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1 Introduction

In the sequel the set of all N by n matrices with real elements is simply denoted by R™,
Let f be a real valued function defined on R"N and suppose that

‘(Al) f is asymptotically linear, i i.e., there exist constants m and M such that

mp| < f(p) < M(1+ |p|).
and

(A2) f is quasiconvex, i.e.,

))dz > f(po)

for each bounded domain D C R", for each py € R™", and for each ¢ € [Wy"™(D)]". |

In the author’s previous work [4] he treated a system of second order quasilinear hyperbolic
equations

2 n
Oy . (t z) — Z——a{f,,,;(w(t,x))}zo, i=1,2,...,N
ot — Oz ,

in a bounded domain 2 C R" and obtained that a sequence of approximate solutions to this
equation constructed by Rothe’s method converges to a function u in L((0, T); L2(€2) N
- BV(Q)), and that, if u satisfies the energy conservation law, it is a weak solution in the
space of BV functlons In this article we are going to investigate linear apploximation to this
system. Let ¢ be a positive number. Our purpose is to investigate the behavior as ¢ — 0 of
a weak solution to \

. 2 i n
(1.1) %t%(t, -3 %{%f,,; EVu(ta)} =0, s€9 i=12..,N

j=1

with initial and boundary conditions

(1.2) u(0,7) = ug(a), g—“(o z) = v0($) - zeq,
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(1‘.3) ’ Cu(t,z) =0, € ‘ |

Let us put f.(p) = elz( f(ep) — £(0)). The relaxed functional of the functional u —
/Q f(Vu(z))dz in the L(Q2) norm, which is denoted by J, is finite for u € [BV(2)]N and
is expressed as :
(1.4 Je(w9) = [ f(Vu@)ds+ 2 [ folGrd D,

where Du = D% + D*u (absolutely continuous part and singular part with respect to L")
D%y = L™L Vu. Indeed (f:)w(p) is defined as, for p € R",

s (fe(p) = liriljélp fe(;)p = lim j&lp S—Qf (6;)/) = %foo(p)'

Thus we find (1.4) (compafe to [1, Theorem 5.47]). Similarly to the scalar case the most
appropriate weak formulation of Dirichlet condition (1.3) is to replace J,(u, Q) with J(u, Q).
The functional J.(u, ) is expressed as

(16) To(w,0) = Jo(w,0) + - [ fuoloru x ),

where 7 denotes the inward pointing unit normal to Q2 and H* denotes the k-dimensional
Hausdorff measure. '
We further suppose that -

(A3) f € CHR™) and f, € WH(R™) 0 L=(R™)
(A4) there exists a positive constant co such that, for each ¢ € Wy (Q),
' IVel®

| 5(99): Vodz 2 o [ Ry

Suppose that ug € [L*(Q) N BV(Q)]Y and vy € [L3(Q)]". Following to [4] we define a
BV solution to (1.1)—(1.3) as .

Definition 1 A function u is said to be a BV solution to (1.1)~(1.3) in (0,T) x © if and -
only if ‘ '

i) u € [L2((0,T); BVQ)Y, w € [L3((0,T) x N
ii) (0, z) = up(z)
iii) for any ¢ € [C5([0,T) x )]V,
| (- [ wib(t, )i + /Q % FoeVu) : Va(t,2)de}dt = [ v0(z)(0, 2)d
iv) for any ¢ € C3([0,T)),
/ {- / us (Y u+ Y(t)ug)dz + ¥(t) / —fp(eVu) : Vudz

dD’u
+ "p(t /{;gfoo dIDs !

= zb(O)/Qvo(:v)uo(x)dx.

s )d|Dul + (¢ / 2 foo(yu ® 7)dH 1}t



Let us put f,; v (0) = af‘jﬂ and write
N n n &%ud
=4> Zaaﬂ ¢ i=1,2,...,N).

ij ;
imlamipm | 0z°0zf

Our man theorem is as follows:

Theorem 1.1 Suppose that uy € Wy*(Q) and v, € L3(Q) and that ¢ is a BV solution
to (1.1)—(1.3) n (0, T) x Q. We further suppose u° satisfies energy inequality: for L'-a.e.
te(0,7),

(1.7) f i (¢, @) Pdz + T (a5, ), T) < % [ 1ool?dz + J. o, )
Then there ezists a function u such that 4

D). {lluf lzeo(o,ryz2(0)) } i uniformly bounded with respect to ¢
. 2). {|lu®||zeo(o,m)sL2()nBV () } @8 uniformly bounded with réspect to e

3). u® converges to u as € — 0 weakly star in L>((0,T); L?(Q2))

4). uf converges to u; as s‘—> 0 weakly star in L*((0,T); L*(2))

5). uf Vconverges to u as € = 0 strongly in LP((0,T) x Q) for each 1 <p < 1*

6). for L'-a.e. t € (0,T), Du‘(t,-) converges to Du(t,-) as € — 0 in the sense of distribu-
tions

7). u € L®((0,T); Wp*(9)) N W2((0,T) x Q)
- 8). u is a weak solution to

Ut — Lu= 0, (t, .’L‘) € (O, T) X Q)

, u(0, z) = ug(z), z €N
(1.8) u:(0, z) = vo(z), T e
u(t,z) =0, z € 00.

2 Proof of Theorem 1.1
First we show the following technical lemma.

Lemma 2.1 For each v € [BV(Q)]N,

. o
w92 2, Vol e+ Lip)(@).
TtV +1 e



Proof. For each v € [BV()]" there exists a sequence @, € C'(£2) such that ¢ — v
strongly in [L'(?)]" and
(2.1) Jim J, (96, ) = Je (v, Q).

While, we have

(2.2) lim inf [Veor|

A T

= —hmmf/ 1+ ¢e2|Vy|? — 1)dz > —/(\/1 +e2|Dv|?2 - 1)
2

- [ — 2D%l(@).

