Name Matching v.s. Structure Matching in Typing
Systems for the Polyadic 7 -Calculus

&4 eng

HARE

/AB8E: 2015-05-29
F—7— K (Ja):
*F—7— K (En):

YERR#E: Togashi, Atsushi
X—=ILT7 KL R:

Firi&:

https://doi.org/10.14945/00008608

25

Name Matching v.s. Structure Matching in Typing
Systems for the Polyadic z-Calculus

Atsushi Togashi*

Department of Computer Science, Shizuoka University,
3-5-1, Johoku, Hamamatsu 432, Japan
Tel. : +81-53-478-1463
Fax.: +81-53-475-4595

togashi @cs. inf. shizuoka. ac. jp

Abstract

In the literature, there have been intensive studies on typing (sorting) systems for the
polyadic z-calculus, originated by Milner’s sorting discipline [10] based on name match-
ing. The proposed systems, so far, are categorized into the twogroups — systems by
name matching and ones by structure matching (possibly with subtyping) — and obtain
similar results. A natural question arises “Is there any relationship between the two par-
adigms ?”. With this motivation, the present paper gives deeper investigations on typing
systems between the two approaches. For this purpose, a sorting system by name mat-
ching, a quite similar to the system in [7], and a typing system by structure matching
with subtyping, a slight extension of the system in [12], are presented, along with several
basic properties. Then, correspondence between the sorting system and the typing sys-
tem is investigated via transformations both form sortings to typings and from typings
to sortings. It is shown that if a process is well-sorted w.7.t. a safe sorting in the sort
ing system, then it is well-typed w. 7. f. the transformed typing in the typing system, but not
vice versa. This result can be straightforwardly extended to Liu and Walker’s consistent
sortings. Under a certain condition, we can show the reverse implication. Furtheremore,
on the other direction from typings to sortings, it is shown that the derived typing from
the sorting which is the result of applying transformation to a typing coincides with the
original typing. However, the derived sorting from the typing which is the result of ap-
plying transformation to a sorting is proved to be a proper specialization of the original
sorting.

1 Introduction

The z-calculus [11] has achieved a remarkable simplification by focusing on naming and
allowing the communicated data along channels (names) to be names themselves. The
calculus is sufficiently expressive to describe mobile systems and the ability of natural

*The work has been done during visiting the COGS, University of Sussex,” Farmer,
Brighton BN1 9QH, England.

26

embeddings of both lazy and call-by-value A-calculi into the z-calculus [9] suggests that
it may form an appropriate foundation for the design of new programming languages. It
has been shown that higher-order processes can be faithfully encoded in the z-calculus
[13]. The pobyadic =-calculus by Milner [10] is a straightforward generalization of the
monadic z-calculus [11], in which finite tuples of names, instead of single names, are the
atomic unit of communication. Furthermore, the fact that a tuple of names is exchan-
ged at each communication step suggests a natural discipline of sorting.

In the literature, there have been intensive studies on the topic of typing (sorting)
systems for the polyadic z-calculus, originated by Milner’s sorting discipline [10] based on
name matching. Name matching (or, by-name maiching) determines sort equality by rely-
ing on the syntactical names assigned to communication channels (or names)in a given
process, instead of structure. An algorithm to infer the most general sorting of a term
has been reported by Gay in [6]. Milner’s original idea is further extended and explored
by Liu and Walker in [7], where an input sorting and an output sorting are distin-
guished. On the otherhand, typing systems based on structure matching are introduced
in [16,12]. In the structure matching (or, by-structure matching), type equality or subtyp-
ing is determined by some abstract type structure, not by how types are syntactically
presented. The systems in both categories—the ones by name matching and the ones by
structure matching—are used to verify run-time type error and obtain similar results. A
natural question arises “Is there any relationship between the two paradigms?”. The cor-
respondence between Milner’s sorting and the typing system [16] is discussed in [15].

With this motivation, the present paper gives deeper investigations on the typing sys-
tems between the two approaches. For this purpose, a sorting system by name match-
ing, a quite similar to the system in [7], and a typing system by structure matching with
subtyping, a slight extension of the system in [12], are presented, along with several
basic properties. Then, correspondence between the sorting system and the typing sys-
tem is investigated via two transformations form sortings to typings and from typings to
sortings.

On the transformation from sortings to typings, it is shown that if a process is well-
sorted w.7.t. a safe sorting in the sorting system, then it is well-typed w.r.t. the trans-
formed typing in the typing system, but not vice versa. An illustrative counter example
will be given. This result can be straightforwardly extended to Liu and Walker’s consis-
tent sortings. Under a certain condition, we can show the reverse implication.

On the other direction from typings to sortings, it is shown that the derived typing
from the sorting which is the result of applying transformation to a typing coincides
with the original typing. However, the derived sorting from the typing which is the
result of applying transformation to a sorting is proved to be a proper specialization of
the original sorting.

