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Power-law distributions are observed to describe many physical phenomena with remarkable
accuracy. In some cases, the distribution gives no indication of a cutoff in the tail, which poses
interesting theoretical problems, because its average is then infinite. It is also known that the
averages of samples of such data do not approach a normal distribution, even if the sample size
increases. These problems have previously been studied in the context of random walks. Here, we
present another example in which the sample average increases with the sample size. In the

Gutenberg—Richter law for earthquakes,

we show that the cumulative energy released by

earthquakes grows faster than linearly with time. Here, increasing the time span of observation
corresponds to increasing the sample size. While the mean of released energy is not well defined,
its distribution obeys a non-trivial scaling law. © 2022 Published under an exclusive license by American

Association of Physics Teachers.

https://doi.org/10.1119/10.0010261

I. INTRODUCTION

Very diverse physical, biological, and social phenomena
display distributions that obey a power law with |emark1ble
accuracy and over several orders of magnitude.' In some
cases, the power law holds true without any sign of a cutoff,
which would indicate that the distribution has no finite mean.
From a purely theoretical erspt.Lllw, theorems and llmu dis-
tributions for such cases are known in mathematics.” From
a practical or physical standpoint, however, measurable impli-
cations caused by the peculiar properties of power law distri-
butions have attracted little attention until recently.” The
mathematics of probability distributions wnh infinite means
was investigated by Paul Lévy in the 1930s.”* Several deca-
des later, Levy s results were applied in physics to explain
phcnomcnd related to random walks, e.g., anomalous diffu-
sion in disordered conductors.”"*" In recent years, this sub-
ject has become popular and found applications to numerous
physical systems from laser cooling to aging."'

The absence of a well-defined average requires that the
probability of a variable x behaves as P(x) oc 1/(x'**) with
o> 0 in the limit of x — oo. In laser cooling of atomic
gases, for instance, the lifetime of atoms 1n a given momen-
tum state follows this type of distribution.”* A dlvergem life-
time signifies that the system is experimentally unable to
reach a steady state despite the experimental time scale being
significantly larger than the microscopic one.

Another example is the law of large numbers. For the sum
Sy of N independent and identically distributed random vari-
ables, it is often taken for granted that the average Sy/N
approaches a finite value jt as NV increases. This is the (weak)
law of large numbers, which underlies the inference in phys-

ics experiments that the true value of the observable is fi. If
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the variable has a finite variance. ¢, then the sum Sy
approaches the normal distribution with mean N and vari-
ance Na?. This is the central limit theorem.

However, it is possible to imagine anomalous cases for
which the limit i does not exist or is ill-defined. To deal
with these phenomena, the usual method, which underlies
the mean field theory, of considering the average value of a
physical observable separately from its fluctuations is of no
help. Lévy derived the probability distribution for such cases
in terms of the Fourier transform of the probability density
function.” Phenomena such as random jumps of a state vari-
able, e.g., position or displacement in a random walk, are
natural applications of Lévy’s results. Atomic momentum in
subrecoil laser cooling is also a good cxamplt However,
practical applications can also be found elsewhere in entirely
different contexts.

In the eighteenth century, Nicolas Bernoulli posed a para-
doxical problem now known as the St. Petersburg paradox.'
It is based on a theoretical lottery game that leads to a ran-
dom variable with infinite average. This game entails flip-
ping a coin. If heads comes up in the first toss, the player
wins one coin. If tails comes up, the player is allowed to flip
the coin again, until heads comes up. The prize 2" is deter-
mined by the number N of tails the player has drawn before
obtaining a heads. The paradox is that the mean winning
(1 x 3422 x1+2* x [+ is infinite, so that we cannot
determine a fair ante to enter the game, and the banker
should have infinite resources to cover the expected loss.
Feller look up this problem in a classic book on probability
theory, where he showed that, when the game is repeated n
times, the accumulated winning converges to nlog,n as n
increases.” This superlinear behawor implies that the distri-
bution does not have a finite mean, since a finite mean would
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require the accumulated sum to vary linearly with n. Thus,
the absence of a well-defined mean does not imply the
absence of any rule. Instead, for a large number of games,
the probability distribution of the overall winning should dis-
play the universal scaling property expected from Lévy’s
mathematical results.” This point hints at possible physical
systems that exhibit a distribution without a finite mean. In
this paper, we present a particular example of such a system:
the power law distribution of earthquakes.