Q4 /1+4€2|Vo|2 + 1

£lo) = = [ foletm) : pa,

Noting that

we héve by (A4)

1 202 2 2
23) Loe® > [ o [ e26°| Vil dodo > 2 | Vo] "
0 /a9, /14202 Vi + 1 T

Combining (2.1), (2.2), (2.3), we obtain the assertion. Q.E.D.

Proposition 2.2 There ezists a function u such that
1). {llugllzooryz2@))} is uniformly bounded with respect to €
2). {llv® || (o,)sL2()nBV () } @5 uniformly bounded with respect to €

3). Passing to a subsequence if necessary, u® converges to u as € — 0 weakly star in
L>((0,7); L*())

4). Passing to a subsequence if necessary, u; converges to u; as € — 0 weakly star in

L=((0,T); L*(2))

5). Passing to a subsequence if necessary, u® converges to u as e — 0 strongly in L?((0,T") x
Q) foreach1 <p<1*

;w;ueLw«OT)BV()nL%Q»

7). Passing to a subsequence if necessary, Duf(t,-) converges weakly star to Du(t,-) for
Ll-a.e. t € (0,T) as e — 0 in the sense of Radon measures

. ‘_ . 2
8). S'l‘{f& u(t) = ug in L*(Q)



Proof. By (A3) we have

24 £.9) = () :p+ [ < Splbe)pip > do

and furthermore there exists a constant C; such that | for(P)| < Ci. Since

| 550 Vu(z)dz =0,

we find

(2.5) J.(0,9) < Cy /9 |Vuo(z)Pdz.

Thus Assertion 1) immediately follows from (1.7). Since the function & — £72(,/1 + ¢2 lp|? —
1) is decreasing, we have by Lemma 2.1

(5, ) Z/QE%(\/I+|Du|2—1) > [ (/T+1Duf - 1)

Thus it also follows from (1.7) and (2.5) that {|||Du|(Q)||z=(o,r)} is uniformly bounded with
respect to £. Then Assertion 2) follows from Assertion 1) because

uE(t, ) = uo(z) + /Ot uf(s,'z)ds.

Passing to a subsequence if necessary, we have Assertions 3) and 4) by Assertions 2) and 1),
respectively. By Sobolev’s theorem BV (2) C LP(f2) compactly for each 1 < p < 1*. Then in
the same way as in the proof of [3] Proposition 5.1, passing to a subsequence if necessary, we
obtain Assertion 5). Assertions 3) and 5) imply u € L*((0, 00); BV () N L%(2)). Assertion’
7) follows from 5). Assertion 8) is obtained in the same way as in the proof of [5, Theorem
4.1]. Q.E.D.

Then, up to a.subsequence, Assertions 1) ~ 6) of Theorem 1.1 are proved in the above
proposition. Rests are proofs of Asseertions 7) and 8).

Lemma 2.3 |Vus(z)|dz + | D*u®|(Q) = 0 as e — 0.
{Ivusl21/e) \ o

Proof. By (1.7) and (2.5) we have
(2.6) | J.(@5,0) < Gy /Q Vuo(z)|?de.

’Assumption (Al) implies foo(p) > m|p|, thus we have by Lemma 2.1 and (1.6)

€2 1 .
V| dz + - |D"w*|()),

(2'7) Je(u :Q) 2 cl(/Q \/W+l ‘

where ¢; = min{co/2, m}. Putting C; = Cici’!, we have by (2.6) and (2.7)

(2.8) |~ g @ <c [ 1Vuo() Pz
' e e vepe1 e = e '



Note that
V |2 ’ 1 .
[Ver] dz + ~|D*u| ()

/{IVu=|21/s} V1+e2|Vue2+ 1 €
. 1 1 —
|Vu®|dz + E|D’u5|(Q),

> e
(V2 + 1)e J{yvue|>1/e}

and thus we have by (2.8)
Vul(z)ldz + |D*uf|(Q) < Const. €
iy V@l 1001 <
| | QE.D.

ase — 0. ’ .
Next two propositions are proved by the use of Radon measures in Q x5, and the proofs

are postponed to the next section.
“Proposition 2.4 |D*u|(Q) =0
Remark that this proposition implies, in particular, yu =0.
Proposition 2.5 u € L*((0,T); Wy (2)) N W2((0,T) x Q)

Proof of Theorem 1.1. Assertion 7) is proved in Proposition 2.5. Now the rest is the

proof of 8).

Noting
Ve |V 2dz,

rmens T |
{(Ivusi<i/e} /1 + €2|Vus|2 + 1 V2 + 1 J{vusi<i/e}

we have by (2.8)

: €12 < 2
(2.9) | /i e (VT S Ca(v2 +1) /Q Vuo(2)Pdz.

Now, for each ¢ € [C3([0,T) x Q)]¥
1 1 '
/Q(gfp(()) : V¢+/0 < fop(e0VUE) VU, Vo > db)dz

1 N B

/ngp(SVu ): Vods =
1

/Q /0 < fop(e0Vu')Vus, Vo > didz.

Now
o 1 0 . .
/{Ivu=l<1/¢}/() < fop(e0VU)VUF, V@ > dfdz
1 ‘
< pr(O)VuE, V¢ > dzx +/0 < [fpp(EHV’u,E) _ fpp(O)]VUE, Vo > ddz

_= /{IW‘I<1/6}
= I+1I.



