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1 Introduction

It is common knowledge that we can construct a coset space G/H on which a group symme-
try G is realized as coordinate transformations. It is true even though G is a supergroup.
Such transformations are called Killing vectors.

In this letter we calculate the Killing vectors for two supercoset spaces. In senction 2
we warm up with PSU(2|2)/{SU(2)®U(1)} as an exercise for the calculation. In section 3
we focus on D(2,1;)/{SU(2)®SU(2)®U(1)} and work out the Killing vectors on the coset
space.

If H is Y®U(1)™ where Y is a certain simple or semi-simple group with n = 1,2,---,
G/H is Kéhlerian. For this case generators of G can be decomposed as

{TE} - {XX Hf}

according to the charge with respect to the centralizer U(1)". That is, { H} are Hermetean
having charge zero, while {X?} and {X'} are Hermete conjugates with each other having
negative and positive charges respectively. Hence G/H gets complex structure. The coset
space PSU(2|2)/{SU(2)®@U(1)} and D(2,1;7)/{SU(2)®SU(2)®@U(1)} which we study in
this paper are this type.



2 PSU(2[2)/{SU2)2U(1)}

2.1 Setting the algebrae

We consider the supergroup PSU(2|2) for G. PSU(2|2) is generated by two triplets of the
SU(2) generators and two quartets of fermionic ones. The generators {T=} are decomposed
as

{r=h={ro5 R, Q% 5% (2.1)
with «, 3,a,b =1 or 2. Here L3 are bosonic generators of one of SU(2)s and R%, are those
of the other. On the other hand Q“, and S¢, are fermionic ones. We study the algebrae

of PSU(2|2) in the following 3 steps.
At the first step, we represent {T=} by a (2|2) x (2|2) supermatrix which acts on a

supervector v such as
T | T¢ Bf
A B b _
TB_(T‘IB T“b>’ U_<F5>'

Here B” and F? are bosonic and fermionic 2-component vectors of the respective SU(2)
subgroup. Correspondingly to this matrix representation we arrange the generators of (2.1)

in a table such as
=) LY | 5% B SU@2) | 8
{T }_{ Q% | R% } - ( e? [ SU(2) ) (22)

The last table indicates symbolically that the diagonal blocks generate the subgroup
SU(2)®SU(2). The commutation relations are given by

(L%, L] = =6"L% + 6%5L7 3, [R%, R%] = —0%R%q + 6*4R%,
[Qaa’LIB"/] _ _(gffa’oéQa7 4 %5/57@&017 [SamLBv] _ (504755& _ %ﬁﬁvsam
QB = 50" — 5%, (5%, B = ~0% 5% + 505,
{Qa. @} =0, {5%.5%} =0,
[Q 8% )= 6 L70 + 87 R, (2.3)

Of course, L%g commute with R%,.
In order to construct a Kéhlerian coset space G/H, we choose SU(2)®U(1) for H de-
composing the generators L% into U(1) and the remaining parts as

o LYy | LYy
L B = { L21 L22 (24)

with L2y = —L'y. Here L'; is the U(1) centralizer and L'5 is hermitian conjugate of L?;.



Putting (2.4) in (2.1) gives

{TE}:{L21, Q%, 8%, LY, Q%, 8%, Ly, R“b}. (2.5)
' '
Xt Xi HT

Here each set of the generators {X*}, {X?} and {H'} has definite charges with respect to
the centralizer. It will be discussed later (see (2.9)). According to (2.5) we rearrange the
table (2.2) as

) LYy | St | LYy U(1) eX
{T=}= 0% [R% Q% b =~ SU2) . (2.6)
L% | S% | L% eX U(1)

That is, {X?} are found in the upper triangular part of the table, {X {} in the lower one
and {H'} fall into the diagonal part.
At the second step, we redefine the fermionic generators by using a unified notation

Faad as
ab Sa a@ ;
5 b @
{5QBQG5} = {Faa} (27)
with & = 1 or 2. Here £® and % are Levi-Civita symbols. The index & refers an extra

SU(2). This SU(2) is important to generalize PSU(2|2) to a larger supergroup D(2, 1;7),
as will be shown in the section 3. Then (2.7) reads

(-t Tty

With this redifinition, (2.5) becomes

{r=h={r2, o, 1y, Pros LY Ry ). (2.8)
—_———— —— — —
X )?; HI
The algebrae (2.3) are rewritten as
[L?,LYs] = 2L, [R%, R°a] = =0 R4 + 0“4 R,
[R%, L'1] =0,
(L1, LY] = = L7, [L'y, L] = L'y,
[FZad Lll] _ _1F2ad [Flad Lll] — lFlac’z
) 2 b b 2 )
[F2aa’L21] _ 0, [Flaa7L21] — Fanz7
[FQad,le] — Flad, [Flad,Llﬂ — 0’
. | . . o1 :
[FZaa’ Rbc] _ 5acF2ba . §6bCF2aa’ [Flaa7 Rba] — 6acF1ba . §5bCF1aa7



