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The spatial pattern in the lattice system composed of three competing species is 
studied. An individual is assumed to react with a neighbour. It is found from the 
stochastic simulation that the dynamics of the system strongly depend on the lattice 
dimension (d). When d= 2, the system approaches the stable state regardless of initial 
conditions. 

Many authors considered the struggle for ex-
istence following the work of Lotka and 
Volterra. 1> In the present article, the pattern 
formation for the system composed of three 
competing species is studied. We consider the 
random reaction model which satisfies the 
following rules: 
(1) There are three species, 1, 2 and 3, 
whose numbers of individuals (particles) are at 
time t, n1 (t), n2(t) and n3(t), respectively. The 
total number n = n1 (t) + n2(t) + n3(t) is a con-
stant. 
(2) The system constitutes n lattices, each 
of which is occupied by one particle. No parti-
cle ever changes its position. 
(3) Each particle reacts with the neighbour-
mg one. 
(4) When a pair of particles of species i 
and j react, they change into two particles of 
species i, if i-j=O, 1 (mod 3). If i-j=2 (mod 
3), they change into two particles of species j. 
Thus, the relation of strength between the 
species is cyclic. 
This lattice model is an extension of the 
spatial freedom to the Lotka-Volterra (L V) 
model. 2,3> If rule (2) is replaced by the gas 
model, in other words, if the reaction takes 
place between any pair of particles, then our 
model agrees with the L V system: 

with a mean attempt rate. The time t is 
measured by the unit of the Monte Carlo step 
(MC). We call 1 MC when the random reac-
tion occurs n times. Throughout the calcula-
tion, the periodical boundary condition is ap-
plied. 
The result of the simulation reveals that the 
dynamics of the system strongly depend on the 
lattice dimension (d). At first, we consider a 
one-dimensional (ld) lattice system. The in-
itial condition is assumed to be a random 
distribution. Then, the time evolution of this 
system is represented as the growth process of 
"domains", where we define domain by a lat-
tice region occupied by the same species. In 
Fig. 1, the total number of domain (D) ob-
tained by the simulation is shown against t. 

D
 

10“ 

103 

102 

d 
-n戸 cn;(n;-1―n;+1),
dt 

(1) 

10 
1 10 10 

2 
10 
3 

t 

where n;+3 = n;, and c is the constant. 
The simulation is performed by asyn-
chronous processing; the algorithm for the 
evolution law is randomly processed in time 

2588 

Fig. 1. The dynamics of a one-dimensional lattice 
system (n=40000). The longitudinal axis denotes the 
total number of domains (D). The initial condition of 
n1:n2:n3 is 1:1:1 for the upper curve, and 7:2:1 for the 
lower curve. 
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(a) (b) (c) 

Fig. 2. Initial conditions (50 x 50 square lattices). The species are represented by colour: I :blue, 2:green, 3:red. 

(a) (b) (c) 

Fig. 6. Snapshots in the steady state (a): /=200, (b): 1=201, (c): 1=210. The initial condition is the pattern (a) in 
Fig. 2. 
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Fig. 3. Time dependence of number of each species. 
The colours and a, b and c represent the same mean-
ing as in Fig. 2. 

The initial condition of the ratio n1 :n2:n3 is 

1:1:l and 7:2:l for the upper and lower 

curves, respectively. It can be found from this 
figure (t~ 100) that D decreases with time as 

Do:: t―叫

where a is the constant. The value of a 

depends slightly on the initial condition. For 

example, a -0.8 and a-1.2 for the upper and 
lower curves, respectively. 

When the lattice size is finite, the following 

events occur for ld lattice system. After 
sufficient growth of domains (in the last stage 

of the dynamics), the large domains are 

aligned as the tandem repeat of three species I, 

2 and 3. At the same time as the alignment, all 

domains rotate in one direction. In this rota-

tion period, the domains grow yet larger by 
their unification. At the final stage of the evolu-

tion process, the system necessarily attains a 

homogeneous pattern, that is, the whole 
system is occupied by one species. 

When d=2, the simulation for the square 

lattice is carried out under various initial condi-
tions. Three typical patterns for the initial con-

dition are illustrated in Fig. 2, where the par-

tides in (a) and (c) are randomly distributed. 

The ratio of the particle numbers n⑮ :n3 is 
1: I: I for (a) and (b), and 45:3 :2 for (c). In Fig. 
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Fig. 4. Time evolution of the average domain area (A). The initial conditions for curves a, band care the three 
patterns in Fig. 2. 

Fig. 5. Time evolution of the total length of the domain boundary (D), where Dis on a scale with the total lattice 
boundary, and a, b and c have the same meaning as in Fig. 4. 

3, the time evolution of the particle number of 
each species ni is shown. This figure shows 
that for sufficiently large t, the dynamics of 
the particle numbers have a similar profile 
regardless of the initial conditions. When the 

lattice size is large, ni approaches 1 / 3, and the 

fluctuation of ni around 1 / 3 decreases. This 
result is quite different from that for the L V 
system (gas model: eq. (1)). The dynamics of 

the gas model are unstable, since ni oscillates 
depending on the initial condition. Accord-
ingly, the dynamics of the particle number of 
each species can be stabilized by the spatial 
effect of the lattice model. 
In Fig. 4, the time evolution of the average 
domain area A which is defined by the average 
particle number included in one domain is 
shown. The dynamics of the total length (D) 
of the domain boundary are also illustrated in 
Fig. 5. It is found from the time dependences 
of A and D that the system approaches the sta-
tionary state irrespective of the initial condi-
tions. The values of A and D in the stationary 
state are 9.5 and 0.27, respectively. These 
values do not change in large lattice systems. 
The snapshots in the stationary state are ii-
lustrated in Fig. 6, where (a), (b) and (c) are 
the patterns at times 200, 201 and 210 MC, re-
spectively. There are several features in these 

patterns. First, many different sizes of do-
mains are distributed, and their patterns vary 
greatly with time. Secondly, there is a correla-

tion between the neighbouring domains. For 

example, the smallest domain composed of 
one green particle is surrounded not by the 
blue domain, but by the red domain. This fact 
is due to rule (4) that the green is weaker than 
the red, but stronger than the blue. 
By the modification of rule (4), our model 

can easily be extended to the lattice model for 
the Wright system in population genetics. 4> 

The pattern dynamics for the Wright model 
show different results from that for the L V 
model. This result will be reported elsewhere. 
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