First we have by Lemma 2.3

/Q < f,p(0)dDWF, Ve >
([ gy < IOV, V> o+ / < f(0)dD*u", Vg >)
U aB 8u 6¢
- / < fw(0)dDu, V¢ > ( /;;;;aq 528 5 0%)-
~ Next, since (A3) (Lipschitz continuity of [pp) implies
[[fop(e0VUE) — £,p(0)]Vf| < Const. €|Vus|?,
we have by (2.9)‘ |

|[II] < Const. esup |V¢| |Vt [2dz
| (vwlcye

< Const. Co(V2 + 1)esup [V /Q |Vuo(z)|2dz — 0

as € — 0 Hence, letting € — 0, we have by Definition 1 iii)

L ap OU” 6u 6¢

/{—/ wi(t, z)dz + [ ZZZZ aff S5 gemdz}dt = [ v(@)$(0,2)dz,

i=1 j=1a=1 =1

which means u satisfies (1.8) in a weak sense.

Finally the uniqueness of a solution to the linear wave equation implies the rest of the
subsequence has another subsequence that converges to the same function u. Thus we do
not have to pass a subsequence. Q.E.D.

e

3 Radon measures in Q x S,

~ Let u be a R™ valued Radon measure. Then we write its total variation as || and the
Radon-Nikodym derivative of p with respect to |u| as . In particular, p = |p|L f.
For v € [BV ()] we define an R™™*! valued Radon measure y, by

=*(—Dwv, L").

For an open set A C (2, total variation |u,| is given by
|k |(A) = Sup{/n(go +vdivg)da; (g0, 9) € CH(Q2, R™™), |gol® + |g)* < 1}

In this article, for the sake of simplicity, we write STV+! = S,
S+ — {5': (Sl, .. ',an+1) € SnN;an,+l > 0}

We also write ;
So = {5’: (81,.’._,SnN+1) € Sn;an+l — 0}

7



Then S, = S, USp. Given a Radon measure A in (Ix S, we let || denote a Radon measure

on Q defined by R
IA[(A) = AM(A x S,) for a Borel set A C .

Clearly this notation is an analogy with that of a total variations of a vector valued Radon
measure. In particular, letting A be a Radon measure in Q x 5. defined as, for a BV function

ve [BVEOQ)Y, -
CBY [, o, B@air= [ Blo faNdinl - (5€ U@,

then we have |A| = |u,|. For each Radon measure ) in Q x S, there exists a probability
Radon measure vy, on S, for |A-a.e. z € (2 such that :

/ﬁ 5 B A= /ﬁ ( /g ) @(m, Hdna)dA|  (BeC'@xTL)

(for example, Theorem 10 of page 14 of [2]). Using these notations, we often write A =
|A| ® va.. In particular, if A is as in (3.1), then A = |py| ® 9z, (z)-

Let u¢ and u be as in Proposition 2.2. In the sequel we simply write g = fye(r,) and
M = Mut). Now we define a one parameter family of Radon measures in © X S, by
Xe = |f| ® Oz (z)- Proposition 2.2 2) implies

(3.2) ess.sup| |_ _ B(z,5)dX;| < Csup|B|

t>0 OxS4

for some constant C independent of e. Thus we obtain the following theorem by‘ a standard
compactness argument (compare to [3, Proposition 4.3]).

Lemma 3.1 There ezists a subsequence of {} (still denoted by {e}) and a one parameter
family of Radon measures X in xS, t € (0,00), such that, for each ¥ € L'(0,00) and
13 € CO(Q X S—i—)) ‘

m [ ¥() /_ . Bla S)dxide = /0°°¢(t) /ﬁ 5, Bl Nt

li
e—=0Jo axS
Now we sum up properties of ;.

Lemma 3.2 For L!-a.e. t € (0,00),
1). p = |Ae|L Sdvy, x
). = IxdL [ s,
2). |Adl(A) > |wel(A) for each Borel set A C Q
3). |Al(A4) = AD|#t||At|(m)dlut|+(|At| L Z)(A) for A C Q, where D,,|| )] is the derivative

~ of | \e| with respect to || and Z is the | p|-null set defined by Z = {z; Dy, | M| (x) = oo}

4). /E Sdvy, . = 0 for |M|LZ-ae. z
+ .



5). spt vy, o C Sp for | AL Z-a.e. z.
6). |D*ul(Q) < A(Q x Sp).
Proof. 1) For any g € C°(Q; R""*') and ¢ € L'(0, o0)
v [o@dmdt = [" vl [ @)z + [ g'(x)aDulds |
= linJ, VO o ws + [g@awla =ty [T o) [owhapiar

e—=0
) 00 e
= lim | 000 [o@mdiilar = lim [v) [ ole) - sixia

= [0 [ . o@- six(a, it = [~ (1) [ (o) . s, )diadat,

0

where A{ = |u¢| ® 0zs(z). This shows assertion 1). ‘ \
~ 2) First we consider the case that A is the intersection of an open set and (2. By assertion
1) we have, for any g € C°(4; R™V*1), :

| 9@l < [ lo@din < suplglind(4).

Taking suprémum with respect to g € C°(A4; R™*') with |g| < 1, we obtain u,(A4) < [ Al (A).
Let A be any Borel set. For each open set O with A C O, p,(4) < 1, (0NQ) < |MJ(ONQ).

Thus, since inf _|A](O N Q) = |A¢|(A), we have (A) < |A|(A).
ACON®

3) It is the direct consequence of the differentiation theory for Radon measures (see, for

- example, [6, Theorem 4.7]).
4) By assertions 1) and 3) we have, for any g(z) € C°(€; R*V*),

0= /Zg(:c)d,ut = /Zg(:)s)(/§+ §dv, z)d| A

This shows assertion 4).
5) By 4), in particular, we have /g s"N Hdw,,x =0 for |\¢|L Z-a.e. z. Since s"N*t! > 0,
+ .
we have s"N*t! = 0 for vy, ;-a.e. for |\;|L Z-a.e. z. Thus assertion 5) holds.
6) By 1) and 3) we have, for y;-a.e. z € Q,

UM 2) = Dy Ad@) [ 5™V din, e

+

Then, since Dlﬂtll/\tl(x) > 1 for |ul-ae. z € Q, PN *(z) = 0 implies

/; SnN+1dI/,\t’z = 0,
Sy

which means spt vy, , C Sp. Thus, for |pil-ae. € Q,

Su:={z € Qu" ! (z) =0} C {:1: € Q;spt vy, C So} =: S,,.