The outline of the paper is as follows: Section 2 presents the polyadic z-calculus to
a certain extent needed for the study. Section 3 and 4 introduce a sorting system and a
typing system, respectively. Section 5, the main part of this paper, relates the sorting
system and the typing system via both-directional transformations. This paper is con-

27

cluded in Section 6 with some concluding remarks.
2 The Polyadic z-Calculus

This section introduces the polyadic z-calculus [10], a straightforward extension of the
monadic z-calculus [11], to a certain extent needed for the study. Let N be a possibly
infinite set of names. The basic syntax of processes we consider in this paper is defined
by the following grammar :

P:=0|a(n,...x).P| a@lb,..b>.P | P | Q | ()P |!P

where 0 is the nil process;a (x,...,%,).P and @ <bi,...,b,>. P are inpul-prefixes and output-
prefixes, respectively ; P|Q are parallel compositions ;(vx) P are restrictions ; |P are replica-
tions. We use the metavariables a,b,¢,x,9,2, etc. for names; P,@, and R for processes.
A sequence x,...,%, of names is often written & if its length|%|is not important. For a
process P, the set fu(P) of free names and the set bn(P)of bound names are defined in
the usual way. We formally identify processes P up to renaming bound names in P, so
that it is assumed that fw(P) N bn(P) = §. This implies the usual conventions about sub-
stitutions to avoid capturing of free names during substitution, a-conversion, side-
condition concerning freshness of names, etc.

A structural congruence relation = is defined to be the smallest congruence relation
over processes which satisfies the axiom schemes listed below.

1. If P=,Q then P=Q: Processes are identified if they differ only by a change
of bound names.

2. Pl(QIR)=(P|Q)|R; P|Q=Q|P; P|0=P.

3.!1P=1P|P.

4. (wx) P=Pif x & fn(P)"; (vx) (w) P=(w) (m)P;
() P1Q=(w) (P|Q) if x & fn(Q)."™

Now, we define a reduction relation — over processes to be the smallest relation satis-
fying the following rules:

T < P - P
ComM — B Tahy.0 5 Bs/ma 7 1P PAR BIQ>PTQ
PP Q=P P—>P P=Q
REST PSP STRUCT 0->0

1 1This induces the usual axiom schemes: (vx) 0=0; (vx)(vx)P=(wx)P.
1 2Note that the side condition can be viewed as a consequence of our convention of
regarding bound names.

28

3 A Sorting System by Name Matching

The introduction of sorting discipline into the z-calculus [10] intends to ensure that
names are used consistently. In this section we present a sorting system based on Mil-
ner’s original sorting discipline, the resulting system is quite similar to the typing system
by Liu and Walker [7].

Let = be a finite set of (subject) sorts. 3* denotes the set of all finite sequences of
elements in 3. An element in =* is called an object sort, denoted by (si,...,8,), or sim-
plely (3) if the number of the sequence is not important. We use # and » to range over
Z*. A subject sorting I'on = is a finite set of subject sort assignments a: s, where a €
N and s € 3, such that a: s, a: ¢t € I’ implies s=¢. An object sorting 2 on 3 is a
finite set of object sort assignments either of the form s*: # or s-: #, where s € 3 and
u & 3%, such that s*:u,s*: v € Q implies u = v, for ¥ €{+,—}. A sorting on 3 is a
pair I' ; 2 of a subject sorting I" and an object sorting 2. 2 is safe in s if s*: u, s~
v € L implies # = v. If Q is safe in all s in = then Q is called safe. A sorting I' ; 2
is safe if its object sorting 2 is safe.

Definition 3. 1 A sorting judgment (by name matching) on S is an expression of the
form:I'; 2 + P:(), where I'; Q is a sorting, P is a process, and () is the special symbol
standing for well-behavedness of a process. O

An object sorting is usually called a sorting [10,6,7]. As usual at most one sort is
assigned to a name in I" and at most one object sort is assigned to each polarized sub-
ject sort, the subject sort with the polarity, in 2. So that I’ () and 2 (s *) denote the as-
signed subject sort to and the object sort to s *, respectively. Let dom(I") and dom (2)
denote the domains of I' and 2, respectively. s € dom(82)is an abuse notation to mean
that s* € dom(Q)or s~ € dom(R). I' and Q are often represented as sequences. I', a:s
denotes the subject sorting I' U{a: s}, provided that a & dom(I"). We apply the same
notational convention to .

Definition 3.2 S is a sorting system (by name maiching) consisting of the following infer-
ence rules:

S—NILW r;2-P1Q: 0

Fa:s,b:%;2,s:(H)FP:()

S IN TF;a:s,%2:1;0,s%(H)-P:0
Ta:s,b: t;2,s:(H)Fa<by.P:()

Ia:s;Q,s":(t)a(x).P:() §-Out

B I ;Q-P:() B I',x:5;2-P: ()
SREPL Forip () SREPL G5

The interesting cases are the rules for input and output. In order to be sure that

29

the input prefix a (%). P is well-behaved in a given sorting, we must check that first the
object sort for the subject sort of ¢ with the positive polarity matches the sort of the
sequence of names read from «; secondly the continuation P is well-behaved in the aug-
mented sorting by the sort assignments #:f. The case for the output prefix is analo-
gous. The notation I' ; 2+s P : () indicates that the sorting judgment I' ; Q- P :() is
provable in the system S.

It is easy to take the correspondence between our sorting system and the typing sys-
tem by Liu and Walker [7]. 2 represents a sorting signature consisting of the set = of
sorts and the input, output sortings 0b*, 0b~: 2 — £(2*) such that at most one input and
one output object sorts are assigned to a subject sort though multiple object sorts assign-
ments are allowed in the typing system [7]; I' represents a partial function ¢: N — =
of sort assignments to names. Taking account of these correspondences, the inference
rules are essentially same as the ones in [7]. In fact, we have the following proposition
by induction on proofs.

