
Name Matching v.s. Structure Matching in Typing
Systems for the Polyadic π-Calculus

言語: eng

出版者:

公開日: 2015-05-29

キーワード (Ja):

キーワード (En):

作成者: Togashi, Atsushi

メールアドレス:

所属:

メタデータ

https://doi.org/10.14945/00008608URL

Name Matching v.s. Structure Matching in Typing
Systems for the Polyadic n-Calculus

Atsushi Togashi*

Department of Computer Science, Shizuoka University,
3-5-1, Johoku, Hamamatsu 432, Japan

Tel. : *81-53-478-1463
Fax.: *81-53-475-4595

togashi @ cs. inf. shizuoka. ac. jP

Abstract
In the literature, there have been intensive studies on typing (sorting) systems for the

polyadic z-calculus, originated by Milner's sorting discipline [10] based on name match'

ing. The proposed systems, so far, are categorized into the twogroups - systems by

name matching and ones by structure matching (possibly with subtyping) - and obtain

similar results. A natural question arises "Is there any relationship between the two par-

adigms ?". With this motivation, the present paper gives deeper investigations on typing

systems between the two approaches. For this purpose, a sorting system by name mat'

ching, a quite similar to the system in [7], and a typing system by structure matching

with subtyping, a slight extension of the system in [12] , are presented, along with several

basic properties. Then, correspondence between the sorting system and the typing sys-

tem is investigated via transformations both form sortings to typings and from typings

to sortings. It is shown that if a process is well-sorted w.r./. a safe sorting in the sort

ing system, then it is well-typed w. r. t. the transformed typigg in the typing system, but not

vice versa. This result can be straightforwardly extended to Liu and Walker's consistent

sortings. Under a certain condition, we can show the reverse implication. Furtheremore,

on the other direction from typings to sortings, it is shown that the derived typing from

the sorting which is the result of applying transformation to a typing coincides with the

original typing. However, the derived sorting from the typing which is the result of ap-

plying transformation to a sorting is proved to be a proper specialization of the original

sorting.

1 Introduction

The z-calcwlus [11] has achieved a remarkable simplification by focusing on naming and

allowing the communicated data along channels (names) to be names themselves. The

calculus is sufficiently expressive to describe mobile systems and the ability of natural

*The work has been done during visiting the COGS, University of Sussex,: Farmer,

Brighton BNl gQH, England.

26

embeddings of both lazy and call-by-value i.-calculi into the z-calculus [9] suggests that
it may form an appropriate foundation for the design of new programming languages. It
has been shown that higher-order processes can be faithfully encoded in the z-calculus
[13]. The polyadic z-calculus by Milner [10] is a straightforward generalization of the
monadic z-calculus [11], in which finite tuples of names, instead of single names, are the
atomic unit of communication. Furthermore, the fact that a tuple of names is exchan-
ged at each communication step suggests a natural discipline of sorting.

In the literature, there have been intensive studies on the topic of typing (sorting)
systerns for the polyadic z-calculus, originated by Milner's sorting discipline [10] based on
name matching. Name rnatchi,ng (or, by-narne matching) determines sort equality by rely-
ing on the syntactical names assigned to communication channels (or names) in a given
process, instead of structure. An algorithm to infer the most general sorting of a term
has been reported by Gay in [6]. Milner's original idea is further extended and explored
by Liu and Walker in [7], where an input sorting and an output sorting are distin-
guished. On the otherhand, typing systems based on structure matching are introduced
in [16,12]. In the structure matching (or, by-structure rnatching), type equality or subtyp-
ing is determined by some abstract type structure, not by how types are syntactically
presented. The systems in both categories-the ones by name matching and the ones by
structure matching-are used to verify run-time type error and obtain similar results. A
natural question arises "Is there any relationship between the two paradigms?". The cor-
respondence between Milner's sorting and the typing system [16] is discussed in [1b].

With this motivation, the present paper gives deeper investigations on the typing sys-
tems between the two approaches. For this purpose, a sorting system by name match-
ing, a quite similar to the system in [7], and a typing system by structure matching with
subtyping, a slight extension of the system in [12] , are presented, along with several
basic properties. Then, correspondence between the sorting system and the typing sys-
tem is investigated via two transformations form sortings to typings and from typings to
sortings.

On the transformation from sortings to typings, it is shown that if a process is well-
sorted w.r.t. a safe sorting in the sorting system, then it is well-typed w.r.t. the trans-
formed typing in the typing system, but not vice versa. An illustrative counter example
will be given. This result can be straightforwardly extended to Liu and Walker's consis-
tent sortings. Under a certain condition, we can show the reverse implication.

On the other direction from typings to sortings, it is shown that the derived typing
from the sorting which is the result of applying transformation to a typing coincides
with the original typing. However, the derived sorting from the typing which is the
result of applying transformation to a sorting is proved to be a proper specialization of
the original sorting.

