    (rate b),         (1b) 

       P + R →      P + P    (rate c),         (1c) 

where R, P and S respectively mean the agent of rock, paper and scissors. The parameters 𝑎, 𝑏, 

and 𝑐 denote the victory (predation) rates of R, S and P, respectively. Reaction (1a) represents R 

beats S. Similarly, P beats R, but it is beaten by S.  

 

 In one-population system, two typical methods have been proposed: well-mixed and 

spatially-explicit models. Itoh (1973) has presented a well-mixed population of RPS game; 

individuals (agents) of three species (R, S, P) randomly interact. Species changed according to 

reaction (1). On the other hand, in the spatially explicit model, agents locate on a lattice; the 
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interaction occurs between adjacent cells (Tainaka, 1988; Bramson and Griffeath. 1989). 

Although all species cannot survive in well-mixed population, they stably survive in spatially-

explicit model with local interaction. Such a difference in dynamics has been experimentally 

verified by the use of E. coli (Kerr et al. 2002). However, the mechanism why spatial pattern 

formation stabilizes the biodiversity has long been unclear. The aim of the present article is to 

show the spatial mechanism of biodiversity.  

 

 We apply agent-based model (Sato et al., 1994; Szolnoki and Szabó, 2004; Szabo 

et al., 2007; Tubay and Yoshimura, 2013; Hódsági and Szabo, 2015; Wang et al., 2015; 

Szolnoki and Perc, 2017; Szolnoki et al., 2020) to a multi-patch system. Habitats of 

biospecies usually locate in spatially separated patches (Levin, 1974; Hanski et al., 1996). 

The dynamics in such patchy environment have been studied by metapopulation and 

network models (Allesina and Levine, 2011; Kivelä et al., 2014; Szczesny et al., 2014; 

Barabási, M. Pósfai, 2016). Some authors have applied RPS game to metapopulation 

model (Czárán, R. F Hoekstra, 2003; Nagatani et al., 2018a; Voit and Meyer-Ortmanns, 

2019; Nagatani and Ichinose, 2020). A distinct point of the present paper is to set a lattice 

as a patch. There are several merits to use lattices. i) Spatially-explicit model. 

Inside respective patches, the simulation with local interaction can be carried 

out. ii) Finite capacity of patch. The migration of an individual (agent) is only 

allowed to move into an empty cell in the destination patch. iii) Non-random 

migration. An animal moves with avoiding danger, and may have some 

strategy for migration. 

 

 

2. Preliminary: Results in One-Patch System  

Results of Well-Mixed Population  
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 First, we describe the results for well-mixed population. Itoh mathematically proved the 

instability (extinction) in well-mixed population (Itoh, 1973). When the total population size (𝐶) 

of three species (R, S, P) is infinite (𝐶 → ∞), the dynamics are well described by mean-field 

theory (MFT): 

ௗఘೃሺ௧ሻ

𝑑𝑡
ൌ 𝑎𝜌ோሺ𝑡ሻ𝜌ௌሺ𝑡ሻ െ 𝑐𝜌௉ሺ𝑡ሻ𝜌ோሺ𝑡ሻ    (2a) 

ௗఘುሺ௧ሻ

ௗ௧
ൌ 𝑐𝜌௉ሺ𝑡ሻ𝜌ோሺ𝑡ሻ െ 𝑏𝜌ௌሺ𝑡ሻ𝜌௉ሺ𝑡ሻ    (2b) 

ௗఘೄሺ௧ሻ

ௗ௧
ൌ 𝑏𝜌ௌሺ𝑡ሻ𝜌௉ሺ𝑡ሻ െ 𝑎𝜌ோሺ𝑡ሻ𝜌ௌሺ𝑡ሻ       (2c) 

where 𝜌𝑅ሺ𝑡ሻ is the population size (density) of species 𝛼 (𝛼 ൌR,P,S). The population sizes of 

three species oscillate periodically as shown in Fig. 1(a). A pair of species behave like prey and 

predator for classical Lotka-Volterra equation (Hofbauer and Sigmund, 1998). Since the 

dynamics has no asymptotic stability, three species cannot survive under slight disturbances. 