{anaszbB} _ _€ab€dﬁL21’ {Fmoz’Fu)B} _ gabgdﬁL12’

{FQad, Flbg} = gL | cacgdSph (2.9)

The commutator of the 2nd line implies that {H'} has charge zero, while those of the 3rd
and 4th lines imply {X*} or {X?} has negative or positive charges respectively.
At the third step, we furthermore redifine some of the generators as

L21 _ L, L12 _ Z7 Lll _ LO, F2ad _ Fao'z’ Flad — Fad

and write (2.8) down as

{TE}:{L, Foé T Fod 10 R“b}. (2.10)
X* Xt H
Finally the algebrae (2.9) become
[L,L] =2L°, [R%, R°g) = —0%R"q + 0“q R,
[R%, L] = 0,
[L?LO] = _L7 [Z7L0] :Z7
[Fad7L0] — _%Fad7 [Fad,LO] — %Fad?
[F*, L] =0, [F*, L] = F*%,
[, I) = Fod, [F*,T) =0,
. | . _ 1, .
[szibcz7 Rbc] — 5acha . iébCF(la7 [Faa7 Rbc,] — 5aCFba . 5(5ch&&,
{Fad, Fbﬁ} — —Eabz’:'dBL, {Fad’ Fbﬁ} — EabEdBf,
{F‘“j“, FbB} = —eeOBL0 4 cacgdBRD (2.11)

In the following argument we use (2.10) and (2.11).

2.2 Coset space construction

In this section we discuss the construction on PSU(2|2)/{SU(2)@U(1)}. Start with a known
theorem.

Theorem 1 (Coset decomposition). Let G/H be {aH}. For any element g € G, there exit
aH € G/H and h € H such that g = ah.

In general G/H can be constructed in the real basis. When G/H is Kéhlerian, the
construction can be done in the complex basis as well. That is, adding {X*} to {H'}, we



enlarge H to H such as
{ﬁf}: {Xz,HI}: {E, F“d,LO,R“b}. (2.12)
We now consider G© /ﬂ Here G© is a complexification of G'. This coset space is iso-
morophic to G/H [1][2]:
GY/H ~ G/H.
The coset element is given by
9 X = erltbaat™® (2.13)

with ¢ = (2, 0,44) coordinates of G/H. Here z is a bosonic number while ,4 are fermionic
ones. Let T € G and e € H be
. pac T had 0 b a
ee-T _ eeLL+6F“”‘F tepLten FO+erol’+er’ R b, (2'14)

2 T _ ac 0 b a
M = AT AT AL LT AR R (2.15)

Here ¢ and A\ are parameters which correspond to {T=} of (2.10) and {I:II} of (2.12)
respectively. We note that ez, and Ag’, are constrained by
treg = trAg =0 (2.16)
because they are parameters of SU(2).
By Theorem 1., we have
pieT o X _ e¢’(¢,e)~X€i,\(¢,e).ﬁI
with appropriate functions ¢'(¢,€) and A(¢,€), which depend on ¢ and e. This defines a
holomorophic transformation of ¢ — ¢/(¢, €) as
o' (0.6)X _ jieT ¢ X —iN(d,e)-H (2.17)
For e < 1, the Lh.s. of (2.17) becomes
o9 (0.6 X _ ¢ X464 X+O0(e%) (2.18)

Let us parameterize ¢ as 6¢ = e4RA. We then call R4 Killing vectors. By (2.17) and
(2.18), we obtain

(O XFeaRAX+0(2) _ ieT (¢ X j—idl (2.19)

To write the r.h.s in the same form as the l.h.s, we use the following theorem.

Theorem 2. For any matrices £ and X

expEexp X =exp | X + Zan(ad X"+ 0%,

n=0

L1GY 5 ¢ T with complex parameters e.



exp X exp £ =exp [ X + ) (=1)"an(ad X)"E + O(£?)

n=0
where £ <1. Here (ad X)"€ is a n-ple commutator
—_——

The constants «,, are given by

Qp—1 o
o —0.
T P oY
For a small n they are computed as
1 1 1
ap=1, a 5 @=T15 03 0, ou 0 @ 0, (2:20)

The theorem can be proved from Hausdorff formula. For detailed proof refer to [3].

Now we assume that ¢ and A commute with the generators of {T=} irrespectively of
their gradings. Using Theorem 2., (2.19) becomes

e¢~X+eARA X4+0(e?) _

exp(¢ X + z';oan(ad ¢ X)e T — z; (—1)"an(ad ¢ - X)"\- H + 0(62)). (2.21)

We expand R(4)? and A(¢) in series of ¢:
R($)* = Ry (9) + Ry (@) + By (@) + -+ + Ry @)+, (222)
A(@) = A0)(8) + A1)(@) + A2y (@) + -+ + Ay (@) + -+, (2.23)
and plug (2.22) and (2.23) in (2.21). Comparing exponents on the both sides, we get
GA(R(O)A + R(l)A +-+ R(n)A +--)- X+ 0(62)
:iian(ad ¢-X)'e-T

n=0

—iy (=D an(ad ¢ - X)" Aoy + Ay + -+ Ay + -+ ) - H+ O(2). (2.24)
n=0

2.3 Calculation of the Killing vectors

By evaluating both sides of (2.24) order by order of ¢, we can explicitly find the Killing
vectors R(¢)” as well as A(¢). We show the way of the calculation with the help of the
appendix A.