The outline of the paper is as follows: Section 2 presents the polyadic z-calculus to
a certain extent needed for the study. Section 3 and 4 introduce a sorting system and a
typing system, respectively. Section 5, the main part of this paper, relates the sorting
system and the typing system via both-directional transformations. This paper is con-

cluded in Section 6 with some concluding remarks.

2 The Polyadic z-Calculus

This section introduces the polyadic z-calculus [10], a straightforward extension of the

monadic z-calculus [11], to a certain extent needed for the study. Let N be a possibly

infinite set of narnes. The basic slmtax of processes we consider in this paper is defined

by the following grammar :

pl:0 la(rr,...,x,).Pl A<br,...,b,>.P I P I a I Qx)PllP

wkere 0 es the nil process;a (g,...,rn).P and a (br,...,bn). P are input-prefines and owtput'

prefaes, respectively; PIQ are parallel composi,tions;(vx) P are restri,ctions ; !P are replica'

tions. We use the metavariables a,b,c;c,y,z, etc. for names; P,Q, and R for processes.

A sequence,)e,...,x77 of names is often written.T if its lengthl.flis not important. For a

process P, the set fn(P) of free narnes and the set bn(P)ot bound narnes are defined in

the usual way. We formally identify processes P up to renaming bound names in P, so

that it is assumed that fn(P) | bn(P): A. This implies the usual conventions about sub-

stitutions to avoid capturing of free names during substitution, 4-conversion, side-

condition concerning freshness of names, etc.

A structural congruence relation : is defined to be the smallest congruence relation

over processes which satisfies the axiom schemes listed below.

1. If. P:oO then P=Q: Processes are identified if they differ only by a change

of bound names.

2. P | (OlR) -:(P lA) lR ; PIQ=AlP; Pl0=P.
3. !P=lPlP.
4. Qx) P:P if. x # fn(P) "' ; (vx) (w) P: (uv) Qx) P ;

(vx) P l@= (vx) (P lOl ir x # fn(Q)."'

Now, we define a reducti.on relation --+ over processes to be the smallest relation satis-

fying the following rules:

PARCoMM
α(紛.Plα kJ〉 .0→ P{b/″}10

|″ |=I JI

STRUCTREST O≡二 P→ P′ P′=α
0→ 0′

l tttris induces the usual axiom

T zNote that the side condition
regarding bound names.

schemes : (vx) 0=0; (vr\(vx)P:(vx)P-

can be viewed as a consequence of our convention of

3 A Sorting System by Name Matching

The introduction of sorting discipline into the z-calculus 110] intends to ensure that
names are used consistently. In this section we present a sorting system based on Mil-
ner's original sorting discipline, the resulting system is quite similar to the typing system
by Liu and Walker [Z].

Let X be a finite set of (swbject) sorts. E* denotes the set of all finite sequences of
elements in X. An element in X* is called an object sort, denoted by (s,,...,S",), or sim-
plely (s) if the number of the sequence is not important. We use u and. u to range over

Nandt € X,suchthat a:s,a:t e f impliess:/. Anobject sorting Q onZis a
fi'nite set of obiect sort assignments either of the form s* : ?,t or s- : w, where s G E and
ue 2*, such that s*:?,t,s*: u e o implies w: u, for * €{+,-}. A sorting on) is a
pait f ;Q of a subject sorting /- and an object sorting J2. J2 is safe in s if s+: ?,t, s-:
u€Q implies ?t:u. If. A issafe in all s in X then J2 iscalled safe. A sorting l;g
is safe if its object sorting J2 is safe.

Definition 3. I A sorting iudgment (by narne matching) on X is an expression of the
form:f ;QI P:O, where l;Q is a sorting, P is a process,andO is the special symbol
standing for well-behavedness of a process.

An object sorting is usually called a sorting [10,6,7]. As usual at most one sort is
assigned to a name in /' and at most one object sort is assigned to each polarized sub-
ject sort, the subject sort with the polarity, in t2. So that f (a) and g (s *) denote the as-
signed subject sort to a and the object sort to s *, respectively. Let dom(1.) and dom (e')
denote the domains of /- and J2, respectively. s e dom(J2) is an abuse notation to mean
that s+ e' dom(Q)or s- e dom(Q). /- and Q are often represented as sequences. f, a:s
denotes the subject sorting f U{a: s}, provided that a G dom(l). We apply the same
notational convention to J2.

Definition 3. 2 S is a sorting systern (by name rnatckrng) consisting of the following infer-
ence rules:

S― NIL
Γ;ρ卜0:0 S―CoMP

S―IN
Γ;α :s,″ :「 ;ρ ,s+:(F)卜 P:()

S―REPL s― REPL争
奇 場 デ 半

The interesting cases are the rules fOr input and output. In order tO be sure that

□

29

the input prefix a (fr). P is well-behaved in a given sorting, we must check that first the

object sort for the subject sort of. a with the positive polarity matches the sort of the

sequence of names read from a; secondly the continuation P is well-behaved in the aug-

mented sorting by the sort assignments fr:T. The case for the output prefix is analo-
gous. The notation /';QtssP: O indicates that the sorting judgment /';Qts P :O is

provable in the system S.