II. POWER-LAW DISTRIBUTION
OF EARTHQUAKE ENERGIES

The Gutenberg—Richter law of earthquake size distribution
is of fundamental importance not only in seismology but
more generally in physics of self-similar phenomena.'” "
The famous Gutenberg—Richter relation states that log P{M)
=a—bM with b ~ 1 for the cumulative number P(M) of
earthquakes with a magnitude larger than M.*" Combined
with the equation connecting the earthquake’s magnitude M
and its energy E,'” log E = 1.5M+ const., we have P(E)
o E~Per with figg = b/1.5. Then, if AE) is the probability of
an carthquake having an energy E, P(E) = [ f(E)dE or
f(E) = —dP/dE, and we have f(E) x E~'"For. Although
slightly different from the original formulation, this power-
law relation is commonly called the Gutenberg—Richter law
today. It was actually originally formulated by Wadati as
F(E) o< E with w(= 1 + Bgr) = 5/3.2" The exponent figg
has been found to be universal with a value close to 2/3
(Fig. 1)." The power-law distribution suggests that it origi-
nates from a critical branching process or from self-organized
criticality.'®*? In addition, we study the power-law distribu-
tion of the earthquakes’ energy £ instead of their magnitude
scale M.

While the simple law provides remarkably good one-
parameter fits of available data,™ it poses theoretical prob-
lems caused by the divergence of the moments (E")
(n=1,2,3,...). including the mean value (E)." To avoid
this difficulty, additional parameters are introduced to cut off
the heavy tail of the distribution for large £.***° In fact, the-
oretically, the power law cannot be true without limit
because the planet is finite. Observationally, however, no
significant deviation from the power law has been measured,
so that any energy cut-off would occur at an energy larger
than that of the greatest known earthquake.” ** While prac-
tical studies for verifying the validity of the power law
should remain important, it is not only equally important but
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Fig. 1. The distribution of earthquakes® energy £ (N m). Data are taken from
the global centroid-moment-tensor catalog (2006-2017, depth < 70km)
(Refs. 29, 30, and 41). In this log —-log histogram, the number of occurrence
is proportional to E~for which is indicated by a solid line.
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of physical significance to investigate the theoretical conse-
quences of having an infinite mean for this power-law distri-
bution, which holds insofar as the Gutenberg—Richter law is
obeyed. It should be remembered, however, that deviations
from this law may be found in the future.

III. PROBABILITY DISTRIBUTION OF THE
ACCUMULATED ENERGY

The earthquake energy £ is treated as a random variable
in time obeying the power-law probability distribution

1+far
F(E) =’eaﬂ(%) : (1)

for £>a and zero otherwise. A lower cut-off a is required
for the normalization of probability ([ f(E)dE = 1). The
parameters a and figg are assumed constant. We are inter-
ested in the r-dependence of the average

1
(), =7 (B + -+ E), @

where £ (k = 1,2, ...,1) is a random variable. Mathematically,
the average (E)l]shoulcl approach a Lévy distribution in the
limit of ¢ — oc.” In practice, however, the manner in which
the convergence is achieved can only be investigated
numerically.

For the purpose of illustration, first we present numerical
results for (£), evaluated from r= 100 random numbers (£,
for k =1,2,...,100) that obey the distribution in Eq. (1).
Figure 2 shows the distribution of (E), obtained from
100 000 numerical simulations. Since the probability distri-
bution of (E), does not have a finite mean, the median pro-
vides a better indicator of the central tendency.’' The nth
quartile £,4 is defined as the energy separating the n/4 data
of lowest energy from the highest (4 —n)/4 (n=1, 2. 3).
The median is the second quartile: E; 4 = E 5 (Fig. 2).

