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Supplemental Text S1 

Preparation of Escherichia coli MG1655RGFP 

pJBA28-harboring E. coli and helper E. coli with pRK2013 were grown overnight in 
LB with the appropriate antibiotics at 37°C and 200 rpm, and a spontaneous Rif-
resistant strain of MG1655 was grown in LB with Rif at 37°C and 200 rpm. After 
harvesting and washing with LB, the resultant cultures were mixed and subjected to 
filter mating (37°C overnight). Then, the mixture on the filter was resuspended in LB 
and spread on an LB + Rif +Km agar plate. After incubation of the selective plates for 
two days, colonies with GFP fluorescence were picked and isolated. The resulting 
strain was named E. coli MG1655RGFP. The GFP gene was inserted into the borD 
gene of MG1655 (578584 nt, GenBank accession no. NC_000913) (Table 6). 

Preparation of Pseudomonas putida KT2440G 

pBSL202-harboring E. coli S17-1 was grown overnight in LB with the appropriate 
antibiotics at 37°C and 200 rpm, and Pseudomonas putida KT2440 was grown in LB 
with Tc at 30°C and 200 rpm. After harvesting and washing with LB, the resultant 
cultures were mixed and subjected to filter mating (30°C overnight). The mixture on 
the filter was resuspended in LB and spread on LB + Gm +Tc agar plates. After 
incubation of the selective plates for two days, colonies with Gm resistance were 
picked and isolated. The resultant strain was named P. putida KT2440G. The Gm 
resistance gene was inserted into PP_4780 of KT2440 (GenBank accession no. 
NC_002947) (Table 6). 

Plasmid sequencing using next generation sequencing. 

Plasmids pSM0227-02, pSM0227-07, pYK0413-01, pYK0414-12, pYK0422-04, 
pSN0517-01, pMH0621-02Tc, pMH0621-12, pMH0613-68, pMH0621-74, pYK0709-
71, and pYK0709-104 were extracted from their hosts and sequenced using the 
MiSeq platform (Illumina, San Diego, CA), as described previously (1). Briefly, the 
plasmid DNA was fragmented using the Covaris Acoustic Solubilizer (Covaris, 
Woburn, MA, USA), and paired-end libraries were prepared using the TruSeq DNA 
PCR-Free Library Prep Kit or the TruSeq Nano DNA Library Prep Kit (Illumina). Raw 
sequence reads (301-bp paired-end) were filtered using Trimmomatic v. 0.39 (2) by 
removing adapter sequences, the last 301st base, low-quality ends (quality score, 
<15), and reads less than 150 bp. High-quality reads were assembled using SPAdes 
software (3) with a default set of k-mer sizes, and the resultant contigs were 
manually closed by removing the 127-bp overlapping ends. The finished sequences 
were confirmed by mapping the high-quality reads using BWA-MEM v. 0.7.15 (4) and 
visualized using the Integrative Genomics Viewer (5). 

For the other plasmids, the whole genomic DNA extracted from their hosts was 
sequenced using the HiSeq2500 platform (Illumina). Trimmed high-quality short 

https://paperpile.com/c/fDbFb2/MDKJ
https://paperpile.com/c/fDbFb2/dfaO
https://paperpile.com/c/fDbFb2/rUS8
https://paperpile.com/c/fDbFb2/GG8H
https://paperpile.com/c/fDbFb2/Zf22


reads (read length > 140 bp and quality score > 15) were assembled using SPAdes 
software with the plasmid option. When a circular contig(s) could not be found, the 
host chromosomal DNA was removed by mapping the resultant contigs on the host 
genome sequences [their deposited sequences, i.e., DDBJ/GenBank accession 
numbers NC_000913 (E. coli MG1655) and NC_021499 (P. resinovorans 
CA10dm4)] using Geneious software (6). The plasmids (s) were then extracted from 
the remaining contigs using SAMtools v. 1.7 (7) and SeqKit v.0.8.0 (8), and 
reassembled using SPAdes. For pMNBM077 and pMNCG080-1, gaps in plasmids 
were closed using in silico analyses, PCR, and Sanger sequencing of the PCR 
products.  

For pMNBM065-2, pMNCF070, pMNBM072, pMNBL073, pMNCF075, pMNCF091, 
pMNCF092, pMNCF093-1, pMNCF093-2, pYKAM101, pYKCG107, and 
SMRTbell™, template library was prepared according to the instructions provided by 
Pacific Biosciences (Menlo Park, CA, USA). SMRT sequencing was performed using 
the PacBio RS II System (Pacific Biosciences). PacBio subreads were filtered (read 
quality > 0.8) using Bamtools v. 2.5.1 (9), and assembly of the multiplexed plasmid 
pools was performed using Canu v. 2.1.1 (10) with the miniReadLength=5000 
setting. The resulting contigs were polished using Arrow v. 2.2.2 
(https://github.com/PacificBiosciences/GenomicConsensus) and then circularized by 
removing artificial redundancies at the ends of the contigs. Except for pYKAM101 
and pYKCG107, the high-quality short reads derived from HiSeq were aligned 
against the polished circular contigs using BWA-MEM, and assembly errors were 
corrected using Pilon v. 1.23 (11). 