Proposition 3.1 Let I'; Q2 be a sorting and P a process. I' ; Q+sP:()iff P can be
proved to possess the type <R, I'> in the type system [T].]

Definition 3.3 (Due to [7] though slight modifications are made.)

1. Let 2, and 2, be object sortings on 2. A homomorphism from £, to £, is a func-
tion 6: 3 — 3 such that if s*: () € Q, then 8 (s)*:(6(}) € 2, for ¥ €{+, —}*.

2. Let I; £, and I,; 2, be sortings and # a homomorphism from £, to £2,. We
write I ; 2 5o I%; 2 if x: s € I implies x: 8 (s) € I, for all x and s. We write
N:QCL;Qiff IT; 20 I, ; 2 for some 6 and I3 ; 2, is called a specialization of
Iy; Q.

3. An object sorting 2 is self-comsistent if for every s € 3, whenever s*: (s,,...,5),
s7: (t,....tn) € 2 then n =m and there exists a homomorphism é from £2 to 2 such
that 6 (s)= 6(%), for 1 < { < un. A sorting I' ; Q is self-consistent if Q is self-con-

sistent.
4. A sorting I'; Q is consistent if there exists a self consistent sorting [; £o such that
r;2C T ; . O

Proposition 3.2

1. If N;2QChL,; 2 and I Qs P:() then I ;2 s P: ().

2. Any safe sorting I'; Q is a consistent sorting. Conversely, if I'; 2 is a comsistent sor-
ting then there exists a safe sorting Iy ; 2y such that I' ; QT I3 ; §.

Proof: Proof of 1. By Proposition 3.1 and Lemma 8 in [7].
Proof of 2. It is straightforward from definition that any safe sorting is a consistent
sorting. Now, suppose I' ; 2 is a consistent sorting on 3. Then there is a self-consistent

t3We use a total function rather than a partial function. See [7].

30

sorting I ; & such that I'; Q5 I ; 2, for some homomorphism 6§ from Q to £,. If
there is a sort s in 3 such that s*: (f), s—: (%) € 2, for some and # with 7 #+ @ (note
that 17| = |l), then there exists a homomorphism 6, from £, to £, such that 4(f) =
6 (@). 1f we let T,= 6,(I) and £, = 6,(2,), then we have I ; 2, o, I3;2,. Thus, I};
Q0I5 ; 2. We repeat this process #—1 times for some # until there is no s in 3
such that s*: (), s™: (@) € , for any 7 and # with 7 + 4. By construction, I',; 2, is a
safe sorting and I' ; QL I; 2, M

Any safe object sorting £ induces a consistent partition of £, see [7] for the definition of
a comsistent partition of a sorting signature. Conversely, the safe object sorting is der-
ived from a consistent partition. Therefore, Proposition 3.2.2 corresponds to Theorem 14
in [7]. The next corollary is a direct consequence of this proposition.

Corollary 3.1 Let P be a process. P has a safe sorting on S iff P has a consistent
sorting on %, i.e. I';Q2\s P:() for a safe sorting I'; Q iff I"; 2 s P:() Jor a consis-
tent sorting I'; L.]

Corollary 3.2 If a sorting I' ; Q has a safe specialization, i.e. I';QC I";Q for some
safe sorting I ; 2, then I' ; Q has a most general safe sorting Iy ; S, in the sense that

1. I'; QC 1 ; 2 and Ty ; 2, is safe;

2. I'; QU I ; Q for some safe sorting I ; Q' implies Ty ; QI ; 2,

and Iy ; Qe is unique up lo isomorphism™

Proof : By the assumption, I' ; 2 is consistent. The construction of a safe sorting from
a consistent sorting in the proof of Proposition 3.2 gives a required most general safe
sorting. The uniqueness is obvious from the construction. O

Proposition 3.3 If I'; Qs P:() and P=Q then I'; 2 s Q: (). 7

Proposition 3.4 If I'; Q2 s P:() for a safe sorting I' ; Q and P—Q then I'; QsQ: ().
Proof : By induction on the proof of the reduction P — Q.]

In the inference rule COMM of the reduction relation, it is required that the arities of
the input-prefix and the output prefix must be equal. If a process P contains unguarded
prefixes a(%).Q and a<5>.R with |z # |5|,then P is said to contain a communication mis-
match [7] or a run-time type ervor [12,16]. P is free from communication mismatch if
whenever P - P’ then P’ does not contain a communication mismatch. Thus, by Corol-
lary 3.1 and Corollary 12 in [7] we can conclude that if a process P has a safe sorting
then P is free from communication mismatch.

T4Let 2 and 2, be sortings -on S. An isomorphism form £, to £, is a bijective
homomorphism 6:2,— £, such that its inverse 67': Q2,— ©Q, is also a homomorphism.

£

4 Typing Systems by Subtyping

In this section we introduce a typing system based on subtyping by Pierce and Sangiorgi
[12], which is a slight variant/extension of the one by Pierce and Sangiorgi [12] with the
constant types T (fop) and L (bottom) are added as the universal type and the inconsistent
type, respectively. Some basic preliminaries are stated as well for later discussions.

