SUR［静岡大学学術リポジトリ

Shizuoka University REpository

Remarkable Influence of Structures around Rhenium（V）Centers Constructed in Polyoxotungstates for Methanol Dehydrogenation under Visible Light Irradiation

メタデータ	言語：en
	出版者：SCIENCEDOMAIN International
	公開日：2014－06－04
	キーワード（Ja）：
	キーワード（En）：
	作成者：Kato，Chika Nozaki，Nakayama，Ryuta，Hattori，
	Shota，Amano，Hidekuni，Makino，Yuki
	メールアドレス：
	所属：
URL	http：／／hdl．handle．net／10297／7778

Remarkable Influence of Structures around Rhenium(V) Centers Constructed in Polyoxotungstates for Methanol Dehydrogenation under Visible Light Irradiation

Chika Nozaki Kato ${ }^{1,2^{*}}$, Ryuta Nakayama ${ }^{1}$, Shota Hattori ${ }^{1}$, Hidekuni Amano ${ }^{1}$ and Yuki Makino ${ }^{1}$
${ }^{1}$ Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
${ }^{2}$ Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya, Suruga-ku, Shizuoka 422-8529, Japan

Abstract

The synthesis and characterization of α_{1}-Dawson-type mono-rhenium(V)-substituted polyoxotungstate, $\left[\alpha_{1}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{Re}^{\mathrm{V}} \mathrm{O}_{62}\right]^{7-}$ (1), are described. The dimethylammonium salt of $\mathbf{1}$, [$\left.\mathrm{Me}_{2} \mathrm{NH}_{2}\right] 7\left[\alpha_{1}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{Re}^{\mathrm{V}} \mathrm{O}_{62}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O} \quad\left(\mathrm{Me}_{2} \mathrm{NH}_{2}-1\right)$, was obtained as analytically pure homogeneous black-blue crystals by reacting mono-lacunary α_{1}-Dawson polyoxotungstate with $\left[\mathrm{Re}^{1 \mathrm{~V}} \mathrm{Cl}_{6}\right]^{--}$in $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COOLi}$ buffer, followed by crystallization via a vapor diffusion from acetonitrile/ethanol. Characterization was also accomplished by X-ray crystallography, elemental analysis, TG/DTA, FTIR, UV-vis, and solution ${ }^{31} \mathrm{P}$ NMR spectroscopy; these results showed that the polyoxoanion 1 was a monomeric α-Dawson structure, in which the rhenium (V) ion was coordinated to the monovacant site of [$\alpha_{1}-$ $\left.\mathrm{LiP}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right]^{9-}$, resulting in an overall C_{1} symmetry. The polyoxoanion 1, $\left[\mathrm{O}\left\{\mathrm{Re}^{\vee}(\mathrm{OH})\left(\alpha_{2}-\right.\right.\right.$ $\left.\left.\left.\left.\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right)\right\}\right\}_{2}\right]^{14-}(2)$, and $\left[\alpha-\mathrm{PW}_{11} \mathrm{Re}^{\mathrm{V}} \mathrm{O}_{40}\right]^{4-}$ (3) showed the hydrogen evolution from methanol under visible light irradiation ($\geq 400 \mathrm{~nm}$) in the presence of titanium dioxide. The activities were remarkably depended on the rhenium (V) sites in $1-3$; polyoxoanion 2 possessing the dirhenium (V)-oxido-bridged site showed the highest activities among these complexes.

Keywords: Rhenium(V); polyoxometalate; crystal structure; photocatalyst; methanol dehydrogenation

1. INTRODUCTION

Since the Honda-Fujishima effect, i.e., photoinduced water splitting by titanium dioxide (TiO_{2}) and platinum electrodes was first reported, various photocatalytic materials have been investigated, because the generated hydrogen $\left(\mathrm{H}_{2}\right)$ is a clean and renewable fuel source [16]. Although TiO_{2} is one of the most promising photocatalysts owing to its sufficient photostability, commercial availability, easy preparation, and its high activity for a wide range of photocatalytic reactions, it absorbs only ultraviolet (UV) light because of its wide band gap (varying from 3.0 to 3.2 eV , depending on the crystal structure); this limits the use of sunlight as an irradiation source in photocatalytic reactions $[7,8]$. One of the most powerful

[^0]approaches to developing visible-light-driven TiO_{2} materials is surface modification. To date, numerous TiO_{2} materials have been prepared by sensitizing transition metals [8-16], organic dyes [4, 7, 17-22], and organic moieties [23-29], and they show high activities in the presence of cocatalysts for various photoreactions. Although these are excellent studies, there is still room for improving TiO_{2}-based photocatalytic systems by including a sensitizer and a cocatalyst.

Polyoxometalates have attracted considerable attention because of their high versatility and unique range of properties; these include catalytic and biological activities and/or photochemical, electrochromic, and magnetic properties [30-32]. Photocatalytic systems constructed using TiO_{2} and polyoxometalates, e.g., $\mathrm{PW}_{12} \mathrm{O}_{40^{3-}}, \mathrm{PMo}_{12} \mathrm{O}_{40}{ }^{3}$, $\mathrm{GeW}_{12} \mathrm{O}_{40^{4}}$, $\mathrm{SiW}_{12} \mathrm{O}_{40^{4}}$, $\mathrm{BW}_{12} \mathrm{O}_{40}{ }^{5-}$, $\alpha-\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{62}{ }^{6-}$, and $\alpha_{2}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}{ }^{10-}$, also exhibit efficient photocatalytic activities under visible light irradiation; however, they required a pretreatment by UV irradiation to form "heteropoly bule" species, and large amounts of cocatalyst [33-38]. Recently, we demonstrated the catalytic activities of α_{2}-Dawson and Keggin rhenium(V)coordinated polyoxotungstates, $\left[\mathrm{O}\left\{\mathrm{Re}^{\mathrm{V}}(\mathrm{OH})\left(\alpha_{2}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right)\right\} 2\right]^{14-}$ and $\left[\alpha-\mathrm{PW}_{11} \mathrm{Re}^{\mathrm{V}} \mathrm{O}_{40}\right]^{4-}$, in H_{2} evolution from water vapor and an aqueous solution of EDTA•2Na (ethylenediamine tetraacetic acid disodium salt) in the presence of TiO_{2} under visible light irradiation (≥ 400 and $\geq 420 \mathrm{~nm}$) [39, 40]. In this system, the pretreatment by UV irradiation was not necessary, and the rhenium compounds exhibited high photocatalytic activities without cocatalyst. Thus, the rhenium (V)-coordinated polyoxometalates were useful compounds for development of visible-light-driven TiO_{2}-based photocatalyst; however, the structure dependence of rhenium (V) sites constructed in polyoxometalate is still open to discussion because significant $\left[\alpha-\mathrm{PW}_{11} \mathrm{Re}^{\vee} \mathrm{O}_{40}\right]^{4-}$ decomposition was observed in an EDTA.2Na aqueous solution during light irradiation.

In this study, we first synthesized α_{1}-Dawson-type mono-rhenium(V)-substituted polyoxotungstate $\left[\mathrm{Me}_{2} \mathrm{NH}_{2}\right]_{7}\left[\alpha_{1}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{Re}^{\vee} \mathrm{O}_{62}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Me}_{2} \mathrm{NH}_{2}-1\right)$ and characterized it using X-ray crystallography, elemental analysis, thermogravimetric analysis/differential thermal analysis (TG/DTA), and Fourier-transform infrared (FTIR), UV-visible, and solution ${ }^{31} \mathrm{P}$ nuclear magnetic resonance (NMR) spectroscopies. To investigate the structure dependence of rhenium (V) sites for the photocatalytic reactions, we focused on the methanol dehydrogenation catalyzed by $\mathrm{Me}_{2} \mathbf{N H}_{2}-\mathbf{1}, \mathrm{K}_{14}\left[\mathrm{O}\left\{\mathrm{Re}^{\mathrm{V}}(\mathrm{OH})\left(\alpha_{2}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right)\right\}_{2}\right] \cdot 21 \mathrm{H}_{2} \mathrm{O}$ (K-2), and $\left[\mathrm{Me}_{2} \mathrm{NH}_{2}\right]_{4}\left[\alpha-\mathrm{PW}_{11} \mathrm{Re}^{\vee} \mathrm{O}_{40}\right]\left(\mathrm{Me}_{2} \mathrm{NH}_{2}-3\right)$ under visible light irradiation ($\geq 400 \mathrm{~nm}$) in the presence of TiO_{2}. Here, we report full details of the synthesis and molecular structure of complex 1, and demonstrate the photocatalytic activities and stabilities of complexes 1-3.

2. EXPERIMENTAL DETAILS

2.1 Materials

$\mathrm{K}_{14}\left[\mathrm{O}\left\{\mathrm{Re}^{\mathrm{V}}(\mathrm{OH})\left(\alpha_{2}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right)\right\}_{2}\right] \cdot 21 \mathrm{H}_{2} \mathrm{O}$ (K-2) [40], $\left[\mathrm{Me}_{2} \mathrm{NH}_{2}\right]_{4}\left[\alpha-\mathrm{PW}_{11} \mathrm{Re}^{\mathrm{V}} \mathrm{O}_{40}\right] \quad\left(\mathrm{Me}_{2} \mathrm{NH}_{2}-3\right)$ [40], $\mathrm{K}_{9}\left[\alpha_{1}-\mathrm{LiP}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right] \cdot 22 \mathrm{H}_{2} \mathrm{O}$ [41], and $\mathrm{K}_{10}\left[\alpha_{2}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right] \cdot 27 \mathrm{H}_{2} \mathrm{O}$ [42] were synthesized as described in the literatures. The number of solvated water molecules was determined by TG/DTA analyses. $\mathrm{K}_{2}\left[\mathrm{Re}^{\mathrm{IV}} \mathrm{Cl}_{6}\right]$ was purified by the reprecipitation from water/ethanol. TiO_{2} (anatase/rutile $=80 / 20$; 99.9\%; $-5 \mu \mathrm{~m}$) was obtained from Wako Pure Chemical Industries, Ltd. Other reagents and solvents were obtained and used as received from commercial sources.

2.2 Instrumentation/analytical procedures

The elemental analysis was carried out by using a Mikroanalytisches Labor Pascher instrument (Remagen, Germany). The samples were dried overnight at room temperature under $10^{-3}-10^{-4}$ Torr vacuum before analysis. The infrared spectra were recorded on a Parkin Elmer Spectrum100 FT-IR spectrometer in KBr disks at room temperature. Thermogravimetric (TG) and differential thermal analyses (DTA) data were obtained using a Rigaku Thermo Plus 2 series TG/DTA TG 8120. The TG/DTA measurements were performed in air with a temperature increase of $4{ }^{\circ} \mathrm{C}$ per min between 20 and $500{ }^{\circ} \mathrm{C}$. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ (242.95 MHz) nuclear magnetic resonance (NMR) spectra in solutions were recorded in $5-\mathrm{mm}$ outer diameter tubes on a JEOL ECA-600 NMR spectrometer (Shizuoka University). The ${ }^{31} \mathrm{P}$ NMR spectra were measured in $\mathrm{CH}_{3} \mathrm{COOLi}-\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$ with reference to an external standard of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in a sealed capillary. Chemical shifts were reported as negative on the δ scale for resonance upfield of $\mathrm{H}_{3} \mathrm{PO}_{4}(\delta 0)$. Solution UV-vis spectra were recorded on a Perkin-Elmer Spectrum Lambda 650 spectrophotometer. The positions of sharp bands were automatically determined by software of UV-visible spectrometer, and those of broad bands were picked up at the highest values in the ASCII files. Potentiometric titration was carried out with $0.841 \mathrm{mmol} / \mathrm{L}$ tetra- n-butylammonium hydroxide as a titrant under argon atmosphere [43]. The compound $\mathbf{M e}_{2} \mathbf{N H}_{2}-1(4.12 \mu \mathrm{~mol})$ was dissolved in acetonitrile $(20 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$, and the solution was stirred for approximately 5 min . The titration data were obtained with a pH meter (Mettler Toledo). Data points were obtained in milivolt. A solution of tetra- n-butylammonium hydroxide ($0.841 \mathrm{mmol} / \mathrm{L}$) was syringed into the suspension in 0.20 -equivalent intervals.