Oth order of ¢ Extracting the Oth-order terms from (2.24) we have

GAR(O)AL + EAR(O)AadFad =ie- 1 — i)\(o) - H. (2.25)
Let us assume
6AR(O)A = 1€r, 6AR(o)Aaa = 1€Faq (2.26)
as the initial condition. Using (2.26) in (2.25) we find A (g :
Aoz = o

)‘(O)Faa = €Faa’
)‘(O)LU = €ro,
Aoyr", = €r'a- (2.27)

1st order of ¢ Extracting the lst-order terms from (2.24) we have

~ 1 ‘ .| A
eARL + eaRy aa F* = —2§[¢ X, T)—iXgy - H— z§[¢ X, Ny H]. (2.28)

In the r.h.s. replace A(g) by (2.27). We add up the first and the last term, and calculate the
summation by using (A.1). Compare the coefficients both sides of (2.28). We find R(l)A:

1 .
GAR(I)A = i(ZELo + §9ad€Fbﬁ'5ab€aﬁ)v
1
EAR(l)Aad = i(zeﬁad + §9aa€L0 — deeRba), (2.29)
and )\(1):
Amz =0
A(l)fad = —Oaser,

)\(1)LO = _2Z€f + Qadefbﬁsabgdg,
A", =0 cdgaf, (2.30)

]
a cdeﬁaﬁ'gd)gaﬁ + iébagcde

Fag®

The last term of Ay Rba was put additionally so as to satisfy the constraint (2.16).

2nd order of ¢ Extracting the 2nd-order terms from (2.24) we have

_ , .
eAR@) L + eaR) e F* =0 X0 Xoe Tl —idg) - H
{ - ) .
—§[¢'X,/\(1)'H]—E[¢'X, [¢- X, Aoy - H]|.  (2.31)
In the r.h.s. replace \g) by (2.27). When we subtract the last term from the first one we
obtain the Lh.s. of (A.7), which is vanishing. Calculate the 3rd term by using (A.2) and



then replace Ay by (2.30). We find R(Q)A:

6AR(2)A — (22’26* — 2046€= ~5“b5d6>,

92 L FbB
61417:5(2)‘4@ = —% (QZHaaﬁL - ebo‘ﬁc&EFaggb%m) , (2.32)
and A(g):
Az =0
)‘(Q)Faa =0,
A@)Lo = —%Gadebﬁ-eze“bedﬁ =0,
AR’ = %%%EEEC@B : (2.33)
For the result of A)r0 we have used Qadﬁbﬁ,sabs‘j‘g = 0 due to anti-commutativity of

fermionic numbers.

3rd order of ¢ Taking out the 3rd-order terms from (2.24) we have
EAR(g)AL + EAR(3)AadFad

. ) ~ 1 . N
:Za3[¢'X7 [¢ X: [¢X)6TH] _Z)‘(3) -H— §[¢X7)‘(2) : H] [d)X) [¢ Xv)‘(l) HH
(2.34)

with a3 = 0 by (2.20). In the r.h.s. calculate the 3rd and 4th terms by using (A.2) and
(A.3) respectively. Then replace Ay by (2.33) and A(;) by (2.30) in the result. We find

R(3)AI

1
12

i .- LA
€AR(3)A — _E9“‘5‘ebﬁ'gc’?eﬁd(‘;ECbE’y(sEadgo‘ﬁ’
ARy as = ~ GO0, pee"e (2.35)
and )\(3):
Ao =0 (2.36)

4th order of ¢ Taking out the 4th-order terms from (2.24) we have
AR L+ eaRgytac F*
]

720

0 X.[6- X,[6- X, [6- X, e T~ idy - H — [0 X, Ay - ]

— 5[0 X,[6- X A - H] +ias[é- X, [6- X, 6 X, Ay - H]]



1 N
We use A3y = 0 by (2.36) and a3 = 0 in the r.h.s. and replace Ay by (2.27). When we
subtract the last term from the first we obtain the Lh.s. of (A.8), which gets vanishing.
Calculate the 4th term using (A.3) and replace A3y by (2.33). We find R(4)A:

+

7/ .~ .
6AR(4)A — ﬂHadabﬂ.ac’yedigefé‘acﬁ’yésdbeaﬁ’

eaR)"aa =0, (2.38)
and )\(4):
Ay =0. (2.39)