It is easy to take the correspondence between our sorting system and the typing sys-

tem by Liu and Walker [7]. J2 represents a sorting signature consisting of the set X of

sorts and the input, output sortings ob*, ob- : X - P(>'n) such that at most one input and

one output object sorts are assigned to a subject sort though multiple object sorts assign-

ments are allowed in the typing system l7l ; f represents a partial functi on d: N - X

of sort assignments to names. Taking account of these correspondences, the inference

rules are essentially same as the ones in [7]. In fact, we have the following proposition

by induction on proofs.

Proposition 3。 l Lι′
「

;ρ ιι α sθ″″%gα%″ Pα 夕知θaSS.F;ρ 卜sP:()夕 r P σαπ ιι

夕知υιグ わ ροSSaSS ttι ttι く2「 〉 物 滋′ 妙 ′ SyS″%[7]. □

Definition 3.3 (Due to [7] though slight modifications are made.)

1. Let Qr and Qzbe object sortings on X. A hornornorPhism from Qr to Qz is a func-

tion d: X-Xsuch that if s*: (i) €Q, then d(s)":(a(i))e Qr, for * e{+, -}13.
2. Let f, i Q, and /-z ; 9z be sortings and 0 a homomorphism from l2r to i2"2. We

write lriQrZ'fr; Qzif..r:s€ /] implies r: 9(s)e frfor all x and s. We write
fr;QrEfr;Qz iff. lr QtZulriQ, f.or some 0 and friQ, is called a sfecialization of.

fr; Qr.

3. An object sorting J2 is self-consistent if. for every s € X, whenever s+ i (s',...,sn),

s-: (/r,...,t^)e J2 then n--rn and there exists a homomorphism 0 from I to J2 such

that 0 (sJ:0(t),f.orL<i3n. Asortine f ;J2 is self-consistentif Q isself-con-
sistent.

4. A sorting f ; Q is consi,stent if there exists a self consistent sorting fo ; Qo such that

「
;ρ tt F。 ;島 .

Proposition 3.2

1.1/rl;2匡
「

2;C and rl;2卜 sP:()開 形%F2;Q卜 SP:()。
2.4η stt sθタタηg r;ρ たα ωπsた″π′sο ,タタ昭i Cθ %υιttι貌 グΓ;つ たαω%Sた″%′ sο件
″循 厖ι%厖θ%ι霧おα8ル sο″′循

「
。;島 s%滋 ′滋′F;ρ tt F。 ;島 .

Proof: 助 QF a/1. By PrOposition 3.l and Lemrna 8 in[7].
Praげ a/2. It is straightforward from dennition that any safe sorting is a consistent

sortingo Now, suppose r;J2 is a consistent sorting on Σ. Then there is a self― consistent

□

t 'We use a total function rather than a partial function. See [7].

30

sorting f, i Qr such that /' ; Q Ce l, i d2, for some homomorphism 0 from Q to gr. If
there is a sort s inX suchthat s*: (i), s-:(fr.)e Q, for some 7 and il.withi+A (note
that l7l: lill), then there exists a homomorphism 0r from O to et such that eL(i) -
flr(il). If we let fr:1r(fr) and Qz:0,,(Qr), then we have fr;erle,friez. Thus, /-z;
d) a,e fr; !)r. We repeat this process n-I times for some n until there is no s in E
such that s*:(i), s-:(fr)e Qn for any 7 and il withT + il. By construction, fn;Qnis a
safe sorting and f ; Ql f,; !)*

Any safe object sorting J2 induces a consistent partition of Q, see [7] for the definition of
a consistent hartition of. a sorting signature. Conversely, the safe object sorting is der-
ived from a consistent partition. Therefore, Proposition 3.2.2 corresponds to Theorem 14

in [7]. The next corollary is a direct consequence of this proposition.

CorollaryS. 1 Let P be aprocess. P kas a safe sorting onZ iff P kas a consistent
sorting on 2, i.e. l;QFs P:O for a safe sorting l;Q iff r';g Fsp:O for a consis-
tent sorting l'; Q.

Corollary 3.2 If a sorting f ;Q hns a safe specialization, i.e. l;{)l f';d2 for some
safe sorting f' ; {)', then f ;9 Ins a rnost general safe sorting fo; Qo in the sense tlmt
1. l;Q E/i; Qs and fr;Q" is safe;
2. f ;Qaf';Q'for sorne safe sorting f';9'irnplies fr;Qrlf,;d),,

and lo;Qoi.s uniqwe wp to i.sornorphi.smta

Proof : By the assumption, f ; Q is consistent. The construction of a safe sorting from
a consistent sorting in the proof of Proposition 3.2 gives a required most general safe
sorting. The uniqueness is obvious from the construction. I

Proposition 3.3 If f ;J2 Fs P:O and P: Q tken f ;e F, O:O.