More présicely we have |11;](Sy \ Su,) = 0, and hence

D@ = |wl(S) < Nl(S) = 2B x 52) = [ waa(S)dINd

Bt

- /S Vaa(So)dIAe] < [ﬁ - Prea(So)dIA = M(@ x 50).

(37

Q.E.D.
Lkemma 3.3 u(Qx Sp) =

Proof. By the definition of A{ we immediately obtain

12
( 3);/ V'] dx+—|Du"’|

,/1 +e2|Vue|? + 1

the left hand side of which is estimated from above by Cs / IVuo(x)|2da: in (2 8). On the

other hand, given o > 0, we have

Eli 1- o =
dX > ———X Q@ x S n{s""* < a}).
/ﬁ'><§+n{an+1<a} (sPN+1)2 4 £2|37|2 4 gnN+1 = Vol+el+o o +01 b

|5"” .

[ dx:,
xSy / nN+1 2 +62l§'l|2 + 8nN+1

By the lower semicontinuity of Radon measure, we have
)\t(ﬁ X §+ n {SnN+1 < 0}) < llgl}glf /\i(ﬁ X _S_+ N {SnN+1 < 0'})
Vol+el+o /
1-¢2

< liminf A |Vuo(z)|*dz

e—0

= 20/;1|Vu0(m)|2dx.

[
i

Letting o — 0, we have the conclusion. ' Q.E.D.

Proof of Proposition 2.4. The conclusion immediately follows from Lemma 3.2 6) and
Lemma 3.3. - Q.E.D.

Proof of Proposition 2.5. It is sufficient to show u € L((0,T); W"*(Q2)). Since
/ 5"

QxS 4N{s"N+1>¢} \/(an+1) + 2|32 + 5PN+

|52

/ OxSyn{sniH1>e} gnNFL(\ 1+ |32 + 1)

152
\/§+ 1 _/§x§+n{an+1>€} SﬂN+1

A

2

dxe

2

we have by (3.3) and (2.8)
/ 181l2
QxS yn{snN+1>¢} snN+1

(3.4) dX < Co(V2 +’1) /Q |Vu0(m)|édx.

10



For each o > ¢, since {s"¥*! > g} C {s"M*! > ¢}, we have by (3.4)

/ﬂ il dXE < Co(V2 + 1)/ IVuo(x)|2dx

xS4n{snN+1>g} sPN+1

On {s""*! > ¢} the integrand of the left hand side of above is positive and continuous.
Thus by the lower semicontinuity of Radon measures we have by letting ¢ — 0

~ 5" ~ 2
/Q d)\ < Cg(\/§+ 1)/Q IVUO(?)' dz.

Ox5yn{snN+15g} sPN+1

Hence, letting 0 — 0, we obtain with Lemma 3.3

112 .
/ﬁx§ 5] dh < Co(vV2 + 1)/ |Vug(z)|?dz.

SnN+1

Since Lemma 3.3 implies the support of v, , is contained in S, for |A;|-a.e. z, it induces
a measure in R"N by a mapping ¢: S, 3 5> §'/s"NHl ¢ R'fN More precisely we have

; ) r|2 : 7 ; _
, /st SnN+1 // nN-HdV’\"zdl/\tI = /ﬁ_/RnN |p|2db#(ul\t,a;LS"N“)dI/\tl.

Let us define a measure ® on R™Y by

( nN+ldV>\t :c) ll’#(V)\tﬂ;‘ Lan+l)'

Then, noting
YR = ([ V) g (vae LV (RPY)
A +
= (/ s”N"’ldl/,\t,x)"l/ "Nt dyy, , = 1,
Sy Sy
we have by Jensen’s inequality
2 2
/mN lp[*d® > | /R,.N pd®[”.
Here, note that
_ nN+1 -1 nN+1y _ nN+1 -1 el
/anv pd® = (/s+ s" T duy, ) /anv pdiy(vy, o Ls™ ) = (/s+ s"N Ty, 1) /s+ §'dvy, 4.
On the other hand Lemma 3.2 1), 3) impliy ‘
[, s = Dl @)(a).
Finally we have
/ |,§"|2 = / / an+1dl/,\ / |p|2d‘1>d|)\ |
ax3, stV+L ! /s, ) " ¢
| | > [(f i)l [ FduaPdn]
S Sy
= / (Dt Ael (2) (@) | Dy | Al () 25 () P Dy | Mol () e
|3 () o :
fr s e = [ 1vu(z)da.
This implies the assertion. Q.E.D.
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1 Introduction

Let 2 C R" be a bounded domain with Lipschitz continuous boundary and let F = F(p)
be a function defined on R™, the set of all N by n matrices with real elements. Now let us

con31der the functlonal
- /Q F(Vu)dz,

We suppose the following facts for the function F. -
(Al) F € C*(R™)

(A2) F is quasiconvez with respect to p, that is,

57 J, Floo+ Vo(@)dz > Fipo)

for each bounded domain D C R", for each p, € R™, and for each ¢ € W,"°(D; R")

(A3) There exist positive constants y, A and a constant g > 1 such that

{A@PSHMSVO+Mﬂ
|| < p(1+ [p|eY)

The equation of gradient flow for J is given by
| ou’ nog
(11) / -gt—(t, .’17) - agl —a;(;{Fp& (VU(.’E))} = 0, z €l

We impose the initial and the boundary conditions
(12) i u(0,2) = wo(z), €,
(1.3) u(t,z) = w(z), €.