Let I <J be the least preorder on the fags {r,w, b} containing b<r and b<w. A
type, ranged over by T or S,is defined by the grammar:

T:i=al|T|L (Th,....T) | na. S
I:=r|wl|b

where @ is a type-variables ; T and Lare constant types top and bottom, respectively ;(T,...,
T, is a ftagged tuple; ua.S is a recursive type. Let T and T denote the set of all
(open) types and the set of all closed types, respectively, where a-convergent types are
identified. The identification over types will be justified by the equality over types
defined below. A type is called finite if it contains no recursive types as subterms. The
symbols ¢ and s range over finite types. A type T is comtractive in a type variable & if
every free occurrence of « in T is within some tagged tuple (T3,..,T3)". An I/O-tree is
a finitely branching tree whose nodes are labeled with the labels—tags in {r,w,b} , type
variables, or constants T, L (cf. [12]). We can identify an I/O-tree with a partial function
T from the tree domain N*—the set of all finite sequences of non-zero natural numbers
—to the set of labels [3, 4]. [Ty,...,T.]7 denotes the tree whose root is labeled with I and
whose subtrees are Ti,.., T, where I is a tag. With each type T we associate the I/O
-tree Tree (T);it is the unique tree satisfying the following equations:

Tree (a) = a;
Tree (T)=T;
Tree(L)=L1;
Tree((Ty,...., T)) = [Tree (TY),..., Tree (T)]*;
Tree (T{ua.T/a}) if T is contractive in a,

T)=
vee (ua. T) { N otherwise.

The equality of types is defined by S = ,T iff Tree (S) = Tree(T). This equality justifies
the identification of a-convergent types in the sense that S=a« T implies S =.T.
Furthermore, we have ua.T=,T{ua.T/a}. It is easy to see the equality =,is a con-
gruence relation on types. For every type T, Tree (T)is a regular tree, a tree with a
finite number of different subtrees. Every tree is completely specified by the language of
its occurrences of the labels, which is a regular language [3]. It follows that for given
types S and T the decision problem of the identity of types, S =, T, is reducible to the
equivalence problem of deterministic finite-state automata, thus is decidable.

To simplify the case analysis in the following proofs we introduce canonical forms
for types. A type in canonical form T is defined by the grammar:

32

T:: =a ITI‘LI (ﬂ--'-)Tn)l l ﬂa'(ﬂl---uTn)])

where in the case pa.(T),...,T:)!, @ must occur free in the body (7,...,7,)". Hence, the
body of a ¢ in canonical form must immediately start with a tugged tuple. The follow-
ing two results are inspired by the ones on type equivalence for a recursive types of the
typed A-calculus [1] and can be proved in a similar way.

Lemma 4.1 The following equalities hold on types with respect to type equality.

. paa = L

pwa.T = T{ua.T/a}

. If T is contractive in a then T{S/a} =S and T{S'/a}= Simplies S = S’.

pa. T = pa. T{T/a}

wrapB.T = py. T{y/a, v/B} . O

O W= W N =

Proposition 4.1 For any type T there is a type S in canonical form such that T=, S

By this proposition, in the remainder of this paper, unless specified otherwise, a type will
always mean a type in canonical form.

Let A be a sequence of pairs of types S < T. A subtyping judgment is an expres-
sion of the form A + S <7, pronounced as S is a subtype of T under the assumption /1.

Deffnition 4.1 A is a subtyping system consisting of the following rules':

AsmpP REF

A, SE<T-S<T A-T<T

Tor s BI™M 7 =7

BB for each i, A-S;< T, AFT,< S,
A (S,,..,S)° < (Th,..., T)°

I<r for each 7, AFS,<T;: I<w for each {, AFT,<S;
RB-R I8, Sy < (T T WB-W 8 S) < (T T

A pa.SSTFS{ya.S/a} <T A, S<pa. THS<T{ua. T/a}
REC-L Arya. ST REC-R A+-S<pa. T

]

In the same way as the sorting system, A+ .S <7 indicates the judgement A+ S<T is

751In the subtyping system regarding closed types only as in [12], the rule Ref is deriva-
ble by well-founded induction on subtyping judgments. See [14]. However, it is no more
derivable when open types are concerned..

33

provable in A, We write S <47 when -, S <T and S =4,7T when S <., T and T <4,S.
Proposition 4.2 The subtype relation <y, is a partial ovder on T with the top element
T and the bottom element L.]

As a direct consequence of this proposition, S=;,,7 implies S =, T. The other
inclusion can be proved as follows. On the one hand, along the same line as [1], =,
restricted on types in canonical form can be proved to coincide with the least congruent
relation with respect to the type constructors satisfying the properties Lemma 4.1.2 and
Lemma 4.1.3. On the other hand, =, can be proved to be the congruence relation sat-
isfying the same properties in Lemma 4.1. Thus, S=,T implies S =4,7. So we use
the symbol =, to denote the provable identification instead of =gy.

Proposition 4.3 T is a lattice with the meet N\ and the join NV satisfying, for instance,
the following equalities (We will drop the dual equalities and quite obvious equalities
vegarding T, L, and type variables a):

1. (S, SY AT, T = L(n+m).

2. (S S) A(SLeey SY = (S, S)* M.

3. (S SNy T = (S A Ty S A T

4. (S, SHA(T,, TV =(S, V Th,...,S, V TH)™.

(S,S? of S;=T;y, for 1<i<n

€ otherwise.