Proposition 3.4 If f ;Q ts P:O for a safe sorting l;Q and P-Q th.en l;gFsQ:O.
Proof : By induction on the proof of the reduction P - e. I

In the inference rule Conau of the reduction relation, it is required that the arities of
the input-prefix and the output prefix must be equal. If a process P contains unguarded
prefixes a(fr).Q and aG).R with lfrl + 16l, then P is said to contain a cornrnuni.cation mi,s-

rnatch [Z] or a rwn-time ty\e errorlI2,L6l. P is free from communication misrnatch if
whenever P 3 P'then P' does not contain a communication mismatch. Thus, by Corol-
lary 3. 1 and Corollary L2 in [Z] we can conclude that if a process P has a safe sorting
then P is free from communication mismatch.

IALet Q, and d)z be sortings-on X. An isornorphism lorm !4 to gz is a bijective
homomorphism 0:d)r+J2, such that its inverse 0-r:d2"-9, is also a homomorphism.

□

□

□

4 Typing Systems by Subtyping

In this section we introduce a typing system based on subtyping by Pierce and Sangiorgi

[12], which is a slight variantf extension of the one by Pierce and Sangiorei [12] with the

constant types r (tof) and J- (bottom) are added as the universal type and the inconsistent

type, respectively. Some basic preliminaries are stated as well for later discussions.

Let I <I be the least preorder on the tags {r,w,b} containing b<r and b<w. A

ffie, ranged over by T or S, is defined by the grammar :

T :: : a lrlrl (Tr,...,7)' I po.S
I :: - r lw lb

where a is a Me-uariables; Tandlare constant Mes tof and bottorn, respectively;(Tr,...,

4)' is a tagged tupte ; pa.S is a recursiue tybe. Let T and ?c denote the set of all
(open) types and the set of all closed types, respectively, where a-convergent types are

identified. The identification over types will be justified by the equality over types

defined below. A type is called fi,nite if it contains no recursive types as subterms. The

symbols t and s range over finite types. A type ? is contractiae in a type variable a if.

every free occurrence of. a in ? is within some tagged tuple (Tr,...,Tn\t. Anl/O-tree is

a finitely branching tree whose nodes are labeled with the labels-tags in {r,w,b} , type

variables, or constants T, r (cf. [12]).We can identify an l/O-tree with a partial function

T from the tree domain Ni-the set of all finite sequences of non-zero natural numbers

-to the set of labels [t,a1. [T,,...,Tn]t denotes the tree whose root is labeled with -I and

whose subtrees are T1,...,T,, where .I is a tag. With each type T we associate the I/O

-tree Tree (T);it is the unique tree satisfying the following equations:

Tree(a): ai
Tree(t) -T;
Tree(t) -I;

Tree((Tr,...,Tn)\ : lTree (Tr),...,Tree (7")f' ;

rree (pa r) - {?'(r{pa'r/
a}\ t:,il;,:::tractive in a'

The eqoaltty of tl4es is defined by S : tT iff. Tree (S) - Tree (T\. This equality justifies

the identification of a-convergent types in the sense that S=a T implies S:'?.
Furthermore, we have pq.T=t'T{pa.T/a}. It is easy to see the equality -ris a con'

gruence relation on types. For every type T, Tree (")is a regular tree, a tree with a

finite number of different subtrees. Every tree is completely specified by the language of

its occurrences of the labels, which is a regular language [31. It follows that for given

types S and T the decision problem of the identity of types, S : r ?, is reducible to the

equivalence problem of deterministic finite-state automata, thus is decidable.

To simplify the case analysis in the following proofs we introduce canonical forms

for types. A Me in canonical form ? is defined by the grammar :

T;: : a lT lrl (4....,n)' I pa.(Tr,....,Tn),,

where in the case pa.(Tr,...,7)t, a must occur free in the body (Tr,...,\)'. Hence, the
body of a p in canonical form must immediately start with a tugged tuple. The follow-
ing two results are inspired by the ones on type equivalence for a recursive types of the
typed l,-calculus [1] and can be proved in a similar way.

Lemma 4. 1 The following eqonliti.es hold on Mes with regect to ty4e eqontity.
I. pa.a : L
2. pa.T - T{pa.T/a}
3. A T is contracti,ae in a then T{s/a} : s and r{s'/a}: s'i,rnbties s: s'.
4. pa.T : po. T {T / a}
5。 μα.メ r=μ 7.r{γ /名 γ/β }

Proposition 4. 1 For any bfue T there is a fiQe S in canonical forrn such tlnt ?-,S.8

By this proposition, in the remainder of this paper, unless specified otherwise, a type will
always mean a type in canonical form.

Let A be a sequence of pairs of types S < ?. A subtybing judgrnent is an expres-
sion of the form / F S (7, pronounced as S is a subtype o!. T under the assumption .21.