. This research was partially supported by Grant-in-Aid for Scientific Research (No. 14540202), Japan
Society for the Promotion of Science
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We suppose that up and w belong to W19(Q, RY) N L*(2) and that yuo = yw on 8% (v is
the trace operator to 0€2).
In this article we say that a function u is a weak solution to (1.1)-(1.3) in (0,00) x £
if u satisfies i) u € L®((0,00); WH9(Q) N L%(Q)), u € L*((0,T) x ) for any T > 0,
ii) s—%i\r‘%u(t, z) = up(z) in L*(Q), iii) yu(t) = yw on T for L'-a.e. ¢, and iv) for any
¢ € C5((0,00) x Q) |
N 00 ) ) n a¢z
(1.4) )y / / (6t 2) 8 (t,2) + 3 Fys (V) e (1, 7) }dzdt = 0.
= Ja = O0z®
If u is a weak solution to (1.1), then J(u(t)) is absolutely continuous and it holds that
dJ(u(t))/dt = —(us, w)12(q) < O for L1-a.e. t. Thus this defines a gradient flow for J.
We construct an approximate solution to (1.1)—(1.3) by the method of discretization in
time and minimizing variational functionals. In recent several years this approximating way
is widely applied to constructing weak solutions to nonlinear partial differential equations.

" Let h be a positive number. A sequence {w} in W4(Q, RY) is constructed as follows:
we let ug be as in (1.2) and for [ > 1 we define »; as a minimizer of the functional

- 1 I'U - 'U,l_1|2
Fil) = 5 [ T da + I ()

in the class w + W29(Q, RY) (that is, among functions in WH4(Q, RY) with yv = yw).
The existence of a minimizer of F; is assured by the quasiconvexity of F' and (A3) (see,
for example, [1, Chapter 4, Theorem 2.9]). Note also that (A3) assures i is Géateaux
differentiable. Approximate solutions u"(¢,z) and @"(t,z) ((t,z) € (0,00) x §) are defined
as, for (I — 1)h <t < lh, : .

| ?;(lh—_})—hul(x) + lhh_ tul_l(x)

ut(t,z) =

and ‘
a'(t,r) = w(z).

Then the following facts hold (see, for example, [6] or other references cited in [5]).

Proposition 1.1 We have

1) {llul || L2(0,00x) } 8 uniformly bounded with respect to h

2) {||ﬂh || Lo ((0,00):wLa @)Lz } 18 uniformly bounded with respect to h

3) {l|u" || Lo (0,00 wra(@)nL2(@)) } B8 uniformly bounded with respect to h

4) for any T > 0, {|| u" lwraqom)xay} @ uniformly bounded with respect to h, where
¢ = min{g, 2}. . , :
Then there gzxisi a function u such that, passing to a subsequence if necessary,

5) Wt converges to u as h — 0 weakly star in L*((0, 00); whi(Q))

6) for any T > 0, uP converges to u as h — 0 weakly in W((0,T) x 2))

7) uh converges to u as h — 0 strongly in L1((0,T) x Q)

8) W converges to u as h — 0 strongly in LI((0,T) x Q)

9) s-gg‘% u(t) = up in L%(9).



Proposition 1.1 9) means that u satisfies (1.2) in a weak sense. Proposition 1.1 5) implies
that u satisfies (1.3) in a weak sense since 7* — w € L>((0, c0); W,*(Q)) for each k (note
that Wy(Q) is a closed subspace of W14 (©2)). Thus the problem is whether u satisfies (1.4).-
Since u; is a minimizer of Fi(v), dFi(w + €d)/de|c—o = O for any ¢ € Wol’q(Q), and noting
that, for (I — 1)h < t < lh, u}(t,z) = (w(z) — w_1(x))/h, we have

| B hyig N i . _ny 08
s 3 [ @)6'e) + 3 Ry (V0 g )} = 0

for any ¢ € Wy ()N L3(Q) and any t € UL, ((¢—1)A, ¢h). This equality leads us to expect
that the limit u is a weak solution to (1.1)-(1.3). However we have not yet succeeded to
show it. Instead in this article we show an identity, which should be a key estimate in our
problem. Our main tool is varifold theory and it is discussed in Section 2. The main theorem
is stated in Section 3 and it is proved in Section 4. '

2 Varifold setting and first variation with respect to J

Let U = Q x RY. Usually an n-varifold in U is a Radon measure on U x G, where G is
the collection of all n-dimensional vector subspaces of R**". However in this article we say
V is an n-varifold in U if V is a Radon measure in U X R™. Let V be an n-varifold in U.
The weight of V' is defined by uy(B) = V(B x R™") for each Borel set B C U. Clearly uy
is a Radon measure on U. By Lemma 38.4 of [7] there is a probability Radon measure n%,z )
for py-a.e. z € U such that

o BP0 = [[ ([5G 2)n) )

Suppose that M is a countably n-rectifiable set in U (refer to [7, Chapter 3| for the
definition and basic properties of an n-rectifiable set) and that 6 is a locally ‘H"-integrable
function on M, where H" is the n-dimensional Hausdorff measure. We further suppose that
“H™-a.e. z € M the approximate tangent space T,M is not transversal to R™. Then it is a
linear space given by the equationy = A,z (z € R", y € RN ) for an N by n matrix A,. Then
a varifold in U, i.e. a Radon measure on U x R™" | is defined by a continuous linear functional
¢+ [p (2, A)0(2)dH". 1t is called an n-rectifiable varifold and denoted by v(M, 8). We
call 6 a multiplicity function. For each N by n matrix A, let M (A) denote the vector consists
of all minor determinants of A including 0-th order determinant, i.e., 1. Then [, |M(A)|dz
is the area of the plane y = Az over the set D C R". Given a countably n-rectifiable set
such that H™-a.e. z € M the approximate tangent space T, M is not transversal to R",
we put o(z) = 1/|M(A,)| and define an n-rectifiable varifold v(M, 8) when 6, is (locally)
H"-integrable on M. It is called a graph type n-rectifiable varifold.