The meet on the set {r,w,b} is defined by INJ =1if I =] and IN]J =b otherwise. []

5. (SnSP AT, T = {

Definition 4.2 A pHping judgment (by subsorting) is an expression of the form A - P: o,
where A is a set of #ype assignments a: T, P is a process, and © is the special symbol
standing for well-behavedness of the process. O

Definition 4.3 T is a #ping system (by sublyping) consisting of the following rules:
AFP:o AFQ: e

T-NiL W T-Comp A-P ' Q: o
Fa@ < (Ty Az THP:o FA(a) < (AGB)™ AFP:o
TIN Ara@). P o T-Out Ara.P: o
AFP:o A x:THP: o
T-RePL AFIP: o T-ResT A (ux)P:o

O

Pierce and Sangiorgi [12] have formulated their typing system in the Church style (2
la Church), where typing information for the input parameters and restricted names are
given explicitly. As there is often a simple relationship between the two styles in the
typed A-calculi [2] there is a simple relationship between the type system in this paper
and the one by Pierce and Sangiorgi [12]. This will be explained below: Let | | be the
function mapping process terms with type ornamentations into the ordinary processes in
this paper by erasing the all type information.

34

Proposition 4.4

1. Let Q be a process with type annotations. If A Q:° is provable in the Pierce and
Sangiorgi’s Church style typing system [12], then Ab+ |Q| : o .

2. Let P be a process. If At-1 P: o then theve is a process Q with type annotations
such that A =Q: o is provable in the Pierce and Sangiorgi’s system and |Q| =P,

Proof: 1. By induction on the proof of the judgment AFQ:o.

2. Type annotations can be found from the proof A -y P:o. The proof is by induc-

tion on the proof A 1 P:o. For instance, suppose

FA(@) < (1h,..T) A x:Th,..., %,: T,-P:o
At a(x,...,%.).P: 0

is the last inference. The annotated process is given as a(x : T,..., % »: Ty).P’, where P’
is the annotated process corresponding to P obtained by the induction hypothesis. Sup-
pose

Ax:THP:o
A (vx)P: o

is the last inference. The annotated process is given as(vx: T) P’, where P’ is the an-
notated version of P. O

5 Relating Sortings and Typings

5.1 From Sortings to Typings

With each sorting judgment I' ; 2 - P : () we will associate a typing judgment (I'Jo
P: o such that hopefully we expect I'; Qs P: () iff (I'Jo 1+ P: o. For this purpose,
given an object sorting £ and an environment p: 3 — T, mapping (free) sorts to closed
types, for each sort s in 3 the corresponding type [s]§ of s with respect to 2 and p is
defined as follows:

()64 S5¢(s, 0);
s ifseX
us. (T8 (s*, XU{sHATE(s7, XU{s})) otherwise;
(S&(, X)r if ¥=+ and s:(HsQ
TE(s*, X) £{(S8(f, X)* if k=—and s—(DEL

p(s) otherwise.

s6(s, X) 2 {

In the definition we use the notational convention S% (£ X) to denote the sequence S% (4, X),...,
St (t, X), for = t,..,t,
Let T; 2 be a sorting then the corresponding typing (I")§ is defined by

ris2 {a: (s)sla:ssry .

Usually, the environment 0., o,(s) 2 T for each s € 3, is used to assign types to sorts.
However, almost results stated in this section hold for any environment p. So that {s)e

35

and (I']e are the abbreviations of (s)% and (I"]% for any environment p, respectively,
when p is not very important. Note that [s)o =, L if £ possesses object assignments
to s having mismatch in number with the I/O parameters.

Lemma 5.1 Let 2 be a safe object sorting and p be an environment. If s*: He s :0
€ £2) then

- (s)8 zsub([tjs)l:

for some I such that I <r (I<w). Thus, (s)5 =, ((FIE).

Proof: Suppose s*: (}) € 2 (s~ :(f) € Q). By the definition of S5 (s, X), the safety property
of 2 implies that (s)4 can be expressed as (51§ = us. (Se(7,{s}))’, for some I, where I <r (I
<w). Since unfolding of the recursive definition preserves the identity, see Corollary 2. 4.6 in
[12],

F (538 = sun(S8 (£ {s}){Ls)8/s}).

Let # be the i-th element in the sequence 7 If # = s then S§ (,{s}){(s)&/s}=[s)5= 414
If #+s then S8 (£, {shH{(s)8/s}=L)5. Il

Theorem 5.1 If I'; 2 —, P:() for a safe sorting I'" ; Q2 then (I')o 1 P:o.
Proof : By induction on the proof of I'; 2 - P :() in S. Interesting case is the one when the
last inference is by S-In or S-Out.
Case S-In: Suppose

I a:s, 2:1;0, s*:(DFP:()

Ia:s;Q, st:(DFa@.P:()
is the last inference by applying S-In. Let =0 U{s*: (}. By the induction hypothesis,

(Mo, a:(s)o,Z:({)o 1 P: . It remains to show that + (s]o < (€A)o)" to deduce the

typing judgment (I")g, a:(sle 1 a(@). P: o. This can be obtained by Lemma 5.1. The
case by S-Out is similar. O

The theorem insists that if a process is well-sorted with respect to a safe sorting in the
systemem employing name matching, then it is well-typed as well in the system employing
structure matching with subtyping.