Deffnition 4. I /. is a subtyping system consisting of the following rulests:

□

AsMP A s≦
r卜 sく r

T°Pス
トS≦ 丁

R3R

REC‐ L

REFス
ト r≦ T

BTMス
ト⊥≦r

BB」堅コ影爵≡手
=≠

ま覇暑重≒子it与場害≦三L

W3W

REC‐R4'S≦μα.r卜 S≦ 71μαo r/α}

□

In the sa.me way as the sorting system, .zlFeS (? indicates the jufuement / F S <? is

1 S In the subtyping system regarding closed types only as in [12], the rule Ref is deriva-
ble by well-founded induction on subtyping judgments. See tf a1. However, it is no more
derivable when open types are concerned..

33

provable in A, We write S ("ru? when Fo S (? and S:"uu? when S (*rT and T ("rrS.

Proposition 4.2 The subfifie relationS,ru is a partial order on T witk the tob elernent

T and the bottom elernent L. X

As a direct consequence of this proposition, S=s2b7｀ impHes S=`To The other

inclusion can be proved as fonows. on the one hand, along the same line as[1],=ι

restricted on types in canonical form can be proved to coincide with the least congruent

relation with respect to the type constructors satisfying the properties Lemma 4.1.2 and

Lemma 4.1.3. On the other hand,=szb Can be proved to be the congruence relation sat…

isfying the sarrle properties in LeFnma 4。 1. Thus, S=ι r imphes s=szbr. so we use

the sttb01==ι to denote the provable identincation instead of==szら .

Proposition 4.3 7た αル議cc ω′ι力厖ι πιι′∧απグルι力物 ∨ sαπ≦め′%gヵ″物S滋%θら
物ι/aJJa"グ%g ι9%α″′グιs(И々

"グ
″グ″0ク 励′″%α′ισ%α′グ′′ιs α%グ σ%グルοみυグο%s ισ%α′′″ιs

筵♂
"ヴ
物g丁 ,⊥ ,α%グ 1物りιπ″″ιtts α):

1。 (Sl,¨ "2)f∧ (■ ,¨ "τ励
ノ=⊥ (%≠ %).

2.(Sl,¨
"易)I∧ (Sl,¨ "3)J=(Sl,¨ "陽)・

Af.

3.(■ ,¨"3)r∧ (■ ,¨ "2)r=(Sl∧ ■ ,¨ "易
∧2)r.

4。 (Sl,¨ "6)W∧ (Tl,¨ "■)W=(SI∨
Tl,¨
"島
∨亀)W.

駐 饂 ,…,動
b∧ G,…,助b={f…

助
bλ

万 虚
'力γ lく な %

動ι%οθ′ο%励θ sθ′{r,w,b}た 滅グ%οグの 」∧ノ=Jグ J=ノ α%グ f∧ノ=b οttθタリたι。□

Definition 4.2 A Ming judgrnent (by subsortind is an expression of the form A F P: ",
where A is a set of Me assignrnents a: T, P is a process, and " is the special symbol

standing for well-behavedness of the process. n

Deinition 4。 3 Tisa勿″ηg syS″2(妙

T¨NIL△
卜0:。

T‐IN
卜△(α)≦ (テ)r△ ,″ :タ トP:o

T‐OuT
卜△ (α)≦ (△(b~l)W△ 卜P:。

Δ卜αくみ〉.P:。

T‐REST

x

Pierce and Sangiorgi [12] have formulated their typing system in the Church style (Z

la Church), where typing information for the input parameters and restricted names are
given explicitly. As there is often a simple relationship between the two styles in the

typed l-calculi [2] there is a simple relationship between the type system in this paper

and the one by Pierce and Sangiorgi llzl. This will be explained below: Let I I be the

function mapping process terms with type ornamentations into the ordinary processes in
this paper by erasing the all type information.

subfiPi.ng) consisting of the following rules:

T-Cotrtrp

△卜α(効.P:。

T‐REPL器

34

Proposition 4.4
1. Let Q be a process with ffie annotations. If At Q:" i,s prouable i.n the Pi,erce and

Sangiorgi.'s Church style ffiing system lLzl, then A,F, l@l : . .

2. Let P be a process. If A Ft P: " then there is a process Q with type annotations
swch tlmt A F Q : . is prouable in tke Pi,erce and Sangiorgt's system and lQl - p.

Proof: 1. By induction on the proof of the judgment AFQ; ".
2. Type annotations can be found from the proof A Fr P:o. The proof is by induc-

tion on the proof A F, P : " . For instance, suppose

卜△(α)≦ (Tl"",7Dr Δ,均 :■,… 場:L卜 P:。
AF- a(h,...,xr).P: "

is the last inference. The annotated process is given as a(x, | 71,..., !6 72 i Tn).P', where P'
is the annotated process corresponding to P obtained by the induction hypothesis. Sup-
pose