The terminology “graph type” comes from the following fact.

Proposition 2.1 Let v be a function in WL, RY).
1) G, is countably n-rectifiable
2) / bo(2)dH™ = L™(S2), where G, is the graph of v
Gu :
3) B is H"-integrable on G, and thus there exists a graph type n-rectifiable varifold
V= ’U(Gv, 90)



4) for each nonnegative continuous function f on 2 x RN x R™N,

 f(zp)dV(zp).

UxR™

(2.1) /Q f@,v(@), Du(a))dz = [

Proof. Assertion 1) is well-known (compare to, for example, Theorems 4 of [4, I Section

3.1.5.).
For H"™-a.e. z € G,, the approximate tangent space T,G, exists and is expressed by the

equation y = Duv(n(z))z. Hereby 6o(2) =1/ |M(Dv(m(2)))| and hence

‘ N T
/;;v bo(=)dH —‘/Q |M(Dv(x))||M(Dv( )ld —/ﬂd .

Thus Assertion 2) follows and Assertion 3) is the immediate consequence of 2).
When spt f is compact, we have by the definition of graph type rectifiable varifold

22 /Uxm f(2,p)dV (z,p) = /G f(z, Du(m(2)))bo(2)dH" ().

Replacing © with any open set in Assertion 2), we have my((H"LG,)LOy) = L. Thus the
right hand side of (2.2) coincides with the left hand side of (2.1). Hereby we obtain the
conclusion for a function f with a compact support. :
Suppose that f is a general nonnegative continuous function. Then, approximating f
with an increasing sequence of functions in C(€ x RY x R™), we obtain the conclusion
by the monotone convergence theorem. Q.E.D.

We say an n-varifold V is pre-graph type if spt py is countably n-rectifiable and py-a.e.
z the approximate tangent space T, uy is not transversal to R". We say an pre-graph type
varifold V is L" if ; ‘
Vi = [ IpldV <co.
UxR"N

Proposition 2.2 Suppose that q‘< r. Let f(z,p) be a continuous function on U X R".
Suppose that for each z = (z,y) € U and each p € R

(2.3) |f(z,p)| < pa(1 + |pl)

holds with a constant m. Let Vi and V be L pre-graph varifolds and suppose that {||Vk|| L}
is uniformly bounded and Vy — V in the sense of Radon measures in U X R™. Then we
have

tim [ fEpdiep) = [ F(E RV ()

k—oo JUXxR™N xR®

Proof. Let ¢ be an increasing continuous function on R with ((r)=1forr>2,¢=0for
r < 1, and we put fo(z,p) = f(2,p)(1 — t(e(1 + |p|%))). Note that fo = f for 1 + Ip|? < et
f. =0 for 1+ |p|? > 2¢7'. Thus fe(2,p) converges to f(z,p) for each (z,p) € U X R,
Further we have |f.(z,p)| < 2ue™! by (2.3). It follows from Proposition 2.1 that

2.4 [ Repien - [ SRt
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[ el5p) = £(2,p)|dViz,p)
UxR" s

= [ Rl + pl") V(= p)
[ 1 plave

< [ @+ [pl)dV

IN -

where F, = U x {p; 1+ |p|? > ¢ '}. Since
. | ) < NdV;, < / "dV, <
(2.5) eVi(F.) < /F A+ IpNdVe <C [ (L4 pl)dVi < Ko

for some constant K independent of k, we have W(F) < Kye. Furthermore by Hélder’s
inequality ,

[, (L 1PV < V(R ([ (1 lpfYyTeavi) o < Kigtoor
Hence we have that, as ¢ — 0,
fU o 22 P) AV (2, P) — /U o (2 P)AV (2, D)

uniformly with respect to k.
On the other hand, since f.(z,p) € CJ(U x R™), we have

26)  lim Flmp)dVi(zp) = [ f(zp)dV (D)

k—oo JUxRN

By Proposition 2.1 and (2.3) we have
o PG < [ (Vi)
<w [ o (+IpaV < Ko,
where K, is as in (2.5). This and (2.6) ilﬁply |
g 1PV (2,1 < Ko

Without loss of generality we may assume that f is nonnegative, and then we have f,(z,p) <
fe(z,p) whenever € > ¢’. Hence by the monotone convergence theorem we have, as € — 0,

fon 5DV ) = [ eV (2.

Thus we have the conclusion by the use of a standard fact in iterated hmlts Q.E.D.
Let V be an n-varifold in  x R". The first variation of J for v, which is denoted by
8J[V](¢), is defined as
N a¢z N i
@7) eIV )= Y Ful) (g Z
1

a—lz 1

ph)dV (z,p)




We say that V has locally bounded first variation of J in  if for each W CC € and each
¢ = (¢,...,9") € Ci(; RY) with spt¢ C W there exists a constant C > 0 such that
|6J[V](¢)] < Csup|g|. Note that 6J [V] defines an R"-valued Radon measure. Its total
variation is denoted by ||6J[V]]|.

Theorem 2.3 Let V be a L™ pre-graph type h-varifold fdr some 1 > q. Suppose that V
has locally bounded first variation of J in Q. Then V satisfies

[ S B - AP @ =0 =1 )

for H™-a.e. z € spt py, where po denotes the matriz which describs the approzimate tangent
space of py at z, namely, T,py = {y = poz}.