When 𝐶 takes a finite value, two species eventually go extinct [see Fig. 1(b)]. Only one species 

survives at the final equilibrium.  

 

Results of Spatially Explicit Model  

 Next, we describe the results for spatial (lattice) model with local interaction. 

The stability on a lattice becomes opposite to that for well-mixed population (Tainaka, 

1988; 1989; Bramson and Griffeath, 1989; Kerr et al., 2002). In spatial model (local 

interaction), three species stably coexist. Note the extinction occurs in small (e.g., C ൌ

10 ൈ 10) systems. In Fig. 2(a), the population dynamics is displayed for C=200×200. 

When 𝐶 is infinitely large (𝐶 → ∞), the dynamics asymptotically stable. For a finite 

value of 𝐶 (𝐶 ൐൐ 1), undamped oscillations are observed at the final attractor (Itoh 

and Tainaka, 1994). Each species forms different sizes of swarms (clusters), but spatial 
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structure chaotically oscillates; the square of vibration amplitude is inversely 

proportional to 𝐶 [see Fig. 2(b)]. The reason why all species survive in spatially-

explicit model has been discussed. Tainaka and Itoh have explained the stabilization in 

lattice model by counting both creation and annihilation speeds of vortex (spiral) 

(Tainaka, 1989; Itoh and Tainaka, 1994). Nagatani et al. (2017) have proved the 

coexistence of species by applying "effective medium approximation" (Choy, 2016). 

However, it is still unclear what kind of spatial structure stabilizes the lattice system. As 

we will describe later, the biodiversity is sustained by a kind of "swarm intelligence" 

(Beni and Wang, 1989; Kaveh and Talatahari, 2010; Waibel et al., 2011; Santos et al. 

2020). Each species can avoid extinction by a spatial pattern formation.   

 

 

3. Method 

 Simulation method is a combination of migration and RPS game. First, 

migration method is described. We prepare 𝑛 lattices (layers); the layer i  contains 

iC  cells (𝑖 ൌ 1⋯𝑛ሻ. Each cell is either empty (O) or agent of species   ( 

ൌR,P,S). The agent migrates from layer  to  by rate 𝑚௝௜ ( ). In Fig. 3, the 

migration of agent   from patch 1 to 2 is displayed, where (a) conventional migration 

and (b) the present migration. In Fig. 3 (a), the size (capacity) of patch has been ignored, 

and the well-mixed population has been assumed inside respective patches. In contrast, 

in the present paper, we regard lattices (layers) as patches. An agent of species can 

migrate, only when there are empty cells in the destination layer. After the migration, 

both occupied and empty cells are exchanged. Namely, the cell   in layer 1 changes 

to the empty cell, while the empty cell in layer 2 changes to cell  . Note that the 

capacity ( ) of layer  takes a constant value.  

 Next, we describe the method of RPS game which is played inside respective layers. In 

the present paper, we fix 𝑏 ൌ 𝑐 ൌ 1, and change the value of predation rate (𝑎) of species R (0 ൏

i j i j

iC i



 7 

𝑎 ൑ 1). Simulation is carried out by either local or global interaction. In the former the reactions 

(1a)-(1c) occur between adjacent cells, whereas in the latter they occur between any pair of cells. 

The results of global interaction agree with those for well-mixed population. Throughout 

simulations, the total density (𝜌்) of agents in all patches is unchanged. 

 In the case of well-mixed population, the dynamics can be described by mean- 

field theory (MFT). Let 𝜌ఈ,௜ሺ𝑡ሻ be the density of species   in patch i  at time 𝑡 . 