In our case, the sample size ¢ corresponds to the time span
of observation of earthquakes. As the number of time win-
dows ¢ increases, Ey 4, £ /2, and £3 4 rapidly become propor-
tional to ¢('~Ffer)/Fer (Fig. 3). Such a power-law asymptotical
behavior implies self-similarity.'*" As a matter of fact, {(E),

Ea Ein Eya
12000} v Y Y
10000 i
8000
6000
4000

2000

20 40 60 80 100 120 <E>100

Fig. 2. The distribution, i.e., histogram, of the r-average (E), = (E,
+---+ E;) /1 for t=100. Each of the summand E; varies randomly accord-
ing to Eq. (1). (The lower cutoff is taken to be a = 1.) The nth quartile is
indicated by an arrow labeled with £, (n=1, 2, 3). The average (E),
shows a long tail as its component E; does. However, the former distribution
does not depend on the specific details of the latter distribution. Note that
the exponent fige governing the tail of the E; distribution is of primary
importance.
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Fig. 3. Quartiles £/, £,/ and Esps of the (E), distribution are plotted
against 1 (flgg = 2/3 and @=1). The almost linear dependence in the
log—log plot indicates that the quartiles vary according to a power law of the
number of samples ¢, This behavior is contrasted with the usual behavior of
distributions converging towards a constant value (mean). A dashed line
shows the theoretical limit £/, =~ 4,071~ fad box a5 1 — 400,

scaled by 11 =For) /B converges to a universal distribution
(Fig. 4). By contrast, in the case of a distribution with a finite
mean, the typical value £, /> and the width £3/4 — E} 4 of the
distribution converge, as t increases, to expected value ji and
zero, respectively, so that the average £, converges to it with
certainty. The certainty and constancy are both not achieved
in the present case. In another case, certainty holds true
while constancy is violated.*" As mentioned before, the limit
distribution of (E), is Lévy’s distribution. In the present
case, the scaled average (E),/i\! fon)/Far obeys the distribu-
tion S(x; fgr, 1,7,0), so that the median of (£) varies as
4.07ar"~Far)/For with foe = 2/3 in the t — +oo (see the
Appendix for the meaning of the Lévy distribution variable).
This theoretical result is plotted with a dashed line in Fig. 3.
To compare the above results with empirical data, shallow
earthquakes (i.e., of depth <70km) in the global CMT
(Global Centroid-Moment-Tensor Project) catalog covering
the period 1977-2017 were analyzed.””***! The total num-
ber of events is 40390. Dividing the period of 41 years
(14984 days) into consecutive t days, we evaluated the
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Fig. 4. Distributions, i.e., histograms, of the scaled variable (E), /! ~Fo)/fex
for 1= 100, 1000, and 10000 (fzg = 2/3 and a = |). Each of these distribu-
tions is numerically obtained from 100000 simulations. For comparison, the
solid curve corresponds to a Lévy distribution (see the text).

average (F), in Eq. (2) by regarding £, as the energy released
in day k. Figure 5 is the t-dependence of the median of this
average. As can be seen, the median and therefore (),
increases as ¢ grows larger. Although it may seem counter-
intuitive, Fig. 5 shows that the rate of energy release depends
on the width of the considered time window. This is an imme-
diate consequence of the fact that there is no upper cut-off for
the power-law distribution. When the average is ill-defined,
owing to the long tail of the power-law distribution, it should
strongly depend on the presence or absence of outliers on the
tail, i.e., extremely large events of extremely rare occurrence.
It, thus, varies with the width of the observation window,
because wider time frames are more likely to contain outliers.

IV. DISCUSSION

It is often stated that the power-law distribution of earth-
quakes indicates the absence of a characteristic scale. An
upper bound scale is introduced only if the finite size of the
system, the Earth’s crust, is taken into consideration.
However, the expression of the median of the probability dis-
tribution provides a characteristic scale that is almost inde-
pendent of the upper bound scale. The median of the
probability distribution in Eq. (1) is £y = 2'/forg =~ 2 8a.
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Fig. 5. The median E| , of the i-day average (E), of earthquake energy is plotted against 1 (Refs. 29, 30, and 41). A steady increase in the median £}, and
therefore of {E},, shows the absence of an upper cutoff in the power-law tail of the earthquake size distribution. The left panel is a normal plot. The right panel
is a log—log plot of the same data, where a dashed line shows £y, o 11 =Fa)/fex |t should be remarked that the lower cutoff is provided by practical incom-