2.3 Synthesis of $\left[\mathrm{Me}_{2} \mathrm{NH}_{2}\right]_{7}\left[\alpha_{1}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{Re}^{\mathrm{V}} \mathrm{O}_{62}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Me}_{2} \mathrm{NH}_{2}-1\right)$

A solution of $\mathrm{K}_{2}\left[\mathrm{Re}^{\text {IV }} \mathrm{Cl}\right.$] $](0.365 \mathrm{~g} ; 0.765 \mathrm{mmol})$ dissolved in 10 mL of water was added to a solution of $\mathrm{K}_{9}\left[\alpha_{1}-\mathrm{LiP}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right] \cdot 22 \mathrm{H}_{2} \mathrm{O}$ ($1.865 \mathrm{~g} ; 0.379 \mathrm{mmol}$) dissolved in 25 mL of $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COOLi}$ buffer solution $(\mathrm{pH}=4.5)$ at $25^{\circ} \mathrm{C}$. After stirring for 4 h at $25^{\circ} \mathrm{C}$ in the dark, a solid $\left[\mathrm{Me}_{2} \mathrm{NH}_{2}\right] \mathrm{Cl}(3.114 \mathrm{~g} ; 38.3 \mathrm{mmol})$ was added to the solution, followed by stirring overnight at $25^{\circ} \mathrm{C}$. A deep blue-colored precipitate was collected using a membrane filter (JG $0.2 \mu \mathrm{~m}$). At this stage, a crude product was obtained in 1.74 g yield. For crystallization, the crude product (1.74 g) was dissolved in 350 mL of acetonitrile at $25^{\circ} \mathrm{C}$; the resulting solution was filtered through a folded filter paper (Whatman \#5). Black block crystals were obtained via vapor diffusion from methanol at $25^{\circ} \mathrm{C}$. The yield was 0.464 g . The percent yield was calculated on the basis of [mol of $\left.\mathrm{Me}_{2} \mathrm{NH}_{2}-1\right] /\left[\mathrm{mol}\right.$ of $\left.\mathrm{K} \mathrm{KLL}_{i}\left[\alpha_{1}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right] \cdot 22 \mathrm{H}_{2} \mathrm{O}\right] \times$ 100 and was 25%. Elemental analysis results showed C, 3.57 ; H, $1.42 ; \mathrm{N}, 2.05 ; \mathrm{P}, 1.28$; Re, 4.00; W, 66.0; K, 0.03; $\mathrm{Li},<0.01 \%$. Calculations for $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]_{7}\left[\alpha_{1}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{ReO}_{62}\right] \cdot \mathrm{xH}_{2} \mathrm{O} \quad$ ($\mathrm{x}=$ 2) $=\mathrm{H}_{60} \mathrm{C}_{14} \mathrm{~N}_{7} \mathrm{O}_{64} \mathrm{P}_{2} \mathrm{ReW}_{17}: \mathrm{C}, 3.56 ; \mathrm{H}, 1.28 ; \mathrm{N}, 2.08 ; \mathrm{P}, 1.31 ; \mathrm{Re}, 3.94 ; \mathrm{W}, 66.2 \%$. A weight loss of 2.54% was observed during overnight drying at room temperature under $10^{-3}-10^{-4}$ torr before analysis, suggesting seven water molecules (2.60%). TG/DTA under atmospheric conditions showed a weight loss of 12.2% below $500^{\circ} \mathrm{C}$ with an exothermic point at 381.1 ${ }^{\circ} \mathrm{C}$. A clear endothermic point was not observed; calculations showed 10.0% for the sum of seven dimethylammonium ions and nine water molecules. IR (KBr disk) results in the 1300 $-400 \mathrm{~cm}^{-1}$ region (polyoxometalate region) showed: 1094m, 1077m, 1014w, 959s, 918m, $823 \mathrm{~m}, 776 \mathrm{~m}$, and $733 \mathrm{~m} \mathrm{~cm}{ }^{-1}$. ${ }^{31} \mathrm{P}$ NMR ($0.285 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOLi}_{2} \mathrm{D}_{2} \mathrm{O}$ solution, $22.3^{\circ} \mathrm{C}$): $\delta-12.1$, -12.4. UV-visible absorption (in $\mathrm{H}_{2} \mathrm{O}, 1.0 \times 10^{-5}$ and $1.0 \times 10^{-4} \mathrm{M}$) showed: $\lambda 263 \mathrm{~nm}(\varepsilon 4.4 \times$ $\left.10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), \lambda 310 \mathrm{~nm}\left(\varepsilon 1.8 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$, and $\lambda 468 \mathrm{~nm}\left(\varepsilon 3.7 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$.

2.4 X-ray crystallography

A black block crystal of $\mathrm{Me}_{2} \mathrm{NH}_{2} \mathbf{- 1}\left(0.180 \times 0.050 \times 0.040 \mathrm{~mm}^{3}\right)$ was mounted in a loop. Data were collected by a Rigaku Marcury70 diffractometer using monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71070 \AA$) at 113 K. Data were collected and processed using CrystalClear
software for Windows. The structural analysis was performed using the CrystalStructure software for Windows. All structures were solved by SHELXS-97 (direct methods) and refined by SHELXL-97 [44]. Since one rhenium atom was disordering over twelve tungsten sites $(W(4)-W(15))$ in polyoxoanion 1, the occupancies for the rhenium and tungsten sites were fixed at $1 / 12$ and $11 / 12$ throughout the refinement. The seven dimethylammonium ions and some acetonitrile and ethanol molecules were observed; however, no acetonitrile and ethanol solvent molecules were observed by elemental analysis and ${ }^{1} \mathrm{H}$ NMR spectroscopy. Thus, the solvent molecules evaporate gradually when crystals are removed from acetonitrile solution. Accordingly, the residual electron density was removed using the SQUEEZE routine in PLATON [45].

2.5 X-ray crystallography

$\mathrm{C}_{14} \mathrm{H}_{60} \mathrm{~N}_{7} \mathrm{O}_{64} \mathrm{P}_{2} \mathrm{ReW}_{17} ; \mathrm{M}=4724.24$, triclinic, space group $P-1$ (\#2), $a=13.317(5) \AA, b=$ $13.377(4) \AA, c=24.248(9) \AA, \alpha=79.24(2)^{\circ}, \beta=79.78(2)^{\circ}, \gamma=68.28(2)^{\circ}, V=3914(3) \AA^{3}, Z=$ $2, D_{\mathrm{c}}=4.008 \mathrm{~g} / \mathrm{cm}^{3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha) 265.749 \mathrm{~cm}^{-1} . R_{1}=0.0678(I>2 \sigma(I)), \mathrm{w} R_{2}=0.1837$ (for all data). $\mathrm{GOF}=1.079$ (26430 total reflections, 14529 unique reflections where $I>2 \sigma(I)$). CCDC reference number 968914 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223-336-033; E-mail: deposite@ccdc.cam.ac.uk.]

2.6 Catalytic reaction experiments

For methanol dehydrogenation, TiO_{2} (anatase/rutile $=80 / 20$) (200 mg) and rhenium compounds were suspended in 10 mL of methanol. The mixture was placed into a glass reaction vessel; this was connected to a Pyrex conventional closed gas circulation system ($245.5 \mathrm{~cm}^{3}$). The compounds $\mathrm{Me}_{2} \mathrm{NH}_{2}-1$ ($2.8-9.4 \mathrm{mg} ; 0.6-1.9 \mu \mathrm{~mol}$ of Re), K-2 (2.4-10 $\mathrm{mg} ; 0.6-2.0 \mu \mathrm{~mol}$ of Re), and $\mathrm{Me}_{2} \mathrm{NH}_{2}-3$ ($1.8-6.1 \mathrm{mg} ; 0.6-2.0 \mu \mathrm{~mol}$ of Re) were used for the photoreactions. The photoreaction was started by light irradiation with a 300 W Xe lamp equipped with a cut-off filter ($\lambda \geq 400 \mathrm{~nm}$). $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{CO}$, and CH_{4} were analyzed by GC (TCD, Molecular Sieve 5A stainless columns): the samples were assigned after they were compared with authentic samples analyzed under the same conditions. Turnover number (TON) was calculated as $2[h y d r o g e n ~ e v o l v e d ~(m o l)] /[R e ~ a t o m s ~(m o l)] . ~ F o r m a l d e h y d e ~ w a s ~$ observed by the published method [46].

3. RESULTS AND DISCUSSION

3.1 Synthesis and molecular structure of $\left[\mathrm{Me}_{2} \mathrm{NH}_{2}\right]_{7}\left[\alpha_{1}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{Re}^{\mathrm{V}} \mathrm{O}_{62}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Me}_{2} \mathrm{NH}_{2}-1\right)$

The dimethylammonium salt of 1, $\left[\mathrm{Me}_{2} \mathrm{NH}_{2}\right]_{7}\left[\alpha_{1}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{Re}^{\mathrm{V}} \mathrm{O}_{62}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O} \quad\left(\mathrm{Me}_{2} \mathbf{N H}_{2}-\mathbf{1}\right)$, was synthesized by the direct reaction of 2 equiv of $\mathrm{K}_{2} \mathrm{Re}^{\mathrm{IV}} \mathrm{Cl}_{6}$ with mono-lacunary α_{1}-Dawson polyoxotungstate, $\left[\alpha_{1}-\mathrm{LiP}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right]^{9-}$, in a $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COOLi}$ aqueous buffer solution (pH $=4.5$) under air, at $25^{\circ} \mathrm{C}$; this was followed by addition of excess $\mathrm{Me}_{2} \mathrm{NH}_{2} \mathrm{Cl}$, forming a dark blue precipitate. The formation of polyoxoanion 1 is represented by the ionic balance shown in Eq. 1, in which rhenium(IV) is oxidized to rhenium (V), as observed for compounds K-2 and $\mathbf{M e}_{2} \mathbf{N H}_{2}-3$ [39,40]. Notably, polyoxoanion 1 was gradually isomerized to the α_{2}-isomer during the reaction of $\mathrm{K}_{2} \mathrm{Re}^{\mathrm{IV}} \mathrm{Cl}_{6}$ with $\left[\alpha_{1}-\mathrm{LiP}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right]^{9-}$ in aqueous solution; the $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COOLi}$ aqueous buffer solution is therefore indispensable in inhibiting isomerization, as observed for $\left[\alpha_{1}-\mathrm{LiP}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right]^{9-}[41]$. In addition, the reaction temperature
should be kept at ca. $25^{\circ} \mathrm{C}$, even in a buffer solution, because heat treatment accelerated the isomerization. An excess of $\mathrm{K}_{2} \mathrm{Re}^{\mathrm{IV}} \mathrm{Cl}_{6}$ was therefore required to complete (accelerate) the coordination of rhenium ion to the mono-vacant site of $\left[\alpha_{1}-\mathrm{LiP}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right]^{9-}$. For purification, the unreacted $\mathrm{K}_{2} \mathrm{Re}^{\mathrm{IV}} \mathrm{Cl}_{6}$ was completely removed by crystallization via vapor diffusion from acetonitrile/ethanol.