5th order of ¢ Extracting the 5th-order terms from (2.24) we have
EAR(5)AL + GAR(5)AadFad
. . N -
:la5[¢ ’ X’ kb : X’ [¢ : Xv [¢ : X7 [¢ : X,E : TH]” - Z)‘(5) -H— §[¢ : Xa >‘(4) : H}
1 N . N
— ¢ XKoo X Ay H]| +iasle- X, [6- X, [¢- X, A - ]
1 .
+ias[p- X, [0 X, [0 X, [0 X, [0 X, Ay - H] (2.40)
with a5 = a3 = 0. When we replace A4y = 0 by (2.39) and A(3) = 0 by (2.36), the 2nd and

6th terms remain in the r.h.s.. Calculate the 6th term using (A.5) and then replace A(y)
by (2.30). We find R ™

6AR(5)A = 0,
EAR(5)Aad =0, (2.41)
and )\(5)2
A = 0. (2.42)

More than 5th order of ¢ For higher orders of ¢, A,y with n > 3 and n-ple commu-
tators with n > 5 are vanishing. Hence the Killing vectors R(n)A with n > 5 also vanish.

Finally we sum up the results of all order of ¢ as form (2.22). We get the Killing vectors
R4 on PSU(2/2)/{SU(2)2U(1)}:
1 5 1 5
_’iﬁARA =€r, + z€ro + §0ad6Fbﬁ'5ab5aB _ 5 (22’2€Z o Zeadfpbggabsaﬂ>

1 L : . 1 L : .
— ﬁQadQbBQCﬁGFdSECbE’YééadEa'B + ﬂeadebﬁ'ecy@dgeffiac&?'yaEdbEaﬁ, (2.43)



—Z'EAR at —€Fas + 2€= . + GmeLo deeRba

Faa
~ a0 €1 — Opefeye checbi) _Lg, 0.0 c gbeeht, (2.44)
2 ad bac*yFB GbacvaBL .
and A:
AFGO{ == EFadt - aadfz, (246)
ALo = €ro — 2zex + OMGFst“bEa'B (2.47)
)\Rba = eRba — HcaeF Bsd’eo‘ﬁ + 5 OCaeFdBSCdeo‘ﬁ + HCQHGBELECbEa’B. (2.48)

3 D(2,1;7)/{SU(2)®SU(2)oU(1)}
3.1 Relationship between D(2,1;v) and PSU(2|2)
As the main topic, we consider the exceptional supergroup D(2,1;7). It includes the
subgroup PSU(2|2) and SU(2) so that
D(2,1;v) D PSU(2]2) ® SU(2),
PSU(2]2) D SU(2) ® SU(2).
Consequently D(2, 1; ) contains three SU(2)s as the subgroup. The Lie-algebra of D(2, 1;7)

consists of three triplets of the SU(2) generators and an octet of fermionic generators.
For G/H we may choose any homogeneous subgroups for H such as

SU( ) ®SU(2) ® SU(2),
SU(2) @ SU(2) @ U(1),
SU(2) @ U(1) @ U(1),
U(1) @ U(1) @ U(l).

The larger H we choose, the simpler G/H we get, since the number of the coset generators
gets reduced. Therefore we want G/H to be a maximal Kéhler coset space, so that we
choose H to be SU(2)®SU(2)®U(1).

1
) ®

3.2 Setting the algebrae
Let decompose 17 generators of D(2,1;7) as

{TE}: {Laﬁ,R“b,Lé‘B,F““é‘}. (3.1)

10



Here L ; were added to the PSU(2[2) generators of (2.8). The commutation relations are
given by
[L%s, L7s] = —673L% + 6% L7, [R%, R°a] = =6 R q + 6“4 R%,
(L4, L75) = =67 5L% + 69517 4,
[Fozaéc Lﬂ’y] — 5047F6W54 _ l(sﬁ’yFocad [Focad Rbc] — 5aCFozbd _ 15cho¢aéz
Y 2 Y 9y 2 Y
[Faacx’ LB’Y] — 5a;yFaaﬂ . §(SB;ylpozaoz’

{Fo‘ad, facls } = 0450‘75‘”’80"5[/@Y + ﬂeaﬁsacedBRbc + Vsaﬁsabedﬁﬁgﬁ (3.2)

with the indices «a,a,&,5,--- = 1 or 2. The SU(2) bosonic generators LO‘B,R“b,L"j‘B
commute canonically. They form algebrae with the fermionic generators F®%¢ so that
F transform in the fundamental representation under each SU(2) generator. The anti-
commutator of F'*%* is non-trivial. Its form is justified by the Jacobi identity. It turns out
that the coefficients should be constrained by a + 5 4+ v = 0. Since the overall rescaling
does not change the algebraic structure, the parameter v/« essentially characterizes the
algebrae (3.2) [4][5]%.
Next we decompose Lo i and F% as

s = {%‘%}B frea) {gggj; } .