pleteness of the data catalogue (Refs. 29, 30, 32, and 41).
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Similarly as for the upper limit, the attempts to find the lower
limit a have not yielded reliable results. Indeed, the lower
limit can be extremely small: molecular dynamics simula-
tions®® and laboratory experiments®* suggest that the self-
similarity extends to the molecular scale. The present results
should open a new way for investigating elusive boundary
scales at both ends.

More generally, the example of earthquakes’ sizes shows
that we should not a priori assume that a distribution has a
finite mean (expected) value. This implicit assumption comes
from our everyday experiences. In most cases, the significance
of expected value is warranted by the law of large numbers,
which allows us to ignore the distinction between the measured
result of a given sample (the average) and the theoretical
property of a probability distribution (the expected value).
However, an infinite or undefined expected value, when it
occurs, does not necessarily cause a practical difficulty. It does
not necessarily mean that each realization has an infinite or
indefinite result. In fact, there are abundant interesting statistics
in which the mean value is not a valid indicator of the typical
outcome.'! In this respect, it should be remembered that the
power-law distribution, also known as the Pareto distribution
in economy and sociology, was originally discovered in study-
ing the distribution of wealth in a society, i.e., a large pomon
of wealth is held by a small fraction of the population.™®
Power-law distributions occur in a diverse range of natural
phenomena mcludmg the sizes of earthquakes, moon craters,”
solar flares,”” and rainfall depths.*® The recent surge of interest
in scale-free networks shed a new light on the power-law dis-
tributions in the number of cntatlons of scientific papers,” the
number of hits on web pages,*’ and other network-related
phenomena.

V. CONCLUSION

While we took earthquakes as an illustrative example, simi-
lar applications may be found in many other power-law phe-
nomena. For distributions with an undefined mean, the median
provides a well-defined measure of a typical outcome.
Accordingly, it is a good practice to monitor whether and how
median varies as the sample size grows. In so doing, we find
pedagogical value especially in taking a critical view on a non-
trivial assumption that the average of sample data should
approach to a definite value as sample size increases indefi-
nitely. The present study shows that the violation of the law of
large number does not mean the absence of any rule, while its
empirical verification may require to collect a large set of data.
It is generally a formidable task to show unequivocally that the
underlying distribution obeys a power law, because it requires a
significant amount of data ranging over several orders of mag-
nitude. Still, it is straightforward just to find an indication of the
absence of a well-defined mean. Thus, it is instructive to remind
that the long tail of the underlying distribution is predicted from
the manner in which the median varies.
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APPENDIX: LEVY DISTRIBUTION

The Lévy distribution, or also known as the stable distri-
bution, S(x; «, B, 7, gt) is defined by

500, 8,7, 1) =%f $(r)e™dx, (A1)
where - |

¢(1) = exp(ipt — y*|e]*(1 — ifsgn(w(x, ),  (A2)

w(a, 1) = tan (ne/2), (A3)
and  w(a,?) = tan(me/ 3) a#1 and w(a,1)

= —2/znlog|y!| for a=1. The parameters o and f are real
constants satisfying 0 < a <2and -1 < < 1, whiley >0
is a scale parameter. In the case of « =2 and =0, the distri-
bution reduces to a Gaussian distribution with variance 2y2
and mean p.

The generalized central limit theorem states that the super-
position (3 i, X;) of independent, identically distributed
random variables (X;) converges to S(a, B,7,0). According
to a theorem by Gnedenko and Kolmogorov,” for a random
variable X; obeying a probability distribution,

cyx @) for x - o0
flx) ~ —(e+) ' (Ad)
_ c-|x| for x — —oo,
where ¢, and c_ are positive constants, we obtain

Vo= B = (0, S B3,0), (A9)

for 0 < a < 1, where the expected value (X), = >/ Xi/n
diverges as n — oo. The parameters § and y are given by

C.—C_

B= = (A6)
and
_ mles +c)  \V*
r= (Za sin (na/Z)l"(a)) ! (A7)

where I'(z) = [;° x*~'e *dx is the gamma function.’