A,x:TlP;"
Llr(vx)P: "

is the last inference. The annotated process is given as (v x : T) P', where P' is the an-

notated version of. P. f

5 Relating Sortings and Typings

5。 l From Sortings to Typings
With each sorting judgment」

「
;ρ 卜P:()we will associate a typing iud81llent〔 F〕。ト

P: 。 such that hOpefully we expect r;ρ 卜sP:()i“ o「〕g卜 TP: 。.For this purpose,
given an obieCt SOrting ρ and an envirorlment ρ : Σ―→ T, mapping(free)sOrts to closed

types,for each sOrt s in Σ the corresponding type〔 s〕 6 of s with respect to ρ and ρ is
denned as f。1lows:

〔s〕β tt sβ (s,o);

S絶 詢 全{is.T3.ち χ∪体D∧ T6●■XuJ》 li話∞ ;

唯Ю響琳量蔦軍堆:
In the demition we use the notational convention S3(源 χ)to denOte the sequence S3(4,X),¨

"
Sβ (為 χ),forア =九 ,¨

"場
。

Let「 ;ρ be a sorting then the corresponding typing〔Γ〕β is ddhed by

〔Γ〕β全 {α :〔 s〕βlα :s∈
「
}.

Usually,the envirorlment ρT,ρバs)全 丁for each s∈ Σ,is used to assign types to sorts.
However, allnost results stated in this sectiOn hold fOr any environment ρ. So that〔 s〕ρ

35

and C「〕。 are the abbreviations of〔 s〕 6 and 〔」「
〕6 for any environment ρ,respectively,

when ρ is not very important.Note that〔 s〕 9=ι ⊥ if ρ possesses obieCt assignments

to s ha宙 ng mismatch in rlllrnber with the 1/O parameters.

Lemma 5。 l Lι′ρ ιια望ルοttθθ′Sοタグ′τα%グ ρ bθ α%ιπυグ知%%θ %ム f/S+:(乃 ∈ρ (s― :(み

∈ρ)磁ι%

卜〔s〕 6=s″ b(〔′〕3)f,

力″ Sο%θ IS%磁 ι滋′f≦ r(I≦ w).動郷 ,〔 S〕 6=,(〔 殉3)f.

Proof:Suppose s+:(み ∈ρ(s― :(乃 ∈ρ).By the demition of Sβ (sX),the Safety property
of ρ implies that〔 s〕 6 can be expressed as〔 s〕β=μ s。 (Sρ g(λ (S}))I,for sOme r,where r≦ r(f

≦〔W)。 Since unfolding of the recursive deinition preserves the identity, see Coronary 2.4.6 in

[12],

「―〔s〕 6=s2b(Sβ (あ {S}){〔 s〕 6/s})f.

Letち be the′‐th eleFnent in the sequence tt lfぁ =s then S6(あ ,{s}){〔 s〕 3/s)=〔s〕β=〔ち〕β.

Ifち≠S then S3(ち ,{s}){〔 s〕 3/s}=〔あ〕β。 □

Theorem 5.l r/Γ ;ρ 卜sP:()力″α望ル Sο″η
「
;ρ ″形%〔Γ〕9卜 TP:。 .

Proof: By induction on the proof of Γ ;.2卜 P:()in S.Interesting case is the one when the

last inference is by S― In or S― Out.

Cttι S―In: Suppose

r,α :s,″ :「 ;`2,s+:(乃卜P:()

「
,α :s;g2,s+:(み 卜α(夕つ。P:()

is the last inference by applying S‐ Ino Let ρ′=ρ ∪{s+:(み }.By the induction hypothesis,

〔Γ〕9ち α:〔 s〕 9ダ :〔殉9′ 卜TP:。 .It remains to show that卜 〔s〕 9′ ≦(〔殉g′)r to deduce the
typing jutttment〔 Γ′〕ρ′,α :〔 s〕 g′ 卜Tαけ)。 P:。 .This can be obtained by Lemma 5。 1.The

case by S-Out is similar.

The theorem insists that if a process is well-sorted with respect to a safe sorting in the

systemem employing name matching, then it is well-typed as well in the system employing

structure matching with subtyping.

Example 5. I As an example, let us consider the process P, -- d (a, e>. 0 | a (x, y).y-(r).0 and

the sorting n- {a: s, b: t)i dA:{s*:(s, /),s-: (s,t),t-:(s)}. P, can be proved to be well

-behaved in S under the assumption \; Qr.

fr, x: s, y '. t ;Qrts0: o
/-l; 9 'F0: O f', x: s, y: t;9r19(x)-0: o

f,;Q'rak, b).0; (\ T,; 9rla(r, y).YQ).0:o
\; Q't P,: o

From definition, (s)r, : tts. (s, pt. (s)*)o: r ls. (s, (s)*)o: S, (/)o, - pt. (ps- (s, t)o)* - T - Let

□

36

△1=〔
「

l〕。1={α :S,ι :r}

Corollary5. I Let f ; Qbe aconsistent sorting.
sorting, its exi.stence is gtmranteed by Corollaryt

irnflies (/i)"" F1 P ; o .

Proof : By Proposition 3. 2.I and Theorem 5. 1.