The decomposition of (3.1) reads

{r=}={P.0"s K 5% 175, R, C} (3.3)
X* X HT
and the algebrae (3.2) are rewritten as
[L%, L75] = =673L% + 6%5L7 g, [R%, R%a] = —0%R"q + 6°4R%,
1 1
[anm LB’Y] = _5[30‘@&7 + iéﬁWanm [Saaﬂ Lﬂv] = 6a75ﬁa - §Br8’Ysaa’
QB = 50" — 0%, 5% B = 087 + 385"
[L%,C] =0, [R%,C] =0,
[P7C]:_P7 [K,C]:K7
[P, K] = —2C,
Q. C] = —2Q° 5%, C) = 250
) - 2 (o2 as - 2 a)

2In (2.9) we choose a = 1 and v — 0

11



Q% P] =0, [S%a, P] = eeqQ’5,

[anu K} = _gaﬁgabsﬁh [Saa, K] =0,
(@, Q"5 = veaseP, {57,587} = ve"eurks,
{Qaa, Sﬂb}: adLPy — B8, R + 6% ,5%,C. (3.4)

Here C € U(1) serves as a centralizer. The generators with zero charges belong to {H'}.
On the other hand {X?} and {X*} are split according to negative or positive charges with
respect to the centralizer as explained in the section 2.1. In the following arguments we
use the notation of (3.3) and (3.4).

3.3 Coset space construction

We construct the Kahler coset space D(2,1;~)/{SU(2)®@SU(2)®U(1)}. The same method
can be used as has been discussed in the section 2.2. For complexification of the coset
space, we define a enlarged subgroup H as

{ﬁj}: {XE,HI}: {K,Saa,Laﬁ,Rab,C} (3.5)
and consider G° / H. The coset element is given by
X = P H0%Q% (3.6)

with ¢ = (,0%,) the coordinates of G®/H. Here x is bosonic while 6%, are fermionic. For
T € G and e € H, we can write
eeT _ eepP+6QO‘aQaa-‘rGKK+ESaasaa+€LﬂaLaﬁ+eRbaRab+ECC, (37)

e,\-H _ 6>\KK+)\SaaSaa+>\L5aLa3+>\RbaRab+>\cC (3.8)
by using (3.3) and (3.5). Here €., €rl0, Ar’0s Ar%, are traceless as were explained in

(2.16). € and X are assumed to commute with all generators. Similaly to (2.17) we recon-
sider the transformation of the coordinates ¢ = (z,0%,) as

o? (0.6 X _ jieT ,¢-X ,—iX(¢e)-H (3.9)
For € < 1, we can define the Killing vectors R” as infinitesimal transformations as
6p = eaRY o (6%,6%0%,) = (R4, RA%,).
In the same argument from (2.19) to (2.24), we have
ea(Roy* + Ry + -+ Ry +--) - X + 0(e?)

=iy an(ad ¢-X)"e-T
n=0

12



—iy (D) an(ad ¢- X)" Aoy + Ay + -+ Ay + ) - H+ O(€) (3.10)
n=0

for ¢,e and A in (3.9).

3.4 Calculation of the Killing vectors

We can calculate the Killing vectors R4 and \ similarly to the section 2.3. We present the
result following the same processes. Appendix B is helpful for the calculation.

Oth order of ¢ Extracting the Oth-order terms from (3.10) we have
EAR(O)AP + GAR(O)AaaQaa =ie-T — 1)) - H. (3.11)
Let us assume

EAR(O)A = 1€p,

eaRo) ™ =ieq®, (3.12)
as the initial condition. We find Ag) :
A0)K = €K,
A0ys”, = €s”a;
oy’ = er’a,
Aoyr', = €r’as
Aoyc = €c- (3.13)

1st order of ¢ Taking out the 1st-order terms from (3.10) we have
. a g 1 N 1 N
—z(eAR(l)AP + AR Q a): —5l6- Xoe T) =ty - B = 5[0+ X, Aoy - H].
We replace \(g) by (3.13) and calculate the commutator by using (B.1). The r.h.s. becomes

1 1
— [xP +0%6Q%, 5epP + ieQﬁbeﬁ +exK +e535P, + e gL + er R0 + Ecc}
= — (A(l)KK + A(l)saaSaa + A(l)LﬁaLaﬁ + A(l)RbaRab + )\(1)00)

— { <—xec + g@aaeQﬁbaageab) P+ (—mesbﬁaabsa'g - HﬁaeLaﬁ + 0%eR’, — 5

1
gaa60> Qaa

— GaaeKeageabSﬂb + aGaaegaﬁLﬂa — 8Os’ R + (v0%aes® o — 2:ceK)C'}.
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We find R(l)A:

EAR(l)A =1 | xeo — ;Qaa6Q6b6a5€ab> 5

2

1
EAR(l)Aaa =1 <x65b5€ab€aﬁ + QﬁaeLaﬁ — QabeRba + Qaa60>
=1 {

1
ves®geape™ + (er)®, — (Ber)™, + 290‘&60} (3.14)
and )\(1)2
Ak =0,
Ays®, = 0%vexeape™,
(6% a 1 C ]'
A, =—a (9 a€s’g — 55%9%65 7) =-—a {(9€S)Ba - 25Ba(965)},

1 1
AR’ =B (HaaeSba - 251’@6’%6507) =p {(965)2 - 25ba(965)} 7

Ay = —70%es" o + 2zex = —(Oes) + 2z (3.15)
Hereafter we use abbreviation such that
GﬂaeLaﬁ = (fer)”,, 0% er’, = (Oer)®,, 0%es®y = (Bes), --- ete.