In the present case of Eq. (1), we have ¢, = fgraf®r, o
=Per=2/3 and c_ =0, so that f=1, y=(n/2/
sin (2Bgr/2)/T(Bor))"/*o*a and (), /nl!~P)lber ~ (B,
1,7,0), which has a median of 4.074 32a.

'M. E. J. Newman, “Power laws, Pareto distributions and Zipf’s law,”
Contemp. Phys. 46, 323-351 (2005).

2P. Lévy, Théorie de I'Addition des Variables Aléatoires, 2nd ed.
(Gauthier-Villars, Paris, 1954).

3B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of
Independent Random Variables (Addison-Wesley, Reading, 1954).

T. Okabe and J. Yoshimura 504



*W. Feller, An Inniducrion to Probability Theory and Its Applications,

Vols. 1 and 2 (Wiley. New York, 1971).

SA. Gut, Probability: A Graduate Conrse (Springer Texts in Statistics,
Springer, New York, 2012).

SM. F. Shlesinger, G. M. Zaslavsky, and U. Frisch, in Levy Flights and
Related Topics in Physics (Springer-Verlag, Berlin. 1995).

M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter, “Strange kinetics,”
Nature 263, 31-38 (1993).

M. F. Shlesinger, J. Klafter, and Y. M. Wong, “Random walks with infinite
spatial and temporal moments,” J. Stat. Phys. 27, 499-512 (1982).
E. W. Montroll and H. Scher, “Random walks on lattices. IV. Continuous-time
walks and influence of absorbing boundaries,” J. Stat. Phys. 9, 101135 (1973).
'"M. F. Shlesinger, “Asymptotic solutions of continuous-time random
walks,” J. Stat. Phys, 10, 421-434 (1974).

1j.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered
media: Statistical mechanisms, models and physical applications,” Phys.
Rep. 195, 127-293 (1990).

12R, Metzler and J. Klafter, “The random walk’s guide to anomalous diffu-
sion: A fractional dynamics approach,” Phys. Rep. 339, 1-77 (2000).

BF, Bardou, J.-P. Bouchaud, A. Aspect, and C. Cohen-Tannoudji, Lévy
Statistics and Laser Cooling (Cambridge U. P., Cambridge, 2002).

ME, Bertin and F. Bardou, “From laser cooling to aging: A unified Lévy
flight description,” Am. J. Phys. 76. 630-636 (2008).

M. F. Shlesinger, J. Klafter, and G. Zumofen, “Above, below and beyond
Brownian motion,” Am. J. Phys, 67, 1253-1259 (1999).

1D, Bernoulli, “Specimen theorine novae de mensura sortis” [Transl.
“Exposition of a new theory on the measurement of risk” by L. Sommer
1954], Econometrica 22, 23-36 (1738).

17T, Utsu, “Representation and analysis of earthquake size distribution: A historical
_review and some new approaches,” Pure Appl. Geophys. 155, 509-535 (1999).

'8p, Bak, How Nature Works: The Science of Self-Organized Criticality
(Copernicus, New York,1996).

198, D. Malamud, “Tails of natural hazards,” Phys. World 17, 31-35 (2004).

" 298, Gutenberg and C. F. Richter, “Seismicity of the earth,” Geol. Soc. Am.
Spec. Pap. 34, 1-131 (1941).

2K, ‘Wadati, “On the frequency distribution of earthquakes,” Kishoshushi
(J. Meteorol. Soc. Jpn.), Ser. 2 10, 559-568 (1932) (in Japanese).

22p, Buk, K. Christensen, L. Danon, and T. Scanlon, “Unified scaling law
for earthquakes.” Phys. Rev. Lett. 88, 178501 (2002). .
2y Y. Kagan. Earthquakes: Models, Statistics, Testable Forecasts (Wiley,
New York, 2014).