$$
\begin{equation*}
\left[\alpha_{1}-\mathrm{LiP}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right]^{9-}+\mathrm{Re}^{\mathrm{IV}} \mathrm{Cl}_{6}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\alpha_{1}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{Re}^{\vee} \mathrm{O}_{62}\right]^{7-}+2 \mathrm{H}^{+}+\mathrm{Li}^{+}+6 \mathrm{Cl}^{-} \tag{1}
\end{equation*}
$$

The sample was dried overnight at room temperature under a vacuum of $10^{-3}-10^{-4}$ Torr for elemental analysis. The elemental results for $\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Re}, \mathrm{P}$, and W were in good agreement with the calculated values for the chemical formula of $\mathbf{M e}_{2} \mathbf{N H}_{2}-1$ with two hydrated water molecules. The presence of seven dimethylammonium ions suggested that the oxidation state of the rhenium site was $5+$; this was also supported by the fact that no protonation was observed in potentiometric titration with tetra- n-butylammonium hydroxide in acetonitrile. The weight loss observed during drying before analysis was 2.54% for $\mathbf{M e}_{2} \mathbf{N H}_{2}-\mathbf{1}$, corresponding to seven weakly solvated or adsorbed water molecules. However, during TG/DTA under atmospheric conditions, a weight loss of 12.2% was observed below $500{ }^{\circ} \mathrm{C}$, corresponding to seven dimethylammonium ions and nine water molecules.

The X-ray structural analysis of crystalline $\left[\mathrm{Me}_{2} \mathrm{NH}_{2}\right]_{7}\left[\alpha_{1}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{Re}^{\vee} \mathrm{O}_{62}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ revealed that the molecular structure of 1 was identical to that of a monomeric α-Dawson polyoxotungstate, $\left[\alpha-\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{62}\right]^{6-}$, as shown in Figure 1. The bond lengths and bond angles are shown in Appendix. As a result of the high-symmetry space group, 12 tungsten sites [W(4) - W(15)] were disordered and a mono-rhenium-substituted site was not identified, as observed for $\left[\mathrm{W}_{9} \mathrm{ReO}_{32}\right]^{5-}$ [47] and $\left[\alpha-\mathrm{PW}_{11} \mathrm{Re}^{\mathrm{V}} \mathrm{O}_{40}\right]^{5-}$ [48]. Some ethanol and acetonitrile molecules were observed in a single crystal of $\mathbf{M e}_{2} \mathbf{N H}_{2} \mathbf{- 1}$; however, no acetonitrile and ethanol solvent molecules were observed by elemental analysis and ${ }^{1} \mathrm{H}$ NMR spectroscopy. The solvent molecules therefore evaporate gradually when the crystals are removed from acetonitrile solution.

The FTIR spectrum of compound $\mathbf{M e}_{2} \mathbf{N H}_{2} \mathbf{- 1}$, which was obtained using a KBr disk, is shown in Figure 2. The positions of all the bands (1094, 1077, 1014, 959, 918, 823, 776, and 733 cm^{-1}) in the polyoxoanion region of this compound are characteristic of polyoxoanions; however, they were different from those for $\left[\alpha_{1}-\mathrm{LiP}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right]^{9-}(1122,1092,1011,944,908$, 828, 783, and $744 \mathrm{~cm}^{-1}$), K-2 (1091, 1018, 955, 910, and $788 \mathrm{~cm}^{-1}$), and $\left[\alpha-\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{62}\right]^{6-}$ (1091, 1020, 958, 912, 777, and $528 \mathrm{~cm}^{-1}$). This suggests coordination of a rhenium (V) ion in the monovacant site of $\left[\alpha_{1}-\mathrm{LiP}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right]^{9-}$.

The ${ }^{31} \mathrm{P}$ NMR spectrum in $\mathrm{CH}_{3} \mathrm{COOLi}-\mathrm{D}_{2} \mathrm{O}$ solution of $\mathbf{M e}_{2} \mathbf{N H}_{2}-\mathbf{1}$ showed a clear two-line spectrum, with signals at -12.1 ppm and -12.4 ppm , as shown in Figure 3(a). The signals were shifted compared with those of $\left[\alpha_{1}-\mathrm{LiP}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right]^{9-}(-8.7 \mathrm{ppm}$ and $-13.0 \mathrm{ppm})$ and $[\alpha-$ $\left.\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{62}\right]^{6-}$ (-12.8 ppm), indicating complete coordination of rhenium atom to monovacant site of $\left[\alpha_{1}-\mathrm{LiP}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right]^{9-}$, as shown in Figure 1. No contamination of the sample by polyoxoanion 2 (-11.9 ppm and -12.9 ppm in $\mathrm{D}_{2} \mathrm{O}$) was observed; however, polyoxoanion 1 gradually isomerized to polyoxoanion 2 in aqueous solution. The ${ }^{183} \mathrm{~W}$ NMR spectrum of $\mathbf{M e}_{2} \mathbf{N H}_{2}-1$ was failed to obtain because of its low solubility in water and acetonitrile.

The UV-visible spectrum of $\mathrm{Me}_{2} \mathbf{N H}_{2}$-1 in water showed four absorption bands, at $263(\varepsilon 4.4 \times$ $\left.10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$, $310\left(\varepsilon 1.8 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), 468\left(\varepsilon 3.7 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$, and $613 \mathrm{~nm}\left(\varepsilon 5.2 \times 10^{3} \mathrm{M}^{-}\right.$ ${ }^{1} \mathrm{~cm}^{-1}$), as shown in Figure 4. The bands at 263 nm and 310 nm were assigned to the charge transfer (CT) band of W -O bonds. The two bands at 468 and 613 nm were assigned to the $\mathrm{Re}^{\mathrm{V}} \rightarrow \mathrm{W}^{\mathrm{VI}}$ intervalence charge transfer (IVCT) band and the d - d band of the
rhenium (V) atom, respectively [39,40]. It was noted that the bands at 468 nm and 613 nm for $\mathbf{M e}_{2} \mathbf{N H}_{2}-1$ were significantly broader rather than those for $\mathbf{K}-2$ and $\mathbf{M e}_{2} \mathbf{N H}_{2}-3$, and the positions were blue-shifted compared with those for K-2 (496 nm and 737 nm) and $\mathbf{M e}_{\mathbf{2}} \mathbf{N H}_{\mathbf{2}^{-}}$ 3 (513 nm and 698 nm); this also suggested coordination of the rhenium (V) ion to the monovacant site in $\left[\alpha_{1}-\mathrm{LiP}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right]^{9-}$.

Fig. 1. (a) The molecular structure (ORTEP drawing) of polyoxoanion 1 with all atom numberings and (b) polyhedral representation of polyoxoanion 1. In (b), WO_{6} and ReO_{6} units are represented by the white and purple octahedra, respectively. The internal PO_{4} units are represented by the red tetrahedra.

Fig. 2. FTIR spectrum as a KBr disk of $\mathrm{Me}_{2} \mathrm{NH}_{2}$-1.

Fig. 3. ${ }^{31} \mathrm{P}$ NMR spectra in $0.285 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOLi}-\mathrm{D}_{2} \mathrm{O}$ of (a) $\mathrm{Me}_{2} \mathrm{NH}_{2}-1$ and (b) after photoreaction. The spectrum was referenced to an external standard of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in a sealed capillary. In (b), $\mathrm{Me}_{2} \mathrm{NH}_{2}-1(50 \mathrm{mg})$ and $\mathrm{TiO}_{2}(500 \mathrm{mg})$ were suspended in methanol (25 mL), and they were irradiated under the visible light ($\geq 400 \mathrm{~nm}$) for 6 h .

Fig. 4. UV-visible spectra in $\mathrm{H}_{2} \mathrm{O}$ of $\mathrm{Me}_{2} \mathrm{NH}_{2}-1\left(1.0 \times 10^{-5} \mathrm{M}\right)$ at $200-800 \mathrm{~nm}$.
Inset: 400 - $800 \mathrm{~nm}\left(1.0 \times \mathbf{1 0}^{\mathbf{- 4}} \mathrm{M}\right)$.
3.2 Catalytic activities in methanol dehydrogenation catalyzed by rhenium(V)coordinated polyoxotungstates in the presence of TiO_{2} under visible-light irradiation ($\geq 400 \mathrm{~nm}$)

Methanol dehydrogenation catalyzed by rhenium(V)-coordinated polyoxotungstates at $25{ }^{\circ} \mathrm{C}$ in the presence of TiO_{2} under light irradiation ($\geq 400 \mathrm{~nm}$) was investigated; the results are summarized in Table 1. Hydrogen was evolved from methanol catalyzed by $\mathbf{M e}_{2} \mathbf{N H}_{2} \mathbf{- 1}, \mathbf{K - 2}$, and $\mathrm{Me}_{2} \mathbf{N H}_{2}-3$. Formaldehyde was also observed; while, $\mathrm{O}_{2}, \mathrm{CO}$, and CH_{4} were not observed. The three rhenium (V) compounds were hardly soluble in methanol. When a suspension of K-2 (50 mg) and $\mathrm{TiO}_{2}(200 \mathrm{mg})$ in methanol (25 mL) was irradiated under visible light ($\geq 400 \mathrm{~nm}$) for 6 h , followed by filtration through a membrane filter (JG 0,2 $\mu \mathrm{m}$), UV-vis spectrum of the filtrate showed a small band at around 220 nm due to a charge transfer band of $\mathrm{W}^{\mathrm{VI}}-\mathrm{O}$; however, this was significantly smaller than that in 30 mM EDTA.2Na aqueous solution (25 mL) under the same reaction conditions, as shown in Figure 5. Even when the cesium salts of $1 \mathbf{- 3}$ were used as catalysts, a slight leaching into methanol was observed. These results suggested that the rhenium (V) compounds were predominantly active in the solid state under the present reaction conditions. The initial dehydrogenation rates with $\mathrm{Me}_{2} \mathrm{NH}_{2}-1$ and $\mathrm{Me}_{2} \mathrm{NH}_{2}-3$ were slow; while, no induction period was observed for K-2, as shown in Figure 6. The colors of these materials changed from white-purple to blue during the reactions; however, the blue color disappeared and the photoreactions stopped when visible light irradiation stopped.

Fig. 5. UV-visible spectra of K-2 at $200-800 \mathrm{~nm}$.
$\mathrm{K}-2(50 \mathrm{mg})$ and $\mathrm{TiO}_{2}(500 \mathrm{mg})$ were suspended in (a) 30 mM EDTA.2Na aqueous solution (25 mL) and (b) methanol (25 mL), and they were irradiated under the visible light ($\geq 400 \mathrm{~nm}$) for 6 h at $25{ }^{\circ} \mathrm{C}$. After a filtration through a membrane filter (JG $0.2 \mu \mathrm{~m}$), UV-vis spectra of the filtrates were observed, respectively.