As has been done for (2.30), the last terms of A1) P N and Ay Rba were added by considering
the traceless conditions.
2nd order of ¢ Extracting the 2nd-order terms from (3.10) we have
~i(eaRe) P+ eaRp) ™", Q%)
1 . 1 N 1 N

We replaced A(g) by (3.13) and calculate the commutators by using (B.2) and (B.7). The
r.h.s. becomes

A 1
- )‘(2) -H + E[l’P + eaaQaaa [xp + Hﬁbeﬁ7 6I:’P + GQ’YCQCWH

1
— S[2P +60%Q% . Ay K + A1)s” 557 + Ay j Ly + Ay, B e + AnyeC]

2
=—Ag H
1 1
- 5{—90)\(1)013 + <_$)‘(1)Sb55ab5a6 - 96a>\(1)L°‘5 + 0% A )R", — 29%)\(1)0) Q%

- Qaa)\(l)K{:‘agEabSBb + aeﬁa)\(l)gaaLag — B@aa)\(l)sbaRab + (’)/Haak(l)gaa— 2.%')\(1)]() C}
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We find R(Q)A:

i i
6AR(2)A 253’3)\(1)0 =3 (2:66K — ’}/965) T

o Z (% (e « ]' (67
eAR@)? «= "3 (-96)\(1)51’68@5 B — 08 g1t AR, — 59 a/\(l)C)
7 1
=-3 {—2909%61;( + (a0 = B)0%0%es’s — 5(04 + 8- 7)9aa(‘96S)} (3.16)
and )\(2):
Ak =0,

a 1 al
A2)s”, = ieﬁb)\(l)KfaﬂE b =0,
« a
/\(2)L6a = —59%}\(1)5
b 5 o b

(0%
ac
= _596(197061(50475 )

B b

(6% C
5«9 al” c€xeare™,

A@2)R
1 a a a a
)\(2)0 = —5 (’)/(9 a)‘(l)S a 2:L‘)\(1)K> = —%9 acgﬁbEKEaﬂE b= 0. (317)

We used anti-commutativity of 8¢, for the last equation.

3rd order of ¢ Taking out the 3rd-order terms from (3.10) we have
—i(eAR() P+6AR Qa )
A N 1 A
=~y H = 5[0 X M- ]~ 5[0 X, [6- X, Ay - A

Calculate the commutators by using (B.2) and (B.3). We then replace A9 by (3.17) and
Ay by (3.15). Noting (0A(1)s) = 0 in (B.3), the r.h.s. becomes

1 o a
—/\(3)'H—2<—95a)\() + 60 b)\ >Q

1

_ 12{70 (—:c)\(l)scvscbevﬂ - ¢971))\(1)LB7 + (96@)\(1)}3 . §0ﬂb)\(1) ) 5a,38abP

= | @07abA1)s" 5 + BI%0%aA1)s"y ) Q%
B B
N 1
=—Ag) - H— %9% {—2.1‘9’31761( + (a— ﬁ)mlﬂﬁcegcv — 5(04 + 5 - 7)961,(965)} Eape™P

1
+ é(a - B)eabeﬂaA(l)SbﬁQaa'

15



Using the notation GaaGfBbgaBaab =0 we find R(3)A:

7: (6% (& a
eaRp? =— E’Y(Oé — B)0% 070 ces® cape™,
7
AR5, =gla— B)0°,0° o0 cexce gye™ (3.18)
and )\(3):
Ay = 0. (3.19)

4th order of ¢ Extracting the 4th-order terms from (3.10) we have
—1 <€AR(4)AP + 6AR(4)AaaQaa>

1 P | N
1 . 1 N

Replace A3y by (3.19) and Ay by (3.13). We then calculate the commutators by using
(B.3) and (B.8). The r.h.s. becomes
1
60X, [0-X,[6-X,[6-X,e- X
Al X0 X0~ X,[6- X, X]]

2 7 pa c a
= — )\(4) -H — 50 a(—mb)\@)LBv + 050)\(2)}3 b)&lﬂﬁ bp,

— Ay H - %W'X, [6- X, Az - H]]

We find R(4)A:
1
AR = —gg e B)0%a0746” 0° g keaperse®’e™,
caRw™, =0 (3.20)

and )\(4):
Ay = 0. (3.21)

5th order of ¢ Extracting the 5th-order terms from (3.10) we have

@ ~ 1 N 1 N
—i(ﬁAR(5)AP+6AR(5)A aQaa>: — A H= 56 XAy - Hl= 510 X, [¢- X, A - HI|
1 N

Replace each A,y by (3.21), (3.19), (3.15) and calculate the commutators by using (B.5).