Namely, the density means (cell number of species  in patch i )/𝐶், where 𝐶் is the 

total cell number in the whole system: 𝐶் ൌ  ∑ 𝐶௜௜ . We also define 𝑁௜ and 𝜌௜ሺ𝑡ሻ be 

the ratio of capacity and the total density of agents in layer 𝑖, respectively: 𝑁௜ ൌ 𝐶௜/𝐶் 

and 𝜌௜ሺ𝑡ሻ ൌ  ∑ 𝜌ఈ,௜ሺ𝑡ሻఈ . For convenience, we assume the migration rates are unchanged 

for any pair of 𝑖 and 𝑗 (𝑚௝௜ ൌ 𝑚). When the population size in each patch is sufficiently 

large (𝐶௜ → ∞), the dynamics are well described by MFT.  

ௗఘೃ,೔ሺ௧ሻ

𝑑𝑡
ൌ ൣ𝑎𝜌ோ,௜ሺ𝑡ሻ𝜌ௌ,௜ሺ𝑡ሻ െ 𝑐𝜌௉,௜ሺ𝑡ሻ𝜌ோ,௜ሺ𝑡ሻ൧/𝑁௜    

  ൅𝑚ൣ𝜌ோ,௝ሺ𝑡ሻ𝐸௜ሺ𝑡ሻ/𝑁௜ െ 𝜌ோ,௜ሺ𝑡ሻ𝐸௝ሺ𝑡ሻ/𝑁௝൧  (3a) 

ௗఘು,೔ሺ௧ሻ

ௗ௧
ൌ ൣ𝑐𝜌௉,௜ሺ𝑡ሻ𝜌ோ,௜ሺ𝑡ሻ െ 𝑏𝜌ௌ,௜ሺ𝑡ሻ𝜌௉,௜ሺ𝑡ሻ൧/𝑁௜    

൅𝑚ൣ𝜌௉,௝ሺ𝑡ሻ𝐸௜ሺ𝑡ሻ/𝑁௜ െ 𝜌௉,௜ሺ𝑡ሻ𝐸௝ሺ𝑡ሻ/𝑁௝൧  (3b) 

ௗఘೄ,೔ሺ௧ሻ

ௗ௧
ൌ ൣ𝑏𝜌ௌ,௜ሺ𝑡ሻ𝜌௉,௜ሺ𝑡ሻ െ 𝑎𝜌ோ,௜ሺ𝑡ሻ𝜌ௌ,௜ሺ𝑡ሻ൧/𝑁௜    

൅𝑚ൣ𝜌ௌ,௝ሺ𝑡ሻ𝐸௜ሺ𝑡ሻ/𝑁௜ െ 𝜌ௌ,௜ሺ𝑡ሻ𝐸௝ሺ𝑡ሻ/𝑁௝൧  (3c) 

where 𝐸௜ሺ𝑡ሻ is the density of empty cells in layer i : 𝐸௜ሺ𝑡ሻ ൌ 𝑁௜ െ  𝜌௜ሺ𝑡ሻ. In equation 

(3), the first and second terms on the right-hand sides denote the RPS reaction and 

migration, respectively. It is emphasized that the migration terms differ from those in 

conventional metapopulation model: the migration terms in equation (3) are represented 

by nonlinear functions of densities ("nonlinear migration") (Yokoi et al., 2019; 2020). 