In control experiments, hydrogen was not detected when the reaction was catalyzed by TiO_{2}. The rhenium (V)-coordinated polyoxotungstates showed no reaction in the absence of TiO_{2}. $\mathrm{K}_{10}\left[\alpha_{2}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right] \cdot 27 \mathrm{H}_{2} \mathrm{O}$ also showed no reaction even in the presence of TiO_{2}. A combination of rhenium (V)-coordinated sites in the polyoxotungstates and TiO_{2} was therefore necessary, as reported for photoreactions using an EDTA.2Na aqueous solution in
the presence of TiO_{2} under light irradiation ($\geq 400 \mathrm{~nm}$) [39,40]. For the three rhenium compounds ($1.0 \mu \mathrm{~mol}$ of Re), the evolved amounts of H_{2} after 6 h were 17.7, 206, and 72.4 $\mu \mathrm{mol}$ [the turnover numbers (TONs) were 35, 412, and 145, respectively]; these results showed that K-2 had the highest activity among these samples under the present reaction conditions. Even for 0.6 and $2.0 \mu \mathrm{~mol}$ of $\mathrm{Re}, \mathrm{K}-2$ exhibited the highest activities; however, the TONs decreased with increasing concentration of rhenium (V) atoms. When the cesium salts of 2 and $3, \mathrm{Cs}_{14}\left[\mathrm{O}\left\{\operatorname{Re}(\mathrm{OH})\left(\alpha_{2}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right)\right\}_{2}\right](\mathrm{Cs}-2)[40]$ and $\mathrm{Cs}_{3.5} \mathrm{H}_{0.5}\left[\mathrm{PW}_{11} \mathrm{ReO}_{40}\right]$ (Cs3) [40], were used as catalysts, the activities decreased compared with those of K-2 and $\mathbf{M e}_{2} \mathbf{N H}_{2}-\mathbf{3}$; however, the activities of $\mathbf{C s}-2$ were higher than those of $\mathbf{C s}-3$. These results suggested that the structure dependence was not influenced by the counter ion.

Table 1. Hydrogen evolution from methanol catalyzed by rhenium(V)-coordinated polyoxometalates under visible light irradiation ${ }^{\text {a }}$

Fig. 6. Time course for methanol dehydrogenation catalyzed by (a) $\mathbf{M e}_{2} \mathrm{NH}_{2}-1$ ($1.0 \mu \mathrm{~mol}$ of Re), (b) K-2 ($1.0 \mu \mathrm{~mol}$ of Re), and (c) $\mathrm{Me}_{2} \mathrm{NH}_{2}-3$ ($1.0 \mu \mathrm{~mol}$ of Re). In this system, the three polyoxotungstates and TiO_{2} were suspended in methanol, and the visible light ($\geq 400 \mathrm{~nm}$) was irradiated for $\mathbf{6 h}$ at $25^{\circ} \mathrm{C}$. Reaction conditions are shown in Table 1.

Fig. 7. ${ }^{31} \mathrm{P}$ NMR spectra in $\mathrm{D}_{2} \mathrm{O}$ of (a) $\mathrm{K}-2$ and (b) $\mathrm{Me}_{2} \mathrm{NH}_{2}-3$ after photoreactions. The rhenium compounds (50 mg) and $\mathrm{TiO}_{2}(500 \mathrm{mg})$ were suspended in methanol (25 mL), and they were irradiated under the visible light ($\geq 400 \mathrm{~nm}$) for $\mathbf{6 h}$.

4. CONCLUSION

A rhenium(V) complex composed of mono-lacunary α_{1}-Dawson polyoxotungstate was presented. We successfully obtained single crystals of dimethylammonium salt $\left[\mathrm{Me}_{2} \mathrm{NH}_{2}\right]_{7}\left[\alpha_{1}-\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{Re}^{\vee} \mathrm{O}_{62}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Me}_{2} \mathrm{NH}_{2}-1\right)$ by reacting hexachlororhenate with a monolacunary α_{1}-Dawson polyoxoanion in $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COOLi}$ buffer, followed by crystallization via vapor diffusion from acetonitrile/ethanol. The characterization of compound $\mathrm{Me}_{2} \mathrm{NH}_{2}-1$ was accomplished by X-ray structure analysis, elemental analysis, TG/DTA, FTIR, UV-visible, and solution ${ }^{31} \mathrm{P}$ NMR spectroscopy. For methanol dehydrogenation under visible light irradiation ($\geq 400 \mathrm{~nm}$) in the presence of TiO_{2}, the molecular structures of three rhenium (V) compounds were stable during the photoreactions, and the dirhenium(V)-oxido-bridged site in 2 exhibited the most effective activities compared with those of the mono-rhenium(V)-substituted sites in $\mathbf{1}$ and $\mathbf{3}$.

ACKNOWLEDGEMENTS

This work was supported by a Grant-in-Aid for Scientific Research C (No. 23550150) of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972; 238 37-38.
2. Schiavello M, editor. Heterogeneous photocatalysis. Chichester: John Wiley \& Sons; 1997.
3. Fujishima A, Hashimoto K, Watanabe $\mathrm{T} . \mathrm{TiO}_{2}$ Photocatalysis: Fundamentals and applications. Tokyo: BKC Inc; 1999.
4. Abe R, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C: Photochem Rev. 2010; 11 179209.
5. Maeda K, Domen K. Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett. 2010; 1 2655-2661.
6. Maeda K, Domen K. Surface nanostructures in photocatalysts for visible-light-driven water splitting. Top Curr Chem. 2011; 303 95-119, and references therein.
7. Chatterjee D. Effect of excited state redox properties of dye sensitizers on hydrogen production through photo-splitting water over TiO_{2} photocatalyst. Catal Commun. 2010; 11 336-339.
8. Zielińska-Jurek A, Kowalska E, Sobczak JW, Lisowski W, Ohtani B, Zaleska A. Preparation and characterization of monometallic(Au) and bimetallic(Ag/Au)-modified titania photocatalysts activated by visible light. Appl Catal B: Environ. 2011; 101 504514.
9. Sonawane RS, Dongare MK. Sol-gel synthesis of $\mathrm{Au} / \mathrm{TiO}_{2}$ thin films for photocatalytic degradation of phenol in sun light. J Mol Catal A: Chem. 2006; 243 68-76.
10. Chuang H, Chen D. Fabrication and photocatalytic activities in visible light and UV light regions of $\mathrm{Ag@TiO}_{2}$ nanoparticles. Nanotechnology 2009; 20 105704-105714.
11. Li FB, Li XZ. Photocatalytic properties of gold/gold ion-modified titanium dioxide for waste water treatment. Appl Catal A: Gen. 2002; 228 15-27.
12. Seery MK, George R, Floris P, Pillai SC. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J Photochem Photobiol A Chem. 2007; 189 258263.
13. Ishibai Y, Sato J, Nishikawa T, Miyagishi S. Synthesis of visible-light-active TiO_{2} photocatalyst with Pt -modification: Role of TiO_{2} substrate for high photocatalytic activity. Appl Catal B: Environ 2008; 79 117-121.
14. Kowalska E, Abe R, Ohtani B. Visible light-induced photocatalytic reaction of gold-modified-titanium(IV) oxide particles: action spectrum analysis. Chem Commun. 2009; 241.
15. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B. Lowtemperature oxidation of CO over gold supported on $\mathrm{TiO}_{2} \alpha-\mathrm{Fe}_{2} \mathrm{O}_{3}$, and $\mathrm{Co}_{3} \mathrm{O}_{4}$. J Catal. 1993; 144 175-192.
16. Kowalska E, Mahaney OOP, Abe R, Ohtani B. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys Chem Chem Phys. 2010;12 2344-2355, and references therein.
17. Abe R, Hara K, Sayama K, Domen K, Arakawa H, Steady hydrogen evolution from water on Eosin Y-fixed TiO_{2} photocatalyst using a silane-coupling reagent under visible light irradiation. J Photochem Photobiol A: Chem. 2000; 137 63-69.
18. Li Y, Guo M, Peng S, Lu G, Li S. Formation of multilayer-Eosin Y-sensitized TiO_{2} via Fe^{3+} coupling for efficient visible-light photocatalytic hydrogen evolution. Int J Hydrogen Energy. 2009; 34 5629-5636.
19. Sreethawong T, Junbua C, Chavadej S. Photocatalytic H_{2} production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled $\mathrm{Pt} / \mathrm{TiO}_{2}$ nanocrystal photocatalyst. J Power Sources 2009; 190 513-524.
20. Li Y, Xie C, Peng S, Lu G, Li S. Eosin Y-sensitized nitrogen-doped TiO_{2} for efficient visible light photocatalytic hydrogen evolution. J Mol Catal A: Chem. 2008; 282 117-123.
21. Nada AA, Hamed HA, Barakat MH, Mohamed NR, Veziroglu TN. Enhancement of photocatalytic hydrogen production rate using photosensitized $\mathrm{TiO}_{2} / \mathrm{RuO}_{2}-\mathrm{MV}^{2+}$. Int J Hydrogen Energy. 2008; 33 3264-3269.
22. O'Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_{2} films. Nature. 1991; 353 737-740.
23. Borgias BA, Cooper SR, Koh YB, Raymond KN. Synthetic, structural, and physical studies of titanium complexes of catechol and 3,5-di-tert-butylcatechol. Inorg Chem. 1984; 23 1009-1016.
24. Liu Y, Dadap JI, Zimdars D, Eisenthal KB. Study of interfacial charge-transfer complex on TiO_{2} particles in aqueous suspension by second-harmonic generation. J Phys Chem B 1999; 103 2480-2486.
25. Rodriguez R, Blesa MA, Regazzoni AE. Surface complexation at the TiO_{2} (anatase)/aqueous solution interface: chemisorptions of catechol. J Colloid Interface Sci. 1996; 177 122-131.
26. Moser J, Punchihewa S, Infelta PP, Grätzel M. Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates. Langmuir. 1991; 7 3012-3018.
27. Regazzoni AE, Mandelbaum P, Matsuyoshi M, Schiller S, Bilmes SA, Blesa MA. Adsorption and photooxidaiton of salicylic acid on titanium dioxide: a surface complexation description. Langmuir. 1998; 14 868-874.
28. Ikeda S, Abe C, Torimoto T, Ohtani B. Visible light-induced hydrogen evolution from aqueous suspension of titanium(IV) oxide modified with binaphthol. Electrochem. 2002; 70(6) 442-445.
29. Ikeda S, Abe C, Torimoto T, Ohtani B. Photochemical hydrogen evolution from aqueous triethanolamine solutions sensitized by binaphthol-modified titanium(IV) oxide under visible-light irradiation. J Photochem Photobiol A: Chem. 2003;160 61-67, and references therein.
30. Pope MT. Heteropoly and isopoly oxometalates. New York: Springer-Verlag; 1983.
31. Pope MT, Müller A. Chemistry of polyoxometalates. Actual variation on an old theme with interdisciplinary references. Angew Chem Int Ed Engl. 1991; 30 34-48.
32. Pope MT, Müller A, editors; Polyoxometalates: from platonic solids to anti-retroviral activity. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1994.
33. Dubey N, Labhsetwar NK, Devotta S, Rayalu SR. Hydrogen evolution by water splitting using novel composite zeolite-based photocatalyst. Catal Today. 2007;129 428-434.
34. Najafabadi AT, Taghipour F. Cobalt precursor role in the photocatalytic activity of the zeolite-supported TiO_{2}-based photocatalysts under visible light: a promising tool toward zeolite-based core-shell photocatalysis. J Photochem Photobiol A: Chem. 2012; 248 17.
35. Fu N, Lu G. Graft of lacunary Wells-Dawson heteropoly blue on the surface of TiO_{2} and its photocatalytic activity under visible light. Chem Commun. 2009; 3591-3593.
36. Fu N, Wu Y, Jin Z, Lu G. Structural-dependent photoactivities of TiO_{2} nanoribbon for visible-light-induced H_{2} evolution: the roles of nanocavities and alternate structures. Langmuir 2010; 26(1) 447-455.
37. Fu N, Lu G. Photo-catalytic H_{2} evolution over a series of Keggin-structure heteropoly bule sensitized $\mathrm{Pt} / \mathrm{TiO}_{2}$ under visible light irradiation. Appl Surf Sci. 2009; 255 43784383.
38. Sivakumer R, Thomas J, Yoon M. Polyoxometalate-based molecular/nano composites: advances in environmental remediation by photocatalysis and biomimetic approaches to solar energy conversion. J Photochem Photobiol C: Photochem Rev. 2012; 13 277298.
39. Kato CN, Hara K, Hatano A, Goto K, Kuribayashi T, Hayashi K, et al. A Dawson-type dirhenium (V)-oxido-bridged polyoxotungstate: X-ray crystal structure and hydrogen evolution from water vapor under visible light irradiation. Eur J Inorg Chem. 2008; 31343141.
40. Kato CN, Hara K, Kato M, Amano H, Sato K, Kataoka Y, et al. EDTA-reduction of water to molecular hydrogen catalyzed by visible-light-response TiO_{2}-based materials sensitized by Dawson- and Keggin-type rhenium(V)-containing polyoxotungstates. Materials. 2010; 3 897-917.
41. Contant R. Potassium octadecatungstodiphosphates(V) and related lacunary compounds. Inorg Synth. 1990; 27 104-110.
42. Lyon DK, Miller WK, Novet T, Domaille PJ, Evitt E, Johnson DC, Finke RG. Highly oxidation resistant inorganic-porphyrin analogue polyoxometalate oxidation catalysts. the synthesis and characterization of aqueous-soluble potassium salts of $\alpha_{2}-$ $\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\left(\mathrm{M}^{\mathrm{n}+} . \mathrm{OH}_{2}\right)^{(\mathrm{n}-10)}$ and organic solvent soluble tetra-n-butylammonium salts of $\alpha_{2}{ }^{-}$ $\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\left(\mathrm{M}^{\mathrm{n+}} . \mathrm{Br}\right)^{(\mathrm{n}-11)}\left(\mathrm{M}=\mathrm{Mn}^{3+}, \mathrm{Fe}^{3+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}\right)$. J Am Chem Soc. 1991; 113 7209-7221.
43. Weiner H, Aiken III JD, Finke RG. Polyoxometalate catalyst precursors. improved synthesis, H^{+}-titration procedure, and evidence for ${ }^{31} \mathrm{P}$ NMR as a highly sensitive support-site indication for the prototype polyoxoanion-organometallic-support system $\left[\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right){ }_{4} \mathrm{~N}\right]_{9} \mathrm{P}_{2} \mathrm{~W}_{15} \mathrm{Nb}_{3} \mathrm{O}_{62}$. Inorg Chem. 1996; 35 7905-7913.
44. Sheldrick GM. A short history of SHELX. Acta Crystallogr. 2008; A64 112-122.
45. Spek AL. Structure validation in chemical crystallography. Acta Crystallogr. 2009; D65 148-155.
46. Nash T. The colorimetric estimation of formaldehyde by means of the hantzsch reaction. Biochem J. 1953; 55 416-421.
47. Ortéga F, Pope MT, Evans, Jr HT. Tungstorhenate heteropolyanions. 2. Synthesis and characterization of enneatungstorhenates(V), -(VI), and -(VII). Inorg Chem. 1997; 36 2166-2169.
48. Kato CN, Makino Y, Yamasaki M, Kataoka Y, Kitagawa Y, Okumura M. Synthesis and X-ray crystal structure of α-Keggin-type aluminum-substituted polyoxotungstate. In: Mastai Y editor. Advances in crystallization processes. Croatia: InTech; 2012.