Proof. Since spt py is countably n-rectifiable, O™y, z) =: 0(2) exists for py-a.e. z € U.
For such a z we have

Voa(By(2) x R™) := (A (p)aV L a (U))(By(2) x B™) = p"wnb(2)

“as A — 0, where 7,4(¢) = A7'(¢ — 2). Thus, passing to a subsequence if necessary, V;x

converges to a varifold C as A — 0.
Taking a function depending only z as a test function in the limiting procedure, we have

pe = Bo(2)H LT pv -
Since V has locally bounded first variation of J in €2, we have

(2.8) lim p' "6 [VIl(B,(2)) = 0-

Noting that ¥, >N, Fyi p) (2 (2) + =, %:I’;(z)pg) is continuous in R™*N x R™ and ¢
growth order with respect to p, we have by Proposition 2.2 and (2.8), for each R > 0 and

¢ € CY(Bgr(0); R™") with || < 1,
(2.9) [6J[C1(8)]

3 n N ' 8¢i N a¢i .
= 1 g 2o 2P 055 () + 3 5,5 Op)ACC P
_ | 3 B 02 () + 5 22 (ph)dVen )
T a50 JretNxreny S r\P)\ g a ooy T 2258
. \-n LAl ot _ N 94t .
= B 2 2 OG0T )+ 2 5507 DAV
= mA [ 3 F M (0
= 1A [ 2L Fn PN g (GO 2)

+ A= VD)

lim A 8T V](6(A (- = 2))

R i inf (\R)!3V](Baa(2)) = 0.

I
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Let <p be a function in CJ(R"*"), and we test a vector field ¢(¢)A;;(y — poz), where Ajj
is the NbyN matrix such that (7, j) element is 1 and others are 0. Then (2.9) implies

0 = /me 35S Fe ) <)[A,,(y poz)[f + 0(C)8% (—pla))

a=1 k=1

+Z ,(c>[ 55y — poz) P, + ()% 67 pL)]dC (2, p)

I

/R"+N / N[zi: Z Fy (P)(#(C)[Aij'(y — poz)]¥ + 0(¢)6* (~ply))

+ Z( 1 OBy = ma)lp, + (8P, ) dnduc

Since spt uc = T,puy = {y = pox}, the terms having y — poz vanish and thus

, /R"+N /R"N Z . (0)( p&a .)dﬂédﬂc =0.

Since ¢ is arbitrary, we have
/W Z ()0, Eha)tn® = 0.

It is not difficult to show ng) = n{f) for pc-a.e. ¢ € R™. Thus the proof is complete.
Q.E.D.

3 Main Theorem‘

Suppose that u € L*((0, 00); W(Q))NUrso W9((0,T) x Q) is a weak solution to (1.1)-
(1.3). There is a rectifiable varifold v(Gy,)) in U for L'-a.e. t. By (1.4) and Proposition
2.1 we have, for each ¢(z) = ¢(:c y) € C3((0,00) x U) (we use notations z and z = (z, ) for
variables in Q and U = Q x RN , respectively),

(3.1) f: / *y / ui(t, 2)¢ (t, 2, u(t, ©))do

=
i S R+ zlgjj(t,z)pg,)dxft(z,p)}dt:

a=1i=1

where V; = v(Gy,), 00). Conversely suppose that a function u and a general varifold V; with
a parameter t € (0, 00) satisfy (3.1). Then u is a weak solution to (1.1) if

(3.2) Vi =v(Gys,),00) for Ll-ae.t.

Let u*(t,z) and (¢, z) be approximate solutions constructed in Section 1. By Proposi-
tion 2.1 there exists a one parameter family of graphic rectifiable varifolds

Vi = v(Ggh s, 00)-

7
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Further by Proposition 2.1 we can rewrite (1.5) as (3.1): for each 9(t) € C§°(0,00) and
¢(2) € C3°(U)

83 X [ @00t a)ds
] 3SR )+ 3 2 vt =
U xRN — j 28 p oxe ’ e 3yj ’ o4 t‘ ’
We have by Proposition 2.1 2)
(3.4) ess. sup | B(z,p)dV*(z,p)| < K sup |B]
: t>0 UxRN

for any B(z,p) € CQ(U % R"N)
The following proposition can be obtained by the use of (3.4) in the standard compactness
argument (compare to Proposition 4.3 of [3]).

Prop051t10n 3.1 There exists a subsequence of {VP} (still denoted by {V*}) and a one
parameter family of varifolds V; in U, for t € (0,00), such that, for each Y(t) € LY(0, oo)
and B(z,p) € CJ(U x R™),

tim [Z o) [ Bp)dV (e p)dt = /w(t) [, Bz D)V p)E.

If we could show V; as in Proposition 3.1 satisfies (3.2), the we would arrive our final
destination. However we have not yet succeeded it. Instead in this article we show the
following identity.

Theorem 3.2 Suppose that {|| 7" || Loo((0,00);WLm()) } 18 uniformly bounded with respect to
h for some r > q. Then, for L*-a.e. t, and for H"-a.e. z € Gy,

V/wilF:;(z, 8“(Z)—pj)d""() 0 (i, j=1,...,N).

4 Proof of the Main Theorem

Since {|| @" ||z~ ((0,00); wir)} is uniformly bounded with respect to h we obtain the
following proposition in the same way as in the proof of Proposition 2.2. :

Proposition 4.1 Suppose that g < r. Let f(z,p) be a continuous function on Ux R such
that (2.8) holds. Let T be any positive number. Then, if {V”} and V; are as in Proposition
3.1, for each Y(t) € LY(0,T) we have

i [ 60 [ Hen = [0 [5G

I;-)oo



Note that the following proposition holds.

Proposition 4.2 The function u of Proposition 1.1 and Vt of Proposition 3.1 satisfy
(3.1). .