Example 5.1 As an example, let us consider the process P, = @<a, b>. 0|z (x, ¥). 7<x>.0 and
the sorting It = {a: s, b: t}; &={s*:(s, #),s7: (s #)t~:(s)}. P, can be proved to be well
-behaved in S under the assumption I3 ; £.
I, x:s,y:6:2-0:0)
IN; +0:0 IN,x:s,9:t; 2+5x>.0:()
I ;9 +ala, 5.0: () I 2 Falxy). 7x2.0:0

Pl', 2P :0

From definition, (sJo, = us. (s, ut. ()P =, us. (s, (s)*)°= S, (£)a, = ut. (us. (s, t)°)*=T. Let

36

A= (N)e={a:S, b: T} .
FT<O™ AL,x:S, y: THO:o
ES<(S, T) AH0: o ES<(S, T)F A, x:S, y: THFx.0:0
A Hala, b>.0: A Ta(x,y) 7<x>.0: ¢
AFP o

Theorem 5.1 can be extended to a consistent sorting in a straightforward way.

Corollary 5.1 Let I"; 2 be a consistent sorting. Let T,; Q, be the unique most general safe
sorting, its existence is guavanteed by Corollary 3.2. Then for a process P,T'; Q s P:()
implies (IyJo, 1 P .

Proof: By Proposition 3.2.1 and Theorem 5. 1. |

The converse of Theorem 5. 1 is not true in general. The following simple counter example
illustrates the fact:

Example 5.2 Let us consider the process P, = @ .0 under the safe sorting I, ={a: s, b:
rh={s":(®), t*:(),r*:(), 7 :()} on ,={s, ¢, }. By the transformation, (sJg, = (r)*,
(e, = ()", ()0, = 1, (7)o, = b, and (I3)e, ={a: ()%, b: b}. Then, trivially we have {I}Jq,
Fr P: o, But, I,; 2, s P, because ¢ # 7. |

If the transformation defined by a safe object sorting £ from sorts into types satisfies a
certain condition, then the converse of Theorem 5.1 holds. To show this fact, we need the
following lemma.

Lemma 5.2 Let I'; Q be a safe sorting on 3.

1. Let s€ 3. For any T € sub ((s)%), theve exists a sort t €S, such that T =.()5.
2. For any sort s €3, if ()5 = (T,,...,T5), where I <r(I<w), then s € dom (Q) and
theve exists t; € 3, for each 1 < { <n, such that
2. T,=,0)5,1<i<n;
2b. st (f,et) €E (s (L,....1) € Q).
3. For any sort s € 3, if(s)o =T, then s & dom(Q).

37

Theorem 5.2 Let I'; Q be a safe sorting on 2 such that ()T <s.,(t)% implies s =t for any
sorts s, t EZ'6. Then, (I 1 P: o implies ' ; P:(), for any process P.

Proof : By induction on the proof [I")J% 1P : o and by case analysis of the applied rules.
For detailed proof, refer to [14]. O

5.2 From Typings to Sortings
We will define a sorting A®; A' in terms of a typing A. To this end, we need some prelimi-
naries. Given an open type T, let Sub (T) be the set obtained from the set of all the subterms
of T by replacing each bound type variable appearing in a subterm by its definition, formally
Sub (T) is defined inductively as follows:

Sub(a) & {a};

Sub(T) & {T};

Sub(L) & {L1};
Sub((T1,. T & (T, T} USub(THU...USub(TF) ;
Sub(ua.T) 2 {pa. TYU{S{ua. T/a}|SESub(T)}.

From definition it is easy to see that Sub (T') is finite for any type T. Infact, Sub (T') can have
no more elements than the number of distinct subterms of 7.

With an open type in canonical form T € T we associate a tuple <= (T), T* counsisting of
the set 3 (T) of sorts and the object sorting 7% . The sorts are defined by

S(T) 2 {[S]1|S & Sub (T)}

for a type T,where [T] & {S|T=,S} is the congruence class of T with respect to the
identity relation =, on 7. The object sorting T* is defined by structural induction on T.

f if T=ao0r T
T QUTHU.UTH if T=(Ty,... T

QrU(TF U.UTH ([T [a]} if T=p a. (Th,.., T3,
where

Q2 {[1]%:0, [L1 ([
{[T1*:([7]....[T.])} ifI=r
2 21{[T]:([7n)..[T.]) ifI=w
{[T1*:([71)...[T.D), [T1 :(R)...[T.])} if I =h.

T 6 This condition means that £ represents the unique object sorting up to renaming of sorts
such that no distinct sorts represent the same type where the type equality by forgetting the
tage is used as the identity of types. Under this condition, [I")% 1 P : o means P is well-typed
with respect to [I']%, where only structure matching without subtyping is used.

38

{ITI": (T {T/a}] ,.[TAT/a}])} 1=t
{(IT]: (T2 {T/a}] ,.,[TAT/a}])} ifI=w
{IT]1":(T {T/a}] ,..|T:{T/a}]), ifI=hb.
[T) ([T {T/a}] ,.[T:{T/a}])}

Let A be a typing. The corresponding set of subject sorts is defined by

1>

2

S(A) 2 U{S(T)|x: TE A, for some x}.
The associated sorting A® ; A* on 3 (A) with A is defined as follows :

A2 {x:[T]|x: TeEA};
N 2 U {T|x: T €A, for some x}.

For notational simplicity, the square brackets are often omitted and the sort (73,...,7;) is
sometimes written as I (7y,...,T,) using the prefix notation. So that, e.g. the object sort
assignment b(T,,..., T5)* : (T;,..., T5,) is the abbreviation of [(T},..., T)°]* : ([T1],-..[T.)).