APPENDIX

Bond lengths (\AA) of $\mathrm{Me}_{2} \mathrm{NH}_{2}-1: \operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(8) 1.915(14) ; \operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(14) 1.702(14)$; $\operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(19) 1.912(16) ; \operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(20) 1.870(17) ; \operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(26) 2.374(12)$; $\operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(57) 1.896(12) ; \operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(9) 1.968(13) ; \operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(15) 1.733(13)$; $\operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(20) 1.900(18) ; \operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(21) 1.928(17) ; \operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(27) 2.353(12)$; $\operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(58) 1.889(13) ; \operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(10) 1.951(14) ; \operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(16) 1.696(18)$;
$\operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(21) 1.896(12) ; \operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(22) 1.909(13) ; \operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(27) 2.376(18)$;
$\operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(59) 1.924(13) ; \operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(11) 1.968(12) ; \operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(17) 1.714(16)$;
$\operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(22) 1.877(14) ; \operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(23) 1.929(16) ; \operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(28) 2.353(15)$;
$\operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(60) 1.893(13) ; \operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(12) 1.951(13) ; \operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(18) 1.689(14) ;$ $\operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(23) 1.891(17) ; \operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(24) 1.906(15) ; \operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(28) 2.360(13) ;$ $\operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(61) 1.881(12) ; \operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(7) 1.905(14) ; \operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(13) 1.691(17) ;$ $\operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(19) 1.899(13) ; \operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(24) 1.866(13) ; \operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(26) 2.379(16) ;$ $\operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(62) 1.924(14) ; \operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(30) 1.708(16) ; \operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(35) 1.916(16) ;$ $\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(36) \quad 1.863(16) ; \operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(42) \quad 1.943(12) ; \quad \operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(54)$ 2.360(12); $\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(57) 1.919(12) ; \operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(31) 1.734(14) ; \operatorname{Re}(8)(\mathrm{W}(11))-$ $\mathrm{O}(36) \quad 1.911(15) ; \operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(37) \quad 1.884(16) ; \operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(43) \quad 1.960(15)$; $\operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(55) \quad 2.385(11) ; \quad \operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(58) \quad 1.881(14) ; \quad \operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(32)$ 1.689(18); $\operatorname{Re}(9)(W(12))-\mathrm{O}(37) 1.941(12) ; \operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(38) 1.879(12) ; \operatorname{Re}(9)(\mathrm{W}(12))-$ $\mathrm{O}(44) \quad 1.968(14) ; \quad \operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(55) \quad 2.345(16) ; \quad \operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(59) \quad 1.861(13) ;$ $\operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(33) \quad 1.694(15) ; \operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(38) \quad 1.892(13) ; \operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(39)$ 1.902(16); $\operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(45) 1.981(14) ; \operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(56) 2.351(14) ; \operatorname{Re}(10)(\mathrm{W}(13))-$ $\mathrm{O}(60) \quad 1.890(13) ; \operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(34) \quad 1.701(15) ; \operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(39) \quad 1.897(17) ;$ $\operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(40) \quad 1.872(14) ; \operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(46) \quad 1.980(13) ; \operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(56)$ 2.374(13); $\operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(61) 1.891(13) ; \operatorname{Re}(12)(\mathrm{W}(15))-\mathrm{O}(29) 1.679(19) ; \operatorname{Re}(12)(\mathrm{W}(15))-$ $\mathrm{O}(35) \quad 1.907(12) ; \operatorname{Re}(12)(\mathrm{W}(15))-\mathrm{O}(40) \quad 1.899(13) ; \operatorname{Re}(12)(\mathrm{W}(15))-\mathrm{O}(41) 1.958(13)$; $\operatorname{Re}(12)(\mathrm{W}(15))-\mathrm{O}(54) 2.384(16) ; \operatorname{Re}(12)(\mathrm{W}(15))-\mathrm{O}(62) 1.867(13) ; \mathrm{W}(1)-\mathrm{O}(1) 1.690(11) ; \mathrm{W}(1)-$ $\mathrm{O}(4) 1.921(15) ; \mathrm{W}(1)-\mathrm{O}(5) 1.910(15) ; \mathrm{W}(1)-\mathrm{O}(8) 1.912(16) ; \mathrm{W}(1)-\mathrm{O}(9) 1.870(14) ; \mathrm{W}(1)-\mathrm{O}(25)$ 2.402(11); $\mathrm{W}(2)-\mathrm{O}(2) 1.705(16) ; \mathrm{W}(2)-\mathrm{O}(5) 1.902(11) ; \mathrm{W}(2)-\mathrm{O}(6) 1.920(17) ; \mathrm{W}(2)-\mathrm{O}(10)$ 1.880(15); W(2)-O(11) 1.882(12); W(2)-O(25) 2.364(15); W(3)-O(3) 1.692(14); W(3)-O(4) 1.915(12); $\mathrm{W}(3)-\mathrm{O}(6) 1.887(18) ; \mathrm{W}(3)-\mathrm{O}(7)$ 1.918(16); $\mathrm{W}(3)-\mathrm{O}(12) 1.874(12) ; \mathrm{W}(3)-\mathrm{O}(25)$ 2.386(13); W(16)-O(42) 1.892(15); W(16)-O(43) 1.874(17); W(16)-O(47) 1.730(14); W(16)$\mathrm{O}(50) 1.908(15) ; \mathrm{W}(16)-\mathrm{O}(51) 1.932(15) ; \mathrm{W}(16)-\mathrm{O}(53) 2.415(12) ; \mathrm{W}(17)-\mathrm{O}(44) 1.865(15) ;$ W(17)-O(45) 1.865(13); W(17)-O(48) 1.680(14); W(17)-O(51) 1.898(14); W(17)-O(52) 1.932(17); W(17)-O(53) 2.352(13); W(18)-O(41) 1.886(14); W(18)-O(46) 1.877(13); W(18)$\mathrm{O}(49) 1.705(16) ; \mathrm{W}(18)-\mathrm{O}(50) 1.966(12) ; \mathrm{W}(18)-\mathrm{O}(52) 1.900(17) ; \mathrm{W}(18)-\mathrm{O}(53) 2.354(14) ;$ $\mathrm{P}(1)-\mathrm{O}(25) 1.593(12) ; \mathrm{P}(1)-\mathrm{O}(26) 1.494(17) ; \mathrm{P}(1)-\mathrm{O}(27) 1.517(16) ; \mathrm{P}(1)-\mathrm{O}(28) 1.543(12)$; $\mathrm{P}(2)-\mathrm{O}(53) 1.600(12) ; \mathrm{P}(2)-\mathrm{O}(54) 1.500(15) ; \mathrm{P}(2)-\mathrm{O}(55) 1.514(16) ; \mathrm{P}(2)-\mathrm{O}(56) 1.531(12)$.