卜S≦ (S,r)W △1卜 0: 。 卜S≦ (S,r)r
卜 rく (s)W△ 1,χ :S,ノ :r卜 0:o
△1,″ :S,ノ :r卜 J〈″〉.0:。

Lr I a(a, b). 0 : " Arl a (x, y). !(x).0 -.
"

ArFPr:"

Theorem 5. 1 can be extended to a consistent sorting in a straightforward way.

Let fo; Qo be the unique most general safe

3.2. Then for a process P, f ; J? F. P:o

□

□

The converse of Theorem 5. 1 is not true in general. The following simple counter example
illustrates the f.act:

Example 5.2 Let us consider the process P2 : d(b).0 under the safe sorting n-{a: s, b:
rl;Q":{s-: (t\, t+:O,r*:O,r-:o} on xr:{s, t, r}. By the transformation, (s)o,: (r)*,
(t)n" - (r)*, (t)n": r,Er)o,: b, and (l)o, -{a: (r)*, D: b}. Then, triviallywehave (f)n"
17 P21 ". But, 4 i Q" Vs Pz because t * r. !

If the transformation defined by a safe object sorting Q from sorts into types satisfies a
certain condition, then the converse of Theorem 5. I holds. To show this fact, we need the
following lemma.

Lemma 5.2 Let f ; Q be a safe sorting on 2.

1.L′′s∈ Σ.Д 9″ α綱ソ T∈ Sπι (〔 s〕ケ),厖ιπ 隊おお α sO〃 ′∈ Σ s%σ力 ι′笏′ r=ι し〕ヶ .
2.乃″α勿′sοπ s∈ Σ′グ 〔s〕夕=(■ ,…,7りr,ωλι″ r≦ ′(I≦w),磁ιπ s∈ あ%(2)α%グ
物ιπ α法お′′∈Σ,力″

“
滋 1≦ グ≦η s%滋 ′勿′

2α.η =バあ〕夕,1≦ グ≦%;
2b.s十:(4,...,場)∈ ρ (s―:(た ,...,為)∈ ρ).

3.乃″αηtt sθ〃s∈ Σ,グ〔s〕
『
=丁 ,磁ι%s¢ 滅″べρ).

□

37

Theorem 5.2 ιι′
「
;ρ ιι α stt sθ滋′″gο%Σ s%σλ′′笏′〔s〕夕くszbO〕夕′″′グιS S=あ /aγ αη

sOtt s′ ∈Σ†6.η%ι%,〔Γ〕タトTP:。 グ%ク′グθS「 ;P:(),ヵ″αの夕貿πa"R
Proof: By induction on the proof〔

「
〕タトTP:。 and by case analysis of the applied rtlles.

For detailed proof, refer to [14].

5.2 FrottL Typings to Sortings

We will defhe a sorting△ @;Al in tems Of a typing△ .To this end,we need some prelimi‐

naries. C)iven an open type T, let Sπ み(7・)be the set obtained frorn the set of all the subtelllls

of:r by replacing each bound type variable appearing in a subterrn by its deinition, formany

S%ι (7・)is demed inductively as fonows:

S%ι (α)全 {α };

S%ι (丁)全 {丁 };

S%ι (⊥)全 {⊥ };

S%ι ((Tl,...,T2)う)全 {(■ ,… ,1し)f)∪ S%b(Tl)∪ ...∪ S%ι (τ);

S%みしα.r)全 {μα.r}∪ {s{μα.T/α }IS∈ S%み (r)}。

Frolm dttition it is easy to see that S%み (r)is lhite for any type r. In fact,S%ι (r)Can have

no more elements than the nuFnber Of distinct subterms of 2

With an open type in canonicalfom T∈ r we associate a tuple〈 Σ(r),T#`。 %sぉ″ηg a/

厖ι sθ′Σ(T)of sorts and the obieCt SOrting r#.The sorts are deiled by

Σ(r)全 {[s]IS∈ S%b(r)}

for a type r,where[r]全 {sl T=ι S}is the cOngruence class of r with respect to the

identity relation =ton T. The obiect SOrting ノ is deined by structural induction on T.

if r=名 。r丁

if r=上

if r=(■ ,¨ "L)f
if r=μ α。(■

"¨
,■)r,

where

if f

if f

[T]一 :(21],¨り[Q])}if f

†6 This condition means that ρ represents the urlique obiect sOrting up to renaming of sorts

such that no distinct sorts represent the same type where the type equality by forgetting the

tage is used as the identity of types.Under this condition,〔

「
〕タトTP:O means P is well‐typed

with respect to〔 Γ〕ケ,where Only structure matching without subtyping is used.

□

αＴ呵
切
札
山

０
■
卿
脚

△
〓
グ

⊥

舟

”

＞
，

‥＜Ｅ
鋼
鋼
鋼

一

　

，

Ｅ

　

，

Ｅ

　

，

Ｅ

，Ｅ上
鴫
鴫
鴫

国
回
回
回

△
〓
　
　
　
△
〓

２
　
　
０

]W}

ｒ

　

ｗ
　
ｂ
．

一一
　

一一
　

〓

{T/α }],¨"[■(T/α }]))if f=r
{r/α }],…,[7L(r/α }])}if f=w
{r/α }],¨"[2{r/α }]), if f=b.