Preparation of mini-plasmids of IncP/P-1 plasmids and PromA plasmids. 

The mini-plasmids of IncP/P-1 and PromA plasmids were constructed using the 
NEBuilder HiFi DNA Assembly Master Mix (New England Biotech). The DNA regions 
containing ssb-trfA and oriV of IncP/P-1 plasmids (several of which did not possess 
ssb) or repA and oriV or PromA plasmids were amplified by PCR with the primer sets 
listed in Table S3, using each plasmid as template DNA. Km or Tc resistance genes 
were amplified using pBBR1MCS-2 or pBBR1MCS-3 as template DNA, respectively. 

Transferability of plasmids. 

Filter mating assays of IncP/P-1 plasmids between E. coli and Pseudomonas strains 
were performed as described previously (1). The transferability of each plasmid was 
assessed using a mobilizable plasmid with antibiotic resistance gene (pBBR1MCS-2 
or pBBR1MCS-3) as a marker. As for the recipient E. coli, kanamycin- or 
tetracycline- resistance gene was introduced into the chromosome of E. coli 
MG1655R by using pBSL202 or a mini-Tn10 delivery vector, pBSL182 or pBSL199 
(12) with strain S17-1 as described in “Preparation of Pseudomonas putida
KT2440G” section. The resultant strains were named as MG1655RG, MG1655RK,
MG1655RT, respectively.

https://paperpile.com/c/fDbFb2/8213
https://paperpile.com/c/fDbFb2/syY7
https://paperpile.com/c/fDbFb2/OiOz
https://paperpile.com/c/fDbFb2/Fv6W
https://paperpile.com/c/fDbFb2/ln1c
https://paperpile.com/c/fDbFb2/Df4u
https://paperpile.com/c/fDbFb2/MDKJ
https://paperpile.com/c/fDbFb2/bOPI


Preparation of gfp-tagged plasmids. 

For pSN1104-11gfpTc, pK18mobsacB-based plasmids for homologous 
recombination (pK18_1104-11) were constructed using the NEBuilder HiFi DNA 
Assembly Master Mix (New England Biotech). Competent cells of E. coli JM109 
(RBCBioscience) were used for transformation. A DNA region containing the 
PA1/O4/O3-gfpmut3* and tetA genes were amplified with primers designed using 
NEBuilder v1.12.17 (http://nebuilder.neb.com/) (Table S3). pJBA28 and 
pBBR1MCS-3 were used as template DNA. The insertion site was located in the 
inner region of the orf45. The 1-kb DNA regions upstream and downstream of the 
target sites were amplified by PCR using the primers listed in Table S3. The 
resultant products were inserted into the HindIII site of pK18mobsacB using 
NEBuilder HiFi DNA Assembly Master Mix. Competent cells of E. coli JM109 
(RBCBioscience) were used for transformation. After homologous recombination, the 
nucleotide sequences on the target plasmids were determined to confirm the 
accurate insertion of tetA-PA1/O4/O3-RBSII-gfpmut3* into the target sites. For 
pSN0729-62::gfp, mini-Tn5 with the Km-

resistance gene and PA1/O4/O3-RBSII-gfpmut3*-T0-Cmr-T1 region in pJBA28 were 
introduced using E. coli S17-1λpir, as described previously (13, 14). The insertion 
site of the gfp cassette was determined as previously described (15). 

Resistance testing. 