Bond angles (${ }^{\circ}$) of $\mathrm{Me}_{2} \mathbf{N H}_{2}-1: \mathrm{O}(8)-\mathrm{Re}(1)(\mathrm{W}(4))-\mathrm{O}(14) 97.6(6) ; \mathrm{O}(8)-\operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(19)$ 89.9(7); O(8)-Re(1)(W(4))-O(20) 85.3(7); O(8)-Re(1)(W(4))-O(26) 81.4(5); O(8)-Re(1)(W(4))$\mathrm{O}(57)$ 164.6(6); O(14)-Re(1)(W(4))-O(19) 99.4(7); O(14)-Re(1)(W(4))-O(20) 103.4(7); O(14)-$\operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(26) \quad 172.2(7) ; \mathrm{O}(14)-\operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(57) \quad 97.7(6) ; \quad \mathrm{O}(19)-\operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(20)$ 157.1(6); $\mathrm{O}(19)-\operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(26) \quad 72.9(6) ; \quad \mathrm{O}(19)-\operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(57) \quad 89.4(6) ; \quad \mathrm{O}(20)-$ $\operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(26) \quad 84.3(6) ; \quad \mathrm{O}(20)-\operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(57) \quad 89.5(6) ; \quad \mathrm{O}(26)-\operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(57)$ 83.7(5); O(9)-Re(2)(W(5))-O(15) 97.4(6); O(9)-Re(2)(W(5))-O(20) 84.8(7); O(9)-Re(2)(W(5))$\mathrm{O}(21) 88.1(6) ; \mathrm{O}(9)-\mathrm{Re}(2)(\mathrm{W}(5))-\mathrm{O}(27) 81.8(5) ; \mathrm{O}(9)-\mathrm{Re}(2)(\mathrm{W}(5))-\mathrm{O}(58)$ 163.3(6); O(15)-$\operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(20) \quad 102.0(7) ; \mathrm{O}(15)-\operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(21) \quad 99.5(7) ; \mathrm{O}(15)-\operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(27)$ 173.0(8); $\mathrm{O}(15)-\operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(58) \quad 99.1(6) ; \quad \mathrm{O}(20)-\operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(21) \quad 158.1(6) ; \mathrm{O}(20)-$ $\operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(27) \quad 84.9(6) ; \quad \mathrm{O}(20)-\operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(58) \quad 89.5(7) ; \quad \mathrm{O}(21)-\operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(27)$ $73.5(6) ; \quad \mathrm{O}(21)-\operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(58) \quad 91.4(7) ; \quad \mathrm{O}(27)-\operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(58) \quad 82.1(5) ; \quad \mathrm{O}(10)-$ $\operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(16) \quad 98.5(7) ; \quad \mathrm{O}(10)-\mathrm{Re}(3)(\mathrm{W}(6))-\mathrm{O}(21) \quad 88.0(6) ; \quad \mathrm{O}(10)-\operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(22)$ 86.8(6); $\mathrm{O}(10)-\operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(27) \quad 81.4(7) ; \quad \mathrm{O}(10)-\mathrm{Re}(3)(\mathrm{W}(6))-\mathrm{O}(59) \quad 163.6(8) ; \mathrm{O}(16)-$ $\operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(21) \quad 100.1(7) ; \mathrm{O}(16)-\operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(22) \quad 102.0(7) ; \mathrm{O}(16)-\operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(27)$ 173.7(5); $\mathrm{O}(16)-\operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(59) \quad 97.8(7) ; \quad \mathrm{O}(21)-\mathrm{Re}(3)(\mathrm{W}(6))-\mathrm{O}(22) \quad 157.7(8) ; \quad \mathrm{O}(21)-$ $\operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(27) \quad 73.5(6) ; \quad \mathrm{O}(21)-\operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(59) \quad 90.8(6) ; \quad \mathrm{O}(22)-\operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(27)$ 84.3(7); $\mathrm{O}(22)-\operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(59) \quad 88.1(6) ; \quad \mathrm{O}(27)-\operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(59) \quad 82.6(6) ; \quad \mathrm{O}(11)-$ $\operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(17) \quad 96.9(6) ; \quad \mathrm{O}(11)-\operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(22) \quad 86.0(6) ; \quad \mathrm{O}(11)-\operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(23)$ 87.8(6); $\mathrm{O}(11)-\operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(28) \quad 81.7(6) ; \quad \mathrm{O}(11)-\operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(60) \quad 163.4(6) ; \quad \mathrm{O}(17)-$ $\operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(22) \quad 102.7(8) ; \mathrm{O}(17)-\operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(23) \quad 99.3(7) ; \quad \mathrm{O}(17)-\operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(28)$ 172.2(6); $\mathrm{O}(17)-\operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(60)$ 99.6(6); $\mathrm{O}(22)-\operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(23) \quad 157.7(7) ; \mathrm{O}(22)-$ $\operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(28) \quad 84.9(6) ; \quad \mathrm{O}(22)-\operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(60) \quad 89.1(6) ; \quad \mathrm{O}(23)-\operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(28)$
73.0(6); $\quad \mathrm{O}(23)-\mathrm{Re}(4)(\mathrm{W}(7))-\mathrm{O}(60) \quad 90.8(6) ; \quad \mathrm{O}(28)-\operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(60) \quad 82.1(6) ; \quad \mathrm{O}(12)-$ $\operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(18) \quad 97.7(6) ; \quad \mathrm{O}(12)-\operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(23) \quad 89.1(7) ; \quad \mathrm{O}(12)-\operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(24)$ 84.5(6); $\mathrm{O}(12)-\mathrm{Re}(5)(\mathrm{W}(8))-\mathrm{O}(28) \quad 81.5(5) ; \quad \mathrm{O}(12)-\mathrm{Re}(5)(\mathrm{W}(8))-\mathrm{O}(61) \quad 162.6(5) ; \quad \mathrm{O}(18)-$ $\operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(23) \quad 99.0(7) ; \mathrm{O}(18)-\operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(24) \quad 102.5(7) ; \mathrm{O}(18)-\operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(28)$ 172.4(7); $\mathrm{O}(18)-\operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(61) \quad 99.3(6) ; \quad \mathrm{O}(23)-\operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(24) \quad 158.3(6) ; \quad \mathrm{O}(23)-$ $\operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(28) \quad 73.5(6) ; \quad \mathrm{O}(23)-\operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(61) \quad 91.9(7) ; \quad \mathrm{O}(24)-\operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(28)$ 85.1(6); $\quad \mathrm{O}(24)-\operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(61) \quad 88.3(6) ; \quad \mathrm{O}(28)-\operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(61) \quad 82.1(5) ; \quad \mathrm{O}(7)-$ $\operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(13) \quad 97.4(7) ; \quad \mathrm{O}(7)-\operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(19) \quad 89.2(6) ; \quad \mathrm{O}(7)-\operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(24)$ 87.0(6); $\quad \mathrm{O}(7)-\operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(26) \quad 81.7(6) ; \quad \mathrm{O}(7)-\operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(62) \quad 163.7(7) ; \quad \mathrm{O}(13)-$ $\operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(19) \quad 100.8(7) ; \mathrm{O}(13)-\operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(24) \quad 101.6(7) ; \mathrm{O}(13)-\operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(26)$ 173.7(5); $\mathrm{O}(13)-\operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(62) \quad 98.9(7) ; \quad \mathrm{O}(19)-\operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(24) \quad 157.6(8) ; \mathrm{O}(19)-$ $\operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(26) \quad 73.0(6) ; \quad \mathrm{O}(19)-\operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(62) \quad 88.2(6) ; \quad \mathrm{O}(24)-\operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(26)$ 84.6(6); $\quad \mathrm{O}(24)-\mathrm{Re}(6)(\mathrm{W}(9))-\mathrm{O}(62) \quad 89.2(6) ; \quad \mathrm{O}(26)-\operatorname{Re}(6)(\mathrm{W}(9))-\mathrm{O}(62) \quad 82.1(6) ; \quad \mathrm{O}(30)-$ $\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(35) 99.4(8) ; \mathrm{O}(30)-\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(36) 103.2(7) ; \mathrm{O}(30)-\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(42)$ 96.7(6); $\mathrm{O}(30)-\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(54) \quad 172.0(7) ; \quad \mathrm{O}(30)-\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(57) \quad 99.0(6) ; \quad \mathrm{O}(35)-$ $\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(36) 157.2(6) ; \mathrm{O}(35)-\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(42) 