Example 5.3 Consider the typing A; = {4: (b, b)®}. The set of sorts is given by = (As) ={b
(b,b), b}. Let s=b(b,b), =b. The corresponding sorting is obtained by A(i ={b:s}; A#s =

{s*:(t,), s7: (4, 1), t*:(),t:()}. It is worth while to note that (s)ss= (b, b)*; (£),% = b
and (A%)45 =a,.

Example 5.4 As a more involved example, let us consider the typing
A, = {a: pa. (a, (@)V)P, b:up. (ua. (a, B°)*} .

Let S=pa. (a, (&))" ; T= uB. (ua. (a, BP)"; U= pa. (@, T)®. Then we obtain the sorts by
construction: S, b (S, w(S), w(S), T, w(U), U, and b(U,T). Among them we have s &
S=b(S,w(S)=U=b(U,T);t 2 w(U)=w(S). Thus, the set of sort is given by 2 (A,)={5s,
t}. The sorting from A, is given by AS ={a:s, b:t}; A ={s*:(s t), s":(s,), + :(s)}.
Recall that A, is the resulting typing obtained from the sorting I ; 2, in Example 5. 1 and
the derived sorting AS ; A, coincides with the original sorting. Thus, I} : @, = (1%, (Y%, :
A,=(A%).%, where ([1]o, = A, O

We hope that for instance A 1 P: o implies A® ; & 5 P:(). But, unfortunately there
is a simple counter example. Let us consider the context A ={@:(T)", &:(T)} and the
process P=a. 0. P is well-typed under the context A.

(TI<{(T))Va: (T), b:(TIHO0: o
Z: (T, b:(T)YT a<b).0:0

Thus, Al P: o. By definition, 3 (A) = {w(T), r(T), T};A®° = {a:w(T),b:r(T)} ; & =
{w(T):(T), r(T)*:(T)}. Because T#r(T), A®; A £ P:().

Proposition 5.1 Let T be a type and p an environment, then (|S|3% =, C|S|)%, for any S

39

€ sub (T). (|

Lemma 5.3 Let ¢ be any function mapping type variables & to closed types o(a) € T and
T be any type. Define the environment p .2 (T)— T by

{o'(a:) if [S]=[a] for some a

otherwise,

e ([SDH4

for [S] € S(T). Then, we have [([T1)5=:0(T).
Proof: We will show Tree (([T])%s) (z)= Tree (6(T)) (=) by induction on z € N.* and by
case analysis on 7. The interesting case arrises when T = ua.(Th,...,T»)". By definition,

3(T) ={[THHU{[S{T/a}]|S € sub (T,..T))};
T* =QU(TiU..UT% {[T]/[al}.

where

{1 :((T{ T/ a}),-. [TA T/} } if I =1
(T[T {T/a}),. | T T/ a}]) } if I =w
[T+ : ([T T/}, [T{ T/ a})), if I=b.
(T :((T{T/a}),... [TA T/ 2}]) }

Thus, by Lemma 5.1 and Proposition 5. 1
Tree (o (T) = [Tree (c(Ti{T/a})),..., Tree (¢ (T{T/a}))]";
Tree (C[T])°r+ [Tree([[ﬂ{T/a}]] .., Biee ([[E{T/a}]]‘;")]l
[Tree(E[T;{T/a}]]m rray),..., Tee (LTAT/a}}eniriarr))] .

>

2

Obviously
Tree (([T1)%:) () = Tree (o (T)) (e).
Let %z be a current path. If 2 < #z then
Tree(([T'13%) (kz) = Tree (¢ (T)) (kx),
by the induction hypothesis
Tree ([T1)%e) (z) = Tree (o (T2)) (x),
for each 7, 1 < i < . If £ > » then both the trees are undefined on %z.
Theorem 5. 3
1. I'; QL UM%, %, for any safe sorting I' ; 2 on Z.

2. I'; Q@ # (I8, for some safe sorting I ; 2 on 3.
3. A= [A®)s, for any bping A.

Proof: 1. Let 6:3— 3 ({I")o) be the function defined by 8 (s) 2 [(s)e], for s € =.
Suppose x:s € I' then z:[(s)o] € [I8by definition. It remains to show that 6 is a

40

homomorphism from 2 to (I'Jb. Suppose s*:(4,...,t) € 2, where % =+(or % =-). By
Lemma 5.1, (s)e = ; ((#)a,...,Ct)e)’, where I < r(or I< w). Thus by construction, we have
[Csdol* : ([C4I],...,[Cte]) € (I'D%, as required.

2. Consider the safe sorting I, = {@: 4,5 :s}; 2, = {t*:(),s*: ()} on {s, ¢}. The inequality
is obvious from the followings: (I)e,={a:r,b:r}; ()% ={a:r], &:[r]}; (pls,={[r]":
O}

3. The proof is by Lemma 5. 3 since any type in A is closed.]

Corollary 5. 2
1. f I'; 2+ P:() for a safe sorting I ; 2 then (') ("M% s P: ().
2. (Mo = (U ire. O

6 Concluding Remarks

In this paper, the sorting system by name matching and the typing system by structure
matching with subtyping were related via the transformations. The introduced sorting (typ-
ing) system is quite closed to the typing system by Liu and Walker [7] (by Pierce and Sangiorgi
[12]). So the results obtained in this paper are applicable to the investigation of the correspon-
dence between them. If we forget the polarities (the tags and subtyping), then the resulting
sorting (typing) system turns out to coincide with a variant of Milner’s sorting system [10] (the
typing system by Vasconcelos and Honda [16]). Thus, our results interpret the relationship
between both the systems as well.