2D, Vere-Jones, R. Robinson, and W. Yang, “Remarks on the accelerated
moment release model: Problems of model formulation, simulation and
estimation,” Geophys. J. Int. 144, 517-531 (2001).

251 G. Main, L. Li, J. McCloskey. and M. Naylor, “Effect of the Sumatran
mega-earthquake on the global magnitude cut-off and event rate,” Nat.
Geosci. 1, 142 (2008).

25G. Zoller, “Convergence of the frequency-magnitude distribution of globul
earthquakes: Maybe in 200 years.” Geophys. Res. Lett. 40, 3873-3877,
hittps://doi.org/10.1002/grl.50779 (2013).

TA. F. Bell, M. Naylor, and 1. G. Main, “Convergence of the frequency-size
distribution of global earthquakes,” Geophys. Res. Lett. 40, 2585-2589,
https://doi.org/10.1002/gr1.50416 (2013). '

28, L. Geist and T. Parsons, “Undersampling power-law size distributions:
Effect on the assessment of extreme natural hazards,” Nat. Hazards 72,
565-595 (2014).

G, Ekstrom, M. Nettles, and A. M. Dziewonski, “The global CMT project
2004-2010: Centroid-moment tensors' for 13,017 earthquakes,” Phys.
Earth Planct. Int. 200-201, 1-9 (2012).

30T, A. Chou. A. M. Dziewonski. and J. H. Woodhouse, “Determination of
earthquake source | from form data for studies of global
and regional seismicity,” J. Geophys. Res. 86, 2825-2852, hutps://doi.org/
10.1029/JB086iB04p02825 (1981).

31T, Okabe, M. Nii, and J. Yoshimura, “The median-based resolution of the
St. Petersburg paradox,” Phys. Lett. A 383, 125838 (2019).

32y, Y. Kagan, “Accuracy of modem global earthquake catalogs,” Phys.
Earth Planet. Inter. 135, 173-209 (2003).

33A. Omeltchenko, J. Yu, R. K. Kalia, and P. Vashishta, “Crack
front propagation and fracture in a graphite sheet: A molecular-
dynamics study on parallel computers,” Phys. Rev. Lett. 78, 2148-2151
(1997).

345, Fineberg and M. Marder, “Instability in dynamic fracture,” Phys. Rep.
313 1-108 (1999).
35V, Pareto, Cours d’ Economie Politique (Droz, Geneva, 1896).

3G, Neukum and B. A. Ivanov, “Crater size distributions and impact probu-
bilities on earth from lunar, terrestrial-planet, and asteroid cratering data,”
in Hazards Due to Comets and Asteroids, edited by T Gehrels (University
of Arizona. Tucson, 1994), pp. 359-416.

S7E. T. Lu and R. J. Hamilton, “Avalanches and the distribution of solar
flares,” Astrophys, J. 380, L89-L92 (1991).

M. A. J. van Montfort, “The generalized Pareto distribution applied to
rainfall depths,” Hydrol. Sci. J. 31, 151-162 (1986).

D, J. de Solla Price, “Networks of scientific papers,” Science 149,
510-515 (1965). :

. A. Adamic and B. A. Huberman, “The nature of markets in the world
wide web ," Q. J. Electron. Commerce 1, 5-12 (2000).

41See supplementary material at hups://www.scitation.org/doi/suppl/10.1119/

10.0010261 for the data for time and energy of earthquakes used in this study.

00H, CAURRNIA HAS
A NEW) EARTHOUAKE
EARLY WFRNING AP

YEAH, IM SO
MAD ABOUT I

1

WHAT? \WHY?

IT RUNS THE EXPERINCE
OF TRYING 7O RECOGNIZE.
THE P-UAVES BEFORE. THE
0BVIOUS MAN WAVES HIT.

kL

S0 YOURE MAD ABOUT

EARTHOUAKE. SPOILERS?
I JUST WANT
T EAPERENCE
THE SHAKING THE
WAY THE TECTONIC
PLATE INTENDED!

3

I was fired by the National Weather Service five minutes after they hired me for going into
their code base and renaming all the tornado warnings to “tornado spoiler alerts.”

(Source: https://xked.com/2219/)
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