Resistance testing for the host of each obtained IncP/P-1 plasmid (Table 3) was 
performed. For this testing, ampicillin (Ap, 50 μg/mL), erythromycin (Em, 25 μg/mL), 
chloramphenicol (Cm, 30 μg/mL), kanamycin (Km, 12.5, 25, 50 μg/mL), gentamicin 
(Gm, 30 μg/mL), streptomycin (Sm, 25, 50 μg/mL), and tetracycline (Tc, 12.5 μg/mL 
for E. coli and 50 μg/mL for E. coli) were added to Luria broth. It should be noted that 
the Pseudomonas strains are naturally resistant to Ap. The hosts of IncP/P-1 
plasmids with bla genes including pYKBF005, pYKCT011-1, pYKBP039, pYKBL037, 
pYKBR041, and pYKCS045 were P. resinovorans CA10dm4RGFP carrying another 
mobilizable plasmid, pBBR1MCS-2 (with Km-resistance gene). Then each IncP/P-1 
plasmid was transferred from the above strain to E. coli MG1655 with mini-
pBBR1MCS-3 (removing the mob region from pBBR1MCS-3) using Ap and Tc. 
Subsequently, the pBBR1MCS-2 in each transconjugant was lost owing to 
incompatibility, and resistance testing was performed for the resultant E. coli strains 
(Table 3). 
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Figure S1. Phylogenetic analyses of IncP/P-1 plasmids with the reference plasmids using nucleotide sequences of 
trfA (A) and traI (B) and amino acid sequences of TrfA (C) and TraI (D) by maximum likelihood method with 
bootstrap percentages at nodes (Tamura-Nei model). A solid bar (0.050 or 0.10) shows substitutions per 
nucleotide position (A, B) or amino acid position (C, D). plasmids obtained by biparental mating are shown in 
blue, those by triparental mating are shown in red, and the other reference plasmids are shown in black.
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Figure S2. Phylogenetic trees of IncP/P-1 plasmids with the concatenated nucleotide sequences of 28 
conserved genes (see Table 2), constructed using the neighbor-joining (a) and minimum evolutiona 
method (b), with bootstrap percentages at nodes; plasmids obtained by biparental mating are shown in 
blue, those obtained by triparental mating are shown in red, and the other reference plasmids are 
shown in black. The GenBank accession numbers of the reference plasmids are shown in Figure 2 
legend. A solid bar (0.050) shows substitutions per nucleotide position.
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Figure S3. Alignment of pMNCG080-1 and pMNCG082-1. CDSs and their predicted functions (red for replication, green for 
conjugation, yellow for other genes in IncP/P-1 backbone, light blue for genes related to mobile genetic element, magenta for 
accessory genes, and gray for hypothetical proteins). Homologous regions are indicated by frame areas.
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Figure S5. (A) Phylogenetic analyses of the concatenated amino acid sequences of DNA binding domain (DBD) 
and winged helix-turn-helix (WH) motifs of TrfA proteins of IncP/P-1 plasmids by maximum likelihood method 
with bootstrap percentages at nodes (Tamura-Nei model). pBP136 and RK2/RP4 are highlighted. Only the topology 
is shown. (B) Partial alignments of the conserved regions of DBD (148-168 aa in TrfA of RK2) and WH motifs 
(339-350 aa in TrfA of RK2) with the important amino acid residues interacting with iterons. The amino acid 
residues in TrfA of RK2 reported to affect the interaction with DNA (ref. 16) are shown in red. The conserved 
amino acid residues in the other IncP/P-1 plasmids are marked yellow, whereas non-conserved residues are marked 
red. (C) Consensus sequences of putative iterons of each IncP/P-1 subgroup made by WebLogo (ref. 17).
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Figure S6. Phylogenetic trees of PromA plasmids with the concatenated nucleotide sequences of 24 
conserved genes, constructed using the neighbor-joining (A) and minimum evolution method (B), with 
bootstrap percentages at nodes; a plasmid obtained by biparental mating is shown in blue, while those 
obtained by triparental mating are in red, and the other reference plasmids are shown in black [the 
plasmids obtained by our previous study (ref. 1) is shown in bold]. The GenBank accession numbers 
of the reference plasmids are shown in Figure 3 legend. A solid bar (0.050) shows substitutions per 
nucleotide position. 
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Figure S7. Comparisons of the whole genetic structure of PromA plasmids 
obtained in this study and our previous study (ref. 1). CDSs and their predicted 
functions (red for replication, green for conjugation, yellow for other 
conserved genes in PromA plasmids, magenta for other functional genes, gray 
for hypothetical proteins). Homologous regions are indicated by frame areas.
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Figure S8. (A) Structure of repA and the oriV flanking region of pSN1104-11 (PromAγ) and pSN0729-62 
(PromAδ). The mini-replicon of each PromA plasmid [pMH0613-68 (PromAβ-1), pYK0414-12 (PromAβ-2), 
pSN1104-11 (PromAγ) and pSN0729-62 (PromAδ)] was constructed by using DNA regions shown in two 
solid lines, repA, and oriV. Note that putative genes encoding primase and single strand DNA binding protein 
(Ssb) were neither conserved in pMH0613-68 (PromAβ-1) nor in pYK0414-12 (PromAβ-2). The red arrow 
indicates the repA gene, and colored triangles show putative iterons (orange) and DnaA boxes (green) with 
their direction. (B) Consensus sequences of putative iterons of the above four plasmids are shown [made by 
WebLogo (ref. 17)].