From equation (3), we can obtain nonzero values of equilibrium densities (𝜌ோ,௜
∗ ,𝜌௉,௜

∗ ,𝜌ௌ,௜
∗ ). 
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Putting all time derivatives to be zero, we can get 

𝜌ோ,௜
∗ ൌ 𝜌௜𝑏/ሺ𝑎 ൅ 𝑏 ൅ 𝑐ሻ, 𝜌௉,௜

∗ ൌ 𝜌௜𝑎/ሺ𝑎 ൅ 𝑏 ൅ 𝑐ሻ, 𝜌ௌ,௜
∗ ൌ 𝜌௜𝑐/ሺ𝑎 ൅ 𝑏 ൅ 𝑐ሻ  (4) 

When 𝑏 ൌ 𝑐 ൌ 1, we have 

 𝜌ோ,௜
∗ ൌ 𝜌ௌ,௜

∗ ൌ 𝜌௜/ሺ2 ൅ 𝑎ሻ, 𝜌௉,௜
∗ ൌ 𝑎𝜌௜/ሺ2 ൅ 𝑎ሻ.    (5) 

 

 

4. Results  

4-1. Results for Well-Mixed Population 

We report the population dynamics for global interaction (well-mixed 

population). Hereafter we assume the system contains two patches (𝑛 ൌ 2). It is found 

that the stabilities in one- and two-patch systems are just opposite. Although all species 

cannot survive in a single population, they stably survive in two-patch system. As shown 

in Fig. 4 (a), the dynamics becomes asymptotically stable; no extinction occurs for 𝐶௜ ൐

൐ 1  and 𝐶ଵ ് 𝐶ଶ. When the migration rate (m) increases, the system rapidly reaches 

equilibrium. Note the case of 𝐶ଵ ൌ 𝐶ଶ  is exceptional: the extinctions of two species 

occur for a finite value of 𝐶௜.  

In the case of traditional (linear) migration, the dynamics in two-layer system is 

never stable (Nagatani, et al., 2018a), because the densities of each species become 

immediately the same in both layers. In contrast, we assume patch capacities are finite; 

an agent moves into an empty cell. When both patches have different capacities, the 

densities in both layers are not equal. It may suppress the oscillation of densities.  

In Fig. 4 (b), the equilibrium densities are depicted against the predation rate (𝑎). 

The simulation results (plots) for global interaction well agree with the prediction of MFT 

(curves). With the decrease of 𝑎, the densities of paper (P) in both layers are decreased; 

in contrast, the densities of R and S are increased. This is paradoxical, because R should 

be the weakest for 𝑎 ൏ 1 (𝑏 ൌ 𝑐 ൌ 1). Such a paradox is very popular in RPS systems 

(Tainaka, 1993; Frean and Abraham, 2001; Nagatani et al., 2018b; Avelino et al., 2019; 
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2021).  

 

 

4-2. Results for Spatially Explicit Model  

Simulations for local interaction exhibit that the stability is also opposite 

between one- and two-lattice systems. The population dynamics tends to be unstable in 

double-layer case. Fig. 5 displays the population dynamics for 𝑎 ൌ 1  and 𝑎 ൌ 0.4 , 

respectively (𝑚 ൌ 1  and 𝑏 ൌ 𝑐 ൌ 1 ). All species survive for 𝑎 ൌ 1 , while the 

extinction occurs for 𝑎 ൌ 0.4. In the latter case, species P first goes extinct, and only R 

survives finally. This is also paradoxical: only the weakest species (R) survives. As 

parameter 𝑎 decreases or 𝑚 increases, the vibration of each density becomes large. 

Since the amplitude of vibration becomes too large, the extinction of species occurs. In 

Fig. 6 (a), the steady-state densities are depicted against the predation rate (𝑎) of species 

R, where the dotted line represents the critical condition (𝑎 ൌ 𝑎஼). Phase transition occurs 

between survival (𝑎஼ ൏ 𝑎) and extinct (𝑎஼ ൏ 𝑎) phases. The critical value 𝑎஼ can be 

estimated by "finite-size stability analysis" (Sakisaka et al., 2008). We prepare five pairs 

of square lattices under the condition of 𝐿ଶ ൌ 𝐿ଵ/2 (𝑁ଵ ൌ 0.8). For respective two-layer 

systems, we obtain the waiting time (𝜏) to extinction. In Fig. 6 (b), 𝑙𝑜𝑔ሺ 𝜏ሻ is plotted 

against 𝑙𝑜𝑔ሺ 𝐿ଵሻ. The threshold between survival and extinction phases for 𝐶௜ → ∞ can 

be estimated in the power law case (𝑎஼ ൎ 0.57).  