Proof. Possibly passing to further subsequences, we have by Proposmon 1.1 5) and 6) that
the first integral of (3.3) converges to that of (3.1) as h — 0. Since, in (3.3), spt 3 C (0, T)
for some T, we apply Proposition 4.1 to the case that

(1) C fap) = zz Jaae za"“()p’)]

Then the second integral of (3.3) converges to that of (3.1) as A — 0. 7 Q.E.D.
Lemma 4.3 For each ¢ € L*(0,T) and ¢ € CY(U) we have

sz(t) ¢(z, u(t, z))dzdt = T¢(t) , 8(2)dVi(z, p)dt.
0 Q : 0 UxR®

Proof. 1t follows from Proposition 1.1 8) that for any ¢ € L*(0,T),

(4.2) hm ¢(t)/ é(z, T"(t, z))dzdt = / / o(z, u(t z))dxdt
On the other hand, since Proposition 2.1 4) implies / ’
—h _ h
@ w o= [ o)V ),
we have by Proposition 2.2
| T
@3 Jm [ o) [ s ata)dodi= [ w) [ o)V, |
Thus the conclusion follows from (4.2) and (4.3). _ Q.E.D.

Lemma 4.4 uy, and (H"LGu(t,.))LOO are mutually absolutely continuous for L!-a.e. t €
(0, 00). ,

This lemma implies in particular that spt uy, = spt H'LG s,
Proof. We put p; = (H"LGy,))L8. By (2.1) we have

/Qqs(x, u(t,z))dz = /U qﬁ(z)lM(Du(ﬂz)))I‘ld(’H"LGu(t,.)) - /U (2)dpse..
Then we have by Lemma 4.3 that, for L'-a.e. t € (0, 00),
J, #@dn = [ o) [, anl? @)
for each ¢ € CJ(U). This means, for L!-a.e. t € (O, 0),
(44) = ([ P w)du

9



for each Borel set A C U. : ~ _
When a Borel set A satisfies uy,(4) = 0, we have p(A) = 0 by (4.4). Thus p =
(H"LGy,))Lbo is absolutely continuous with respect to py, for £'-a.e. t € (0,00). :
Conversely, when 11,(A) = 0, we have V;(A x R™) = 0 for L'-a.e. t € (0,00) by (4.4).
Then pv, is absolutely continuous with respect to H"LGy, for L1-a.e. t € (0,00). Q.E.D.

By Theorem 2.3 the proof of Theorem 3.2 is complete if we show the following lemma.
Lemma 4.5 V; has locally finite first variation of J in Q for L'-a.e. t € (0,00).

Proof. Let T be any positive number and let W be any open set in U such that Q' :=
(W) cC Q. Suppose that ¢ € C3((0,00) x U; RY) satisfies spt ¢ C (0,T) x W. By (3. 3)
and the definition of §J[V;*] we have

( h 7
(4.5) /0 5IVH( Z / / (M)t 2)¢ (¢, 7, T (t, @) )dwdt.
Thus by Proposition 1.1 1)

T
| [ 8V 1(@)ét] < Cr sup o]

where Crw is a constant independent of h. This inequality implies that the linear functional

C3((0,00) x U; BY) 3 ¢ — /0 " 5J[VH(#)dt € R

_ has a unique extension to a functional L, on C3((0,00) x U; RY) and that

|Lng| < Cw,rsup [@]-

By the Banach-Alaoglu theorem and the Banach-Steinhaus theorem there exists a subse-
quence (still denoted by {L;}) and a functional L such that L,¢ converges to Ld) for each
¢ € C2((0,00) x U; R") and for ¢ with spt ¢ C (0,T) x W

(4.6) B |L¢| < CTWSUP |#]-

By the Riesz representation theorem there are a Radon measure v on (0,00) X U and a v
measurable R valued function v with |v| = 1, v-a.e., such that

Lo = v - ¢dv.

(0,00)xU
Inequality (4.6) implies
v((0,T) x W) = sup{/(OT) U ddv; ¢ € CO((0,T) x W; RY), |¢| <1} < Crw-.
. 1) X
We define p(A) = v(A x W) for a Borel set A C (0,T). It is well-known that for p-a.e.

"t € (0,T) there exists a probability Radon measure m; on W such that dv = dm,(z)dp(t)
(refer to [2, Chapter 1, Theorem 10]). Then for ¢ € C3((0,T) x W; RM)

(4.7) - Le= /0 TE /W v - pdmydp.

10



Let ¢ be a vector field in C}(U; RY). Applying Proposition 4.1 for f asin (4.1), we have
for each 7> 0 and ¢ € L'(0,T) v

(48) tim [ w8V @) = [ w5V

Thus, since Ly (1¢) = /0 $(O)SIV}1(¢)dt and Jim Lng = Lo, we - have for 3 € C§(0,00)
and ¢ € C}(U; RY) -
(49) Lws) = [ w(®)sIVi(#)at.

For ¢ with spt ¢ C W and for ¢ with spt ¢ C (0,T) we have by (4.7) and (4.9) that
. oo T .
(4.10) [ emeavi@dt= [ w@) [ v pdmudp.

It follows from Proposition 1.1 1), (4.5), and (4.8) that there exists a constant Crw such
that for each ¢ € L2(0,T) :

@1) | [ O8IVt < Chyy 16 12007 sup o]

Note that my(W) = sup{/ v-ddmy; ¢ € CQ(W; RY), |¢| < 1} Slnce m; is a probability
measure,

(4.12) sup{ [ v- gdm; 6 € CYOW; RY), |g] <1} =1.
‘Combining (4.10), (4.11), and (4.12), we have

| [} 50do)] < Cpay 19 o

Thus the functional ) — /0 - ¥(t)dp(t) is bounded in L?(0,T). Then there exists a function
T T
j € L*(0,T) such that /0 $(t)dp(t) = /0 Y(#)p(t)dt for any ¢ € L(0,T). Putting i, =
p(t)m:, we have by (4.10) that
[ wwsaviere= [ v [ - odint
0 0 w

Thus for L-a.e. t € (0,T)
SIVA(@) = [ v- g,

Since T is arbitrary, we have the conclusion. Q.E.D.
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