A .
We find R(s)'

_l’_

eaRE™* =0,
eARE M =0 (3.22)

a
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and )\(5):
A5y = 0. (3.23)

More than 5th order of ¢ The Killing vectors R(n)A for n > 5 are vanishing because
Ay =0 for n >3,
(X, [X, - [X,T]---]] =0 for n>5. (3.24)
—_——

To summarize, we obtain the Killing vectors R4 on D(2,1;7)/{SU(2)®@SU(2)®@U(1)} :
1
—iesARY =ep + <$GC — geaaeQ5b5a5€“b> + 3 (26Kx — ’)/965')$
1
— (= B)0%u0710 s cape™

12

1
— gy(a - B)0%a0746” 0° g ke aperse®’e™, (3.25)

. 1
—iegRAY, =eQ”, + {azesbgz—:abeo‘ﬁ + (Ger)”, — (Ber)”, + 29%6@}

1 1
— o { e+ (@ B0t — a5 =00

1
50— B)0°0% a0 cercepye™ (3.26)
and A:

AK = €K, (3.27)

)‘Saa = 6Saoz + eﬁb6K€a5‘€ab7 (328)

1 1
APy =efy —a {(965)% - 55%(965) + QHEaWCeKeMe“C} : (3.29)
1 1
Ar'a = €r"q + B {(965)2 - §5ba(963) + 29%97061(5&7556} : (3.30)
Ao = €c — y(fes) + 2ze. (3.31)

3.5 The contraction to PSU(2|2)@U(1)?

As discussed in the section 3.1, D(2, 1;) contains PSU(2|2) as a maximal subgroup. By
rescaling (3.4) as (C, P, K) — 1/v(C, P, K) and then calculating the limit as v approaches

17



0, we can obtain the centrally extended algebrae of PSU(2[2)®U(1)? such as

(LY, L75] = =675 L% + 6%5L7 3, [R%, R°q] = —6%R"q + 0" q R,
1 1
Q%% Lﬁw] = _&BaQav + 5567@1(1: (5%, Lﬁv] = (50475,8& - §Bﬂvsaa’
1 1
[Qaav RbC] = 5acha - Q(Schaaa [Sam Rbc] = _5baSac + iébcsaaa
[L%s,C] =0, [R%,C] =0,
[P,C] =0, [K,C] =0,
[P, K] =0,
[Qaa’ C] = 07 [Saa7 C] = 07
[anmP] = 07 [Sa(hp] = 07
Q% K] =0, [S%, K] =0,
{anu Qbﬁ} - gaﬂgabp7 {Saaa S/Bb} - gaﬁgabKa

{@0: 8% p= ad® Lo = B R, + 6700%,C

with o + 8 = 0. Here C, P and K are central charges of three U(1)s. By this contraction,
SU(2) generated by LdB is broken into U(1)3 [4][5].

4 Conclusion

In this letter we have calculated completely the Killing vectors on PSU(2|2)/{SU(2)@U(1)}
and D(2,1;7)/{SU(2)®@SU(2)®U(1)} which were Kéhlerian. The Killing vectors were
found by purely algebraic use of (2.11) or (3.4) with the initial condition of (2.26) or
(3.12). It is worth remarking that they were given as polynomials of the holomorphic
coordinates ¢s due to the nilpotency (3.24).

It is expected that a non-linear o-model on G/H is equivalent to a spin-chain with the
symmetry of G. The work by Beisert [4] showed that the spin-chain with the symmetry of
PSU(2[2)®@U(1)3 is equivalent to the A" = 4 SUSY Yang-Mills theory. It is then natural to
think that the non-linear o-model on PSU(2|2)®U(1)3/H is equivalent to that spin-chain,
and consequently to the N’ =4 SUSY Yang-Mills theory. However the coset space G/H is
not well-defined for a non-simple G such as PSU(2|2)®@U(1)3. To overcome the difficulty
and claim the equivalence of the two theories, in [2] PSU(2|2)®@U(1)3/H was discussed in
a limit of symmetry contraction of an enlarged coset space D(2,1;+)/H. The study on
D(2,1;v)/H with H=SU(2)®SU(2)®U(1) in this paper took a crucially important part in
the work [2].
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A Commutation relations of PSU(2|2)
We show the result of commutators by (2.11).
(¢ X,e-T) = {ZL I D e EFbBFbB +epoLl + eRchbc}

=[2L, ezf] + [2L, GFbBFbB] + [2L, €10 L°] + {QGQF“C“, erBFbB}—i—[QadF“d, GZZ}

. —bf3 . .
+{0adFaaa Efbﬂ'F 6}+[0adFaaa ELOLO] + [GadFaoz, ERbcRcb]