Critical behaviors elucidate the mechanism of destabilization. In Fig. 7 (a), the 

population dynamics near extinction are displayed ( 𝑎 ൌ 0.59 ). We observe larger 

oscillations, compared to the case of 𝑎 ൌ 1 [see Fig. 5 (a)]. The mechanism of large 

oscillation can be understood by spatial patterns. Figs. 7 (b) and (c) represent poor- and 

rich-density cases of P, respectively. We compare stable spatial pattern [Fig. 2 (b)] and 

spatial pattern near extinction [Fig. 7 (b)]. In the former (one-layer case), we find a kind 

of swarm intelligence (SI) (Beni and Wang, 1989; Santos et al. 2020). In Fig. 2 (b), large 

swarms are automatically protected from predators. For example, we pay attention to a 
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large blue swarm. One or few cells enclosed in the swarm are usually green which is 

weaker than surrounding species. Namely, predators (red cells) have been excluded inside 

the blue swarm. In contrast, in two-layer case [Fig. 7 (b) or (c)], SI is broken in the spatial 

patterns: not only green but also red cells are enclosed inside a large blue swam. Since a 

predator (red cell) invades near the center of large blue swarm, the population size of 

predator rapidly increases; conversely, the blue swarm rapidly collapses. Thus, the large 

oscillation and instability are caused by the collapse of SI. Moreover, Fig. 7 (b) can 

explain the paradox: since species P strongly forms clusters, it effectively disappears on 

lattices. If P disappears, then R beats S. Hence, R prevails in both lattices (paradox). 

 

 

5. Conclusions  

Spatial pattern dynamics is known to be stable in a single population. To date, 

the mechanism of stabilization has been unknown. The present work elucidates the 

mechanism of biodiversity. In two-layer model, we fix 𝑚 ൌ 1. This value of migration 

rate may be small, since each species forms clusters. If the migration rate is extremely 

high (𝑚 ≫ 1), the spatially-explicit model should become the same as the well-mixed 

population. Even though the migration rate is low, the random migration has a significant 

impact. When 𝑎 ൑ 𝑎஼  (𝑎஼ ൎ 0.57), species go extinct for 𝑚 ൌ 1. The extinction 

caused by the fact that a predator can invade near the center of large prey swarm. 

Realistically, however, such a lucky migration is infeasible (Greig and Pruett-Jones, 

2010; Holmern et al., 2016). In multi-layers model, we can perform various simulations 

of non-random migrations. Simulations for more realistic migration reveal that all species 

survive, because the migration never causes the collapse of SI. For instance, we carry out 

simulation in the case that an agent migrates into (or next to) a flock of the same species. 

In this case, no extinction occurs, because the SI structure remains mostly. Hence, the 

two-layer system is considered to be stable for both local and global interactions. The 

method of the present article may be applicable more generally, such as off-lattice 
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populations (Bazeia, et al., 2021; Oliveira and Szolnoki, 2021) and public goods game 

with punishment (Szolnoki and Perc, 2013; 2017). 
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Figure captions 

 

Fig. 1. Results of well-mixed population in a single habitat (𝑎 ൌ 𝑏 ൌ 𝑐 ൌ 1) (Itoh, 1973). (a) C

→∞, (b) C=104. Initially (𝑡 ൌ 0), the population sizes of (R, P, S) are set as (0.56, 0.08, 0.08). 

The colors blue, red and green denote rock (R), paper (P) and scissors (S), respectively. The 

population dynamics is not stable in a single habitat. 