87.2(6) ; \mathrm{O}(35)-\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(54)$ 72.8(6); $\quad \mathrm{O}(35)-\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(57) \quad 88.4(6) ; \quad \mathrm{O}(36)-\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(42) \quad 87.4(6) ; \quad \mathrm{O}(36)-$ $\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(54) 84.5(5) ; \mathrm{O}(36)-\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(57) 90.8(6) ; \mathrm{O}(42)-\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(54)$ 81.2(5); $\mathrm{O}(42)-\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(57) \quad 164.2(6) ; \mathrm{O}(54)-\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(57) 82.9(5) ; \mathrm{O}(31)-$ $\operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(36) 102.7(7)$; O(31)-Re(8)(W(11))-O(37) 99.2(7); O(31)-Re(8)(W(11))-O(43) 98.5(7); $\mathrm{O}(31)-\operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(55) \quad 172.6(8) ; \quad \mathrm{O}(31)-\operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(58) 98.3(6) ; \mathrm{O}(36)-$ $\operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(37) 158.1(5)$; $\mathrm{O}(36)-\operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(43) 85.7(7) ; \mathrm{O}(36)-\operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(55)$ 84.8(5); $\mathrm{O}(36)-\operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(58) \quad 86.6(7) ; \mathrm{O}(37)-\operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(43) \quad 90.8(7) ; \mathrm{O}(37)-$ $\operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(55) 73.4(6) ; \mathrm{O}(37)-\operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(58) 90.6(7) ; \mathrm{O}(43)-\operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(55)$ 82.3(5); $\mathrm{O}(43)-\operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(58) \quad 162.8(6) ; \mathrm{O}(55)-\operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(58) 81.7(5) ; \mathrm{O}(32)-$ $\operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(37) \quad 100.3(7) ; \quad \mathrm{O}(32)-\operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(38) \quad 101.6(7) ; \quad \mathrm{O}(32)-\operatorname{Re}(9)(\mathrm{W}(12))-$ $\mathrm{O}(44) \quad 96.9(7) ; \quad \mathrm{O}(32)-\operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(55) \quad 173.4(5) ; \quad \mathrm{O}(32)-\operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(59) \quad 98.5(7)$; $\mathrm{O}(37)-\operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(38) 157.8(7) ; \mathrm{O}(37)-\operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(44) 88.8(6) ; \mathrm{O}(37)-\operatorname{Re}(9)(\mathrm{W}(12))-$ $\mathrm{O}(55) 73.4(6) ; \mathrm{O}(37)-\mathrm{Re}(9)(\mathrm{W}(12))-\mathrm{O}(59)$ 88.9(6); O(38)-Re(9)(W(12))-O(44) 85.4(6); O(38)-$\operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(55) 84.6(6) ; \mathrm{O}(38)-\operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(59) 91.1(6) ; \mathrm{O}(44)-\operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(55)$ 81.2(6); $\mathrm{O}(44)-\operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(59) \quad 164.6(7) ; \mathrm{O}(55)-\operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(59) \quad 83.6(6) ; \mathrm{O}(33)-$ $\operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(38)$ 101.9(7); O(33)-Re(10)(W(13))-O(39) 100.0(7); O(33)-Re(10)(W(13))$\mathrm{O}(45)$ 96.1(6); $\mathrm{O}(33)-\operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(56)$ 172.5(6); $\mathrm{O}(33)-\operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(60) 100.7(7)$; $\mathrm{O}(38)-\operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(39) \quad 157.6(7) ; \quad \mathrm{O}(38)-\operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(45) \quad 84.7(6) ; \quad \mathrm{O}(38)-$ $\operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(56) \quad 84.7(6) ; \mathrm{O}(38)-\operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(60) 88.5(6) ; \mathrm{O}(39)-\operatorname{Re}(10)(\mathrm{W}(13))-$ $\mathrm{O}(45)$ 88.6(6); $\mathrm{O}(39)-\operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(56)$ 73.1(6); $\mathrm{O}(39)-\operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(60)$ 91.8(6); $\mathrm{O}(45)-\operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(56) \quad 80.9(5) ; \quad \mathrm{O}(45)-\operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(60) \quad 162.8(6) ; \quad \mathrm{O}(56)-$ $\operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(60) 82.7(6) ; \mathrm{O}(34)-\operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(39) \quad 100.0(7) ; \mathrm{O}(34)-\operatorname{Re}(11)(\mathrm{W}(14))-$ $\mathrm{O}(40)$ 102.2(8); $\mathrm{O}(34)-\mathrm{Re}(11)(\mathrm{W}(14))-\mathrm{O}(46)$ 96.5(7); $\mathrm{O}(34)-\mathrm{Re}(11)(\mathrm{W}(14))-\mathrm{O}(56) 172.5(7)$; $\mathrm{O}(34)-\operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(61) \quad 99.5(6) ; \quad \mathrm{O}(39)-\operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(40) \quad 157.3(6) ; \quad \mathrm{O}(39)-$ $\operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(46) \quad 87.3(7) ; \mathrm{O}(39)-\operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(56) \quad 72.7(5) ; \mathrm{O}(39)-\operatorname{Re}(11)(\mathrm{W}(14))-$ $\mathrm{O}(61)$ 91.2(7); $\mathrm{O}(40)-\operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(46)$ 85.6(6); $\mathrm{O}(40)-\operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(56) 85.0(6)$; $\mathrm{O}(40)-\operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(61) \quad 89.8(6) ; \quad \mathrm{O}(46)-\operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(56) \quad 82.1(5) ; \quad \mathrm{O}(46)-$ $\operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(61) 163.9(6) ; \mathrm{O}(56)-\operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(61) 82.2(5) ; \mathrm{O}(29)-\operatorname{Re}(12)(\mathrm{W}(15))-$ $\mathrm{O}(35) 100.3(7) ; \mathrm{O}(29)-\operatorname{Re}(12)(\mathrm{W}(15))-\mathrm{O}(40)$ 101.8(7); O(29)-Re(12)(W(15))-O(41) 96.3(7); $\mathrm{O}(29)-\operatorname{Re}(12)(\mathrm{W}(15))-\mathrm{O}(54) \quad 172.4(6) ; \quad \mathrm{O}(29)-\operatorname{Re}(12)(\mathrm{W}(15))-\mathrm{O}(62) \quad 99.3(7) ; \quad \mathrm{O}(35)-$ $\operatorname{Re}(12)(\mathrm{W}(15))-\mathrm{O}(40) 157.3(7) ; \mathrm{O}(35)-\operatorname{Re}(12)(\mathrm{W}(15))-\mathrm{O}(41) 88.0(5) ; \mathrm{O}(35)-\operatorname{Re}(12)(\mathrm{W}(15))-$ $\mathrm{O}(54)$ 72.4(6); $\mathrm{O}(35)-\operatorname{Re}(12)(\mathrm{W}(15))-\mathrm{O}(62)$ 91.2(6); $\mathrm{O}(40)-\operatorname{Re}(12)(\mathrm{W}(15))-\mathrm{O}(41) 84.6(6)$; $\mathrm{O}(40)-\operatorname{Re}(12)(\mathrm{W}(15))-\mathrm{O}(54) \quad 85.3(6) ; \quad \mathrm{O}(40)-\operatorname{Re}(12)(\mathrm{W}(15))-\mathrm{O}(62) \quad 90.1(6) ; \quad \mathrm{O}(41)-$ $\operatorname{Re}(12)(\mathrm{W}(15))-\mathrm{O}(54)$ 81.4(6); O(41)-Re(12)(W(15))-O(62) 164.2(8); O(54)-Re(12)(W(15))$\mathrm{O}(62)$ 83.4(6); O(1)-W(1)-O(4) 102.0(6); O(1)-W(1)-O(5) 101.9(7); O(1)-W(1)-O(8) 102.5(7); $\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{O}(9) 102.1(6) ; \mathrm{O}(1)-\mathrm{W}(1)-\mathrm{O}(25) 171.7(6) ; \mathrm{O}(4)-\mathrm{W}(1)-\mathrm{O}(5) 88.7(7) ; \mathrm{O}(4)-\mathrm{W}(1)-\mathrm{O}(8)$ 87.0(7); O(4)-W(1)-O(9) 155.9(6); O(4)-W(1)-O(25) 72.9(5); O(5)-W(1)-O(8) 155.5(5); O(5)-
$\mathrm{W}(1)-\mathrm{O}(9) \quad 88.2(7) ; \mathrm{O}(5)-\mathrm{W}(1)-\mathrm{O}(25) 71.8(5) ; \mathrm{O}(8)-\mathrm{W}(1)-\mathrm{O}(9) \quad 86.1(7) ; \mathrm{O}(8)-\mathrm{W}(1)-\mathrm{O}(25)$ 83.9(5); O(9)-W(1)-O(25) 83.5(5); O(2)-W(2)-O(5) 102.4(6); O(2)-W(2)-O(6) 101.5(7); O(2)-$\mathrm{W}(2)-\mathrm{O}(10) 103.6(8) ; \mathrm{O}(2)-\mathrm{W}(2)-\mathrm{O}(11) 101.8(7) ; \mathrm{O}(2)-\mathrm{W}(2)-\mathrm{O}(25) 171.7(6) ; \mathrm{O}(5)-\mathrm{W}(2)-\mathrm{O}(6)$ 87.7(6); O(5)-W(2)-O(10) 87.2(6); O(5)-W(2)-O(11) 155.8(7); O(5)-W(2)-O(25) 72.9(6); O(6)-$\mathrm{W}(2)-\mathrm{O}(10) 154.9(7) ; \mathrm{O}(6)-\mathrm{W}(2)-\mathrm{O}(11) 87.1(6) ; \mathrm{O}(6)-\mathrm{W}(2)-\mathrm{O}(25) 71.8(6) ; \mathrm{O}(10)-\mathrm{W}(2)-\mathrm{O}(11)$ 87.6(6); $\mathrm{O}(10)-\mathrm{W}(2)-\mathrm{O}(25)$ 83.3(7); $\mathrm{O}(11)-\mathrm{W}(2)-\mathrm{O}(25) 83.0(6) ; \mathrm{O}(3)-\mathrm{W}(3)-\mathrm{O}(4) 103.2(6)$; $\mathrm{O}(3)-\mathrm{W}(3)-\mathrm{O}(6) 101.7(7) ; \mathrm{O}(3)-\mathrm{W}(3)-\mathrm{O}(7) 102.2(7) ; \mathrm{O}(3)-\mathrm{W}(3)-\mathrm{O}(12) 101.3(6) ; \mathrm{O}(3)-\mathrm{W}(3)-$ $\mathrm{O}(25) 172.4(7) ; \mathrm{O}(4)-\mathrm{W}(3)-\mathrm{O}(6)$ 89.2(7); $\mathrm{O}(4)-\mathrm{W}(3)-\mathrm{O}(7) 87.4(6) ; \mathrm{O}(4)-\mathrm{W}(3)-\mathrm{O}(12) 