The correspondence between Milner’s sorting and the typing system [16] is informally
discussed with the illustrative example in [15] and more formally discussed in [16]. The idea
is that a set of basic sorts and sorting defines a regular system of equations; such a system has
a unique solution whose components are represented as regular trees; then derive a typing from
the solution. Conversely, trees in a finite set of regular trees are components of the unique
solution of a single system of equation [3]; from such a system the set of sorts and sorting are
obtained.

The transformation from sortings to typings has a similar flavor to the one from regular
system equations in canonical form to recursive types discussed in [1,14]. To make clear the
correspondence between the two transformations, we derive a regular system of equations from
an object sorting. Let £ be a safe object sorting on 3. For s € 3, the flnite type <s>q with
subject sorts taken as type variables is defined by

@ if s*: (D), s™: (H) € Q for some (7)
(>0 A (f)’ if s*: (lz) € Q2 for some (f), and s~ & dom(R)
T @)Y if s7: (F) € L for some (), and s* & dom(RQ)
T if s & dom(Q).

The system E(£) of equations is obtained from 2 by

41

E (2){s =<s>a|s € =}

Proposition 6.1 ([14]) Let Q be a safe object sorting on =. For any sort s in %, [(s)a =
s, E(Q)>), where [<s, E(R)>] is the type represented by the type varviable s w.r.t. the system
of equations E (2). (Note that Tree <s, E(Q)>=Tree (s, E()>) this means that s w.r.t.

E (Q) represents the same tree as the type (Ks, E(2)>]). O

Conversely, given a regular system E of equations in canonical form we define the cor-
responding object sorting £2(E) with type variables appearing in £ and two constants T, L
taken as subjects sorts.

Q) 2{a*: (B)a=@B) € E}U{a":(B)la= (B € E}
Ul{a*:(B)la=@yF € E}YU{a:(B) |a= B)* € E} U Q.(E),

where

{1*: (), L~: (L)¥} if E contains L

A
QuE) 2 { g otherwise.

Proposition 6.2 ([14]) Let E be a regular system of equations in canonical form and p be a
type variable, T, or L, then (plow) =: [Kp, ED) . O

From typings without subtyping to Milner’s sortings, as stated in [16], well-typing induces
well-sorting. But, as illustrated in Section 5.2, in general well-typing doesn’t always implies
well-sorting along the given translation. But, we convince that the following conjecture must
hold.

Conjecture 6.1 If AP: o then there exists a typing Ao such that Ay < A—dom(Ao) D dom (A)
and Ao(x) < A(x) for all x € dom(A) — and AS ; Ny s P: (). Note that A1 P: o See [12
14]. O

Finally, the relations between incremental systems and non-incremental systems are dis-
cussed in both sorting and typing in [14].

References

[1] Amadio, R.M., Cardelli, L., Subtyping recursive types, TOPLAS, 15, No.4, pp.575-631,
1993.

[2] Barendregt, H.P., Lambda calculi with types, in: Handbook of Logic in Computer Sci-ence,
Volume 2, Background: Computational Structures, Edts. S. Abramsky, D.M. Gab-bay, and
T.S.E. Maibaum, Oxford Science Publications, 1992.

[3] Courcelle, B., Fundamental properties of infinite trees, 7CS, 25, pp.95-169, 1983.

[4] G., Cousineau, M., Nivar., On rational expressions representing infinite rational trees: 8th
MFCS, LNCS, 74, pp.567-580, 1979.

[5] Hindley, R., The completeness theorem for typing A-terms, 7CS, 22, pp.1-7, pp.127-133,

42

1983.

[6] Gay, S.J., A sort inference algorithm for the polyadic z-calculus, in 20th POPL, 1993.

[7] Liu, X., Walker, D., A polymorphic type system for the polyadic z-calculus, CONCUR’95,
LNCS, 962, pp.103-116, 1995.

[8] Milner, R., Communication and Concurrency, Prentice Hall, 1989.

[9] Milner, R., Functions as processes, t# ICALP ’90, LNCS, 443, 1990.

[10] Milner, R., The polyadic z-calculus: A tutorial, Technical Report ECS-LFCS-91-180,
LFCS, Dept. of Comput. Sci., Edinburgh Univ., 1991.

[11] Milner, R., Parrow, J., Walker, D., A calculus of mobile processes, Part I and II, Infor. &
Comp., 100, No.1, pp.1-40, pp.41-47, 1992.

[12] B, Pierce, D. Sangiorgi, Typing and subtyping for mobile processes, Dep. of Computer
Science, University of Edinburgh, 1994.

[13] Sangiorgi, D., Expressing mobility in process algebras: first-order and higher-order para-
digms, Ph.D. Thesis, Edinburgh University, 1992.

[14] Togashi, A, On typing systems for the polyadic z-calculus, Technical Report 1/96,
COGS, University of Sussex, 1996.

[15] Vasconcelos, V.T., Honda, K., Principal typing-schemes in a polyadic z-calculus, CS 92-4,
Keio University, 1992.

[16] Vasconcelos, V.T., Honda, K., Principal typing schemes in a polyadic z-calculus, CON-
CUR’93, LNCS, 715, pp.524-538, 1993.

(19969 H4 8 =H)