Faa

i€, Bs“bed‘B ) Lo

= (—ZGLO — Qaderﬁ'Eab&?dB>L + (—ZE* . — %HQQELO + ebdﬁRba)Fad
+9aaezf‘“§‘ + (QZEE -0

+ <9ca6§aﬁ-86b€d5 — %5%00516@650%0"5) R%,, (A1)

6+ XA ) = =220l + (=205, = Haadso + e Ar’s ) FO% + Oae A Fo4

+ <2z)\f - Had)\Fbﬁ-aabaé‘B) L0 + <90d)\fa556b5d5 — %51;&96&/\?(185@8@3) R%,

= ML+ Mo P24+ Xo Fo 4 X L0+ A" R, (A.2)

6 X,[6- X, A H]]=— (z)\’Lo—l—Had)\%b Bsabed6>L— (zxgpadwmxgb jeetd ebdxpfa)Fad
—p .\ ~abaBT0 \  ac.aB pb
Hm)‘ﬁbg'g e*PLP + Hm)\ﬁbﬂ,e e RO,

= (—222)\Z + 220adAFbB€ab€dB - HQQHCBARCbaabEé‘B)L
(=220 Mg + Obal g s PP ) F = 0048, 5) 52 L0
~0.40,

BAZECbedBRab

= N L+ Nfoo F% + N° R, (A.3)
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. . . COM — g\ -ab B b pad
(6-X.[0- X.[6- XX H]]) = By 0L 4 0y 50 F

= Qad(gdﬁ;HCSAFb:YECdES;YEGbEdBL — deecﬁa[;)\fsb%mF“d

= AL+ Moo B, (A4)
(6 X,[6- X, [6- X, [ X, A HJJ] =0aaNpy 567 L, (A.5)
[0 X, [¢- X,[¢- X, [6- X, [¢- X, A~ H]JJ] = 0, (A.6)
(6 X, (¢ X, e+ X]| = [2L + 00 Y, [2L + 0,5F% e L + epes )] = 0, (A.7)
(¢ X, [0 X, [6- X, [¢- X, e X]|]] = 0. (A.8)

Note that appropriate terms were added in (A.1) and (A.2) because of the constraints
treg = trAg = 0. To obtain the last line in (A.3), we used HQdeBEabEdB =0.

B Commutation relations of D(2,1;7)

We show the result of commutators by (3.4). These contractions mean (fer,)”, = 08 e 5
(Oer)*, = 0%€rty, (Pes) = 0% e, for examples.

[(b 'Xa € T]

= [mP +0%,Q%,,epP + eQﬂbeﬁ +ex K + esbIBSﬂb + eLﬁaLo‘g + GRbCRCb + 600}

= <79aaeQBb5a55“b — xec> P+ {—xesbﬁsbasﬁo‘ — (Ber)®, + (Oer)*, — %ecﬁo‘a} Q%
_EKgﬁbeaﬁeabsaa +« {(HES)ﬁa — %(56&(965)} Lo‘ﬁ - p {(HES)ba — %5ba(965)} R%,
+{7(965) - 2xeK}C, (B.1)

[6- X, - H]

= —2AP + {—aAs geas® — (0AL)%, + (OAR)%, — A0t} Q%
0% Akcase™ S + a {(0Xs)?, — $0%a(0hs) | L% — B { (625", — 36%(6Xs) } R

+{(02s) - me}c
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= MpP + A% Q% + No® 5% + N7 L% + Ng* R% + X, C, (B.2)

(6 X, [¢- X, - H|

= (10727 e — aNg ) P+ (—aNel genas® — VN + 0N, — 30 ) Q@
+ 0N (a(sab L8, — 5%, R%, + fyaﬂa(sabc)

- (waa {—mscvsd,evﬁ — (OAL)%, + (0AR), — %Aceﬁb} Eape® — :E{’y(@)\s) - Qa:AK})P
+{xAKmCewebaeﬂ%bc + 0%k — b (0As)* 5 — BO“(0As)?, + 5(a+ B — weaa(exg)}gaa
— AR O0P 007 810 L + BAKOY 407 ce7ac® RY% — YAK0%00° pe 50 C

=XNLP 4+ A" Q% + NP L% + N R%, (B.3)

_ (yeaangbeaﬁsab) P+ (—%XL’“V + e%A’]J’G) Q" = NEP+ N5 Q%, (B.4)
6 X, [¢- X, [¢- X, [6- X, \- H]JI| = 10°aNG’ cape®™P, (B.5)
6 X, [0 X,[0- X, [0 X,[6- X, - H||JJ] =0, (B.6)
6 X,[6- X, e X]] = [2P + 0°,Q%, [zP + 0°,Q5, epP + €¢7,Q°,]] = 0, (B.7)
6 X, [0 X,[¢- X, [¢- X, e X]]]] = 0. (B.8)

Similarly to the calculations of A, the coefficients of L% and R%, were constrained by
traceless conditions so that appropriate terms were put additionally in (B.1) and (B.2). To
obtain the last line in (B.3), we used 6%,0°ye,3e% = 0.
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