155.4(6)$; $\mathrm{O}(4)-\mathrm{W}(3)-\mathrm{O}(25) 73.4(5) ; \mathrm{O}(6)-\mathrm{W}(3)-\mathrm{O}(7)$ 156.0(6); O(6)-W(3)-O(12) $88.0(7) ; \mathrm{O}(6)-\mathrm{W}(3)-$ $\mathrm{O}(25) 71.7(6) ; \mathrm{O}(7)-\mathrm{W}(3)-\mathrm{O}(12) 85.4(6) ; \mathrm{O}(7)-\mathrm{W}(3)-\mathrm{O}(25) 84.5(6) ; \mathrm{O}(12)-\mathrm{W}(3)-\mathrm{O}(25) 82.6(5)$; $\mathrm{O}(42)-\mathrm{W}(16)-\mathrm{O}(43) 87.8(7) ; \mathrm{O}(42)-\mathrm{W}(16)-\mathrm{O}(47) 102.4(7) ; \mathrm{O}(42)-\mathrm{W}(16)-\mathrm{O}(50) 87.8(6) ; \mathrm{O}(42)-$ $\mathrm{W}(16)-\mathrm{O}(51)$ 155.2(6); O(42)-W(16)-O(53) 82.9(5); O(43)-W(16)-O(47) 103.3(7); O(43)-$\mathrm{W}(16)-\mathrm{O}(50)$ 157.1(6); $\mathrm{O}(43)-\mathrm{W}(16)-\mathrm{O}(51)$ 89.2(7); $\mathrm{O}(43)-\mathrm{W}(16)-\mathrm{O}(53) 84.0(6) ; \mathrm{O}(47)-$ $\mathrm{W}(16)-\mathrm{O}(50)$ 99.6(7); O(47)- $\mathrm{W}(16)-\mathrm{O}(51)$ 102.2(7); O(47)-W(16)-O(53) 171.0(5); O(50)-$\mathrm{W}(16)-\mathrm{O}(51)$ 85.4(7); $\mathrm{O}(50)-\mathrm{W}(16)-\mathrm{O}(53) 73.1(6) ; \mathrm{O}(51)-\mathrm{W}(16)-\mathrm{O}(53) 72.3(5) ; \mathrm{O}(44)-\mathrm{W}(17)-$ $\mathrm{O}(45)$ 86.8(6); $\mathrm{O}(44)-\mathrm{W}(17)-\mathrm{O}(48)$ 101.3(7); O(44)-W(17)-O(51) 91.4(6); O(44)-W(17)-O(52) 157.7(6); $\mathrm{O}(44)-\mathrm{W}(17)-\mathrm{O}(53) \quad 85.4(6) ; \mathrm{O}(45)-\mathrm{W}(17)-\mathrm{O}(48) \quad 102.4(6) ; \quad \mathrm{O}(45)-\mathrm{W}(17)-\mathrm{O}(51)$ 157.3(7); O(45)-W(17)-O(52) 87.9(7); O(45)-W(17)-O(53) 82.9(6); O(48)-W(17)-O(51) 100.1(6); $\mathrm{O}(48)-\mathrm{W}(17)-\mathrm{O}(52)$ 100.9(7); $\mathrm{O}(48)-\mathrm{W}(17)-\mathrm{O}(53)$ 171.5(7); O(51)-W(17)-O(52) 85.3(7); $\mathrm{O}(51)-\mathrm{W}(17)-\mathrm{O}(53) 74.4(5) ; \mathrm{O}(52)-\mathrm{W}(17)-\mathrm{O}(53) 72.4(6) ; \mathrm{O}(41)-\mathrm{W}(18)-\mathrm{O}(46) 87.6(6)$; $\mathrm{O}(41)-\mathrm{W}(18)-\mathrm{O}(49) \quad 101.8(8) ; \quad \mathrm{O}(41)-\mathrm{W}(18)-\mathrm{O}(50) \quad 89.3(6) ; \quad \mathrm{O}(41)-\mathrm{W}(18)-\mathrm{O}(52) \quad 157.7(7)$; $\mathrm{O}(41)-\mathrm{W}(18)-\mathrm{O}(53)$ 84.8(6); $\mathrm{O}(46)-\mathrm{W}(18)-\mathrm{O}(49) \quad 102.1(7) ; \quad \mathrm{O}(46)-\mathrm{W}(18)-\mathrm{O}(50) 158.9(7)$; $\mathrm{O}(46)-\mathrm{W}(18)-\mathrm{O}(52)$ 89.4(7); O(46)-W(18)-O(53) 85.3(6); O(49)-W(18)-O(50) 98.9(7); O(49)-$\mathrm{W}(18)-\mathrm{O}(52)$ 100.5(7); O(49)-W(18)-O(53) 170.2(6); O(50)-W(18)-O(52) 85.7(6); O(50)-$\mathrm{W}(18)-\mathrm{O}(53) 73.6(6) ; \mathrm{O}(52)-\mathrm{W}(18)-\mathrm{O}(53) 72.9(6) ; \mathrm{O}(25)-\mathrm{P}(1)-\mathrm{O}(26) 107.4(8) ; \mathrm{O}(25)-\mathrm{P}(1)-$
$\mathrm{O}(27)$ 106.8(8); $\mathrm{O}(25)-\mathrm{P}(1)-\mathrm{O}(28)$ 106.4(7); $\mathrm{O}(26)-\mathrm{P}(1)-\mathrm{O}(27)$ 112.6(8); $\mathrm{O}(26)-\mathrm{P}(1)-\mathrm{O}(28)$ 112.2(8); $\mathrm{O}(27)-\mathrm{P}(1)-\mathrm{O}(28) 111.0(8) ; \mathrm{O}(53)-\mathrm{P}(2)-\mathrm{O}(54)$ 107.0(8); $\mathrm{O}(53)-\mathrm{P}(2)-\mathrm{O}(55) 106.4(7)$; $\mathrm{O}(53)-\mathrm{P}(2)-\mathrm{O}(56) 106.3(6) ; \mathrm{O}(54)-\mathrm{P}(2)-\mathrm{O}(55) 112.9(7) ; \mathrm{O}(54)-\mathrm{P}(2)-\mathrm{O}(56) 113.0(8) ; \mathrm{O}(55)-$ $\mathrm{P}(2)-\mathrm{O}(56)$ 110.8(8); $\mathrm{W}(1)-\mathrm{O}(4)-\mathrm{W}(3)$ 123.7(7); $\mathrm{W}(1)-\mathrm{O}(5)-\mathrm{W}(2) 124.9(7) ; \mathrm{W}(2)-\mathrm{O}(6)-\mathrm{W}(3)$ 125.5(7); $\operatorname{Re}(6)(W(9))-O(7)-W(3) 150.1(8) ; \operatorname{Re}(1)(W(4))-O(8)-W(1) 151.3(9) ; \operatorname{Re}(2)(W(5))-$ $\mathrm{O}(9)-\mathrm{W}(1) 150.7(10) ; \operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(10)-\mathrm{W}(2) 150.0(9) ; \operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(11)-\mathrm{W}(2) 150.4(7)$; $\operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(12)-\mathrm{W}(3) \quad 153.0(8) ; \operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(19)-\operatorname{Re}(6)(\mathrm{W}(9))$ 124.0(9); $\operatorname{Re}(1)(\mathrm{W}(4))-$ $\mathrm{O}(20)-\operatorname{Re}(2)(\mathrm{W}(5))$ 152.9(8); $\operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(21)-\operatorname{Re}(3)(\mathrm{W}(6))$ 122.4(8); $\operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(22)-$ $\operatorname{Re}(4)(W(7)) \quad 151.7(9) ; \quad \operatorname{Re}(4)(W(7))-O(23)-\operatorname{Re}(5)(W(8)) \quad 122.6(7) ; \quad \operatorname{Re}(5)(W(8))-O(24)-$ $\mathrm{Re}(6)(\mathrm{W}(9))$ 151.7(9); $\mathrm{W}(1)-\mathrm{O}(25)-\mathrm{W}(2)$ 90.3(5); $\mathrm{W}(1)-\mathrm{O}(25)-\mathrm{W}(3) 89.9(4) ; \mathrm{W}(1)-\mathrm{O}(25)-\mathrm{P}(1)$ 123.8(6); $\mathrm{W}(2)-\mathrm{O}(25)-\mathrm{W}(3)$ 90.9(4); $\mathrm{W}(2)-\mathrm{O}(25)-\mathrm{P}(1)$ 126.4(8); $\mathrm{W}(3)-\mathrm{O}(25)-\mathrm{P}(1) 124.7(8)$; $\operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(26)-\operatorname{Re}(6)(\mathrm{W}(9))$ 90.1(6); $\operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(26)-\mathrm{P}(1) \quad 128.6(8) ; \operatorname{Re}(6)(\mathrm{W}(9))-$ $\mathrm{O}(26)-\mathrm{P}(1) \quad 128.6(7) ; \quad \operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(27)-\operatorname{Re}(3)(\mathrm{W}(6)) \quad 90.3(6) ; \quad \operatorname{Re}(2)(\mathrm{W}(5))-\mathrm{O}(27)-\mathrm{P}(1)$ 127.8(8); $\operatorname{Re}(3)(\mathrm{W}(6))-\mathrm{O}(27)-\mathrm{P}(1) \quad 128.3(8) ; \quad \operatorname{Re}(4)(\mathrm{W}(7))-\mathrm{O}(28)-\operatorname{Re}(5)(\mathrm{W}(8)) \quad 90.6(4)$; $\operatorname{Re}(4)(W(7))-O(28)-\mathrm{P}(1) \quad 128.2(9) ; \operatorname{Re}(5)(\mathrm{W}(8))-\mathrm{O}(28)-\mathrm{P}(1) \quad 127.2(8) ; \operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(35)-$ $\operatorname{Re}(12)(\mathrm{W}(15))$ 123.9(9); $\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(36)-\operatorname{Re}(8)(\mathrm{W}(11))$ 151.8(6); $\operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(37)-$ $\operatorname{Re}(9)(\mathrm{W}(12))$ 122.7(8); $\operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(38)-\operatorname{Re}(10)(\mathrm{W}(13))$ 152.9(9); $\operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(39)-$ $\operatorname{Re}(11)(\mathrm{W}(14))$ 123.6(7); $\operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(40)-\operatorname{Re}(12)(\mathrm{W}(15)) \quad 153.3(8) ; \operatorname{Re}(12)(\mathrm{W}(15))-$ $\mathrm{O}(41)-\mathrm{W}(18)$ 150.1(9); $\operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(42)-\mathrm{W}(16) \quad 149.4(10) ; \operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(43)-\mathrm{W}(16)$ 150.4(10); $\operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(44)-\mathrm{W}(17) \quad 150.1(8) ; \operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(45)-\mathrm{W}(17) \quad 151.1(7)$; $\operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(46)-\mathrm{W}(18) \quad 148.4(7) ; \mathrm{W}(16)-\mathrm{O}(50)-\mathrm{W}(18)$ 122.5(8); W(16)-O(51)-W(17) 123.3(7); $\mathrm{W}(17)-\mathrm{O}(52)-\mathrm{W}(18)$ 123.2(7); $\mathrm{W}(16)-\mathrm{O}(53)-\mathrm{W}(17) 90.0(4) ; W(16)-\mathrm{O}(53)-\mathrm{W}(18)$ 90.8(5); $\mathrm{W}(16)-\mathrm{O}(53)-\mathrm{P}(2) 124.1(6) ; \mathrm{W}(17)-\mathrm{O}(53)-\mathrm{W}(18) 91.5(4) ; \mathrm{W}(17)-\mathrm{O}(53)-\mathrm{P}(2) 125.3(9)$; $\mathrm{W}(18)-\mathrm{O}(53)-\mathrm{P}(2) \quad 124.9(8) ; \operatorname{Re}(7)(\mathrm{W}(10))-\mathrm{O}(54)-\operatorname{Re}(12)(\mathrm{W}(15)) \quad 90.6(6) ; \operatorname{Re}(7)(\mathrm{W}(10))-$ $\mathrm{O}(54)-\mathrm{P}(2) 129.0(7) ; \operatorname{Re}(12)(\mathrm{W}(15))-\mathrm{O}(54)-\mathrm{P}(2) 127.8(7) ; \operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(55)-\operatorname{Re}(9)(\mathrm{W}(12))$ 90.4(5); $\operatorname{Re}(8)(\mathrm{W}(11))-\mathrm{O}(55)-\mathrm{P}(2) \quad 127.2(8) ; \quad \operatorname{Re}(9)(\mathrm{W}(12))-\mathrm{O}(55)-\mathrm{P}(2) \quad 130.2(7)$; $\operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(56)-\operatorname{Re}(11)(\mathrm{W}(14)) \quad 90.3(4) ; \quad \operatorname{Re}(10)(\mathrm{W}(13))-\mathrm{O}(56)-\mathrm{P}(2) \quad 128.6(8)$; $\operatorname{Re}(11)(\mathrm{W}(14))-\mathrm{O}(56)-\mathrm{P}(2) \quad 127.8(9) ; \quad \operatorname{Re}(1)(\mathrm{W}(4))-\mathrm{O}(57)-\operatorname{Re}(7)(\mathrm{W}(10)) \quad 160.2(10)$;
$684 \operatorname{Re}(2)(W(5))-O(58)-\operatorname{Re}(8)(W(11)) \quad 165.3(11) ; \quad \operatorname{Re}(3)(W(6))-O(59)-\operatorname{Re}(9)(W(12)) \quad 162.0(8)$;

685
686
687
688
689 $\operatorname{Re}(4)(W(7))-\mathrm{O}(60)-\operatorname{Re}(10)(W(13)) \quad 163.4(8) ; \operatorname{Re}(5)(W(8))-O(61)-\operatorname{Re}(11)(W(14)) \quad 163.7(9) ;$ $\operatorname{Re}(6)(W(9))-O(62)-\operatorname{Re}(12)(W(15))$ 162.0(9).

[^0]: * Tel.: +81 54238 4764; fax: +81 542373384.

 E-mail address: sckatou@ipc.shizuoka.ac.jp.