 

Fig. 2. Results of RPS population on a single lattice (𝑎 ൌ 𝑏 ൌ 𝑐 ൌ 1) (Tainaka, 1988; 

Bramson and Griffeath, 1989). The RSP game is played between adjacent cells 

(C=200×200). (a) population dynamics, (b) spatial pattern in stationary state (𝑡 ൌ 200). 

The dynamics is usually stable on a single lattice. 

 

Fig. 3. Schematic illustration of two types of migrations. (a) Conventional migration,  

(b) Migration between two layers. We only display the case that an agent (individual) of 

species  migrates from patch 1 to 2 (see blue arrows). In (a), agents freely move. 

However, in (b), agents are possible to move into the empty cells in layer 2. After the 

migration, both empty and occupied cells are exchanged.  

 

Fig. 4. Results of two-layer system for global interaction (well-mixed population).  

 (a) Population dynamics for global interaction (𝜌்=0.8, 𝑎 ൌ 𝑏 ൌ 𝑐 ൌ 1, 𝐶ଶ/𝐶ଵ ൌ 1/4). 

The upper three curves represent patch 1 and the lower three curves represent patch 2. At 

time 𝑡 ൌ 100 , migration starts between both parches. (b) Equilibrium densities are 

depicted against the predation rate (𝑎) of species R (𝑡 ൌ 10ସ). Plots and curves represent 

the results of simulation and theory, respectively. The colors blue, red and green denote 

rock (R), paper (P) and scissors (S), in order. Both densities of R and S are overlapped. 

Hence, the population dynamics for well-mixed population becomes stable. 
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Fig. 5. Population dynamics of local interaction in two-layer system (𝑚 ൌ 1). The 

system sizes of two lattices are set as 𝐶ଵ ൌ200×200 for patch 1 and 𝐶ଶ ൌ100×100 for 

patch 2. (a) 𝑎 ൌ 1, (b) 𝑎 ൌ 0.4. We only show the results in layer 1, because both 

layers 1 and 2 have the similar behaviors. On two-lattice system, three species cannot 

coexist for 𝑎 ൌ 0.4.   

 

Fig. 6. Phase diagram for local interaction in two-layer system. (a) Steady-state densities  

are plotted against 𝑎. The vertical dotted line means the phase-transition point (𝑎஼ ൎ

0.57) which is obtained by finite-size stability analysis (FSSA) [48]. (b) The result of 

FSSA. The waiting time (𝜏) to extinction are plotted against lattice size (𝐿ଵ) for various 

values of 𝑎 (𝑁ଵ ൌ 0.8, 𝑚 ൌ 1, 𝜌் ൌ 0.9). We use  for layer 1 and 𝐿ଶ ൈ 𝐿ଶ for 

layer 2, where   ( 𝐿ଵ ൌ 40, 80, 120, 160, 200). Fitting curves are 𝜏 ൌ

exp ሾ1.3554𝐿଴.ସ଴଼ሿ  for  0.59, 𝜏 ൌ 0.138𝐿ଶ.଴଼ହ for 𝑎 ൌ 0.57 , 𝜏 ൌ 0.234ሺln 𝐿ሻହ.ଷଽ 

for 𝑎 ൌ 0.54   and 𝜏 ൌ 0.921ሺln 𝐿ሻସ.ଵ଴  for 𝑎 ൌ 0.50 . The critical point can be 

estimated in the power law case (see solid black line: 𝑎஼ ൎ 0.57). 

 

Fig. 7. Dynamical behaviors near critical point (𝑎 ൌ 0.59 , 𝑚 ൌ 1 ). (a) Population 

dynamics of undamped oscillation. Both (b) and (c) represent spatial pattern in patch 1 at 

the final attractor; (b) 𝑡 ൌ 1080 and (c) 𝑡 ൌ 1090. The large oscillation is caused by 

the collapse of swarm intelligence. 
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Fig. 1  
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Fig. 2 
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Fig. 3   
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Fig. 4 
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Fig. 5   
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Fig. 6 
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Fig. 7  
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