{T/α }],¨"[Z{r/α }])}

Let A be a typing. The corresponding set of subieCt Sorts is deined by

Σ(△)全 ∪{Σ (r)|″ :r∈ △,for some x}.

The associated sorting A° ;ゴ on Σ(△)with△ is deined as follows:

△@全 {″ :[T]|″ :T∈ △};
AI全 ∪ (プ |″ :r∈ △,for sOme κ}.

For notational siinplicity, the square brackets are often onlitted and the sort(11,。 ..,gl)f iS

sometilnes written as I(11,¨ .,7L)using the prenx notationo So that, e.g. the object sort

assi_ent b(■ ,¨り島)+:(■ ,¨"し)is the abbreviation of[(■ ,¨"■)b]+:([■],¨ "[Q])。

Example 5.3 Consider the typing Δ3={ι :(b,b)b}。 The set Of sorts is given by Σ(△3)={b
(b,b),b}.Let s=b(b,b),′ =b.The corresponding sorting is obtained byぷ ={ι :s};止 =
(s+:(′,′),s~:(′,′),′

+:(),′ ~:()}.It is worth while tO note that〔
s〕 zも =(b,b)b;〔′〕z:=b

and〔△9〕 z:=△
3・

Example 5.4 As a more involved example, let us consider the typing

△4= {α :μα。(α ,(α)W)b,ι :μβ。(レα。(α ,β)b)W}.

Let S=μα。(名 (α)W)b;r=μβしα.(名 β)b)W;び =μα.(名 T)b.Then we obtain the sorts by

construction:sb(S,W(S)),W(S),T,W(び),υ,and b(ar).Among them we have s全
S=b(S,W(S))=び =b(び ,r);′ 全w(び)=w(S). Thus,the set of sort is given by Σ(Δ4)={S
′}.The sOrting from△4 iS g市en by△?={α :島 ι:′ };パ七={s+:(s′),s~:(s′), ′

~:(s)}.

Recan that△ 4 iS the resulting typing obtained from the sorting rl;`a in Example 5.l and

the derived sortingバ 9;札 coincides with the original sorting.Thus,「li a=〔 Fl〕 91〔 Fl〕ち1:
△4=M8〕 Zl,where〔 rl〕。1=△ 4・

We hope that for instance△ 卜TP:。 irnplies A° ;AI卜 sP:(). But,Шttbrtunately there
is a simple coШ■ter exarnple.Let us consider the cOntext△ ={α :(丁)W, ι:(丁)r}and the
process iP==αくι〉.0.P is well― typed under the context△ .

(丁)Wく ((丁)つ
Wα :(丁)W,ι :(丁)r卜 0: 。

α:(丁)W,b:(丁)rT α〈ι〉.0:。

Thus,Δ 卜TP:。 .By ddhition,Σ (Δ)={w(丁),r(丁),丁 };A° =(α :w(丁),b:r(丁)};△ご =
{W(T)一 :(T),r(T)+:(丁)).Because丁 ≠ r(丁),△@;AF≠sP:().

PropositiO■ 5.l ιι′r ιιαをっι απグρα%ι%υ′η%%ι %ぁ 厖ι%〔 ISI〕多・=′ 〔ISI〕ξ。,力″αの S

■

■

■

■

ｒ

ｒ

ｒ

ｒ

△
〓２

39

∈ 協b(r)。 □

Lerrllna 5。 3 Let σ be any function inapping type variables α to closed types σ(α)(≡ 7・ απグ

T ιι η ttι.D和 ′′滋 ′πυttη %%′グ ρ:Σ (r)→ r″

p lESI沿 {:° 甥
可dル "%α

/a″ [S]∈ Σ(r).1刀りιη ωθ″zυι 〔[r]〕争・=ι σ(r).
Proof: We w11l show T″ ι(〔 [r]〕多,)(π)=rπι(σ(r))(π)by induction on π∈ N+*and by

case analysis on r.The interesting case arrises when r=μ α。(■ ,… ,2Ъ)f.By demition,

Σ(r)={[r]}∪ ([s{T/α }]IS∈ s%b((■ ,.."2)り };

r#=島 ∪(TI∪
・
.̈∪ Tち {[鯛 /[d}.

where

"¨
,[Z{7α }])}if r=r

,●
●●,[Z{17α }])}if f=W
,●
●・,[1ら {`げα}]), if r〒 b

"¨
,[■{7α}]))

Thus,by LeFFma 5。 l and Proposition 5.1

・
絲 需 織 : 影繊 掛 n瓶 嗣 L

Obviously

レcι (〔 [T]〕多。)(ε)=酔Cι (σ (r))(ε).

Letたπ be a cШent path. If力 ≦ π then

T%ι (〔 [r]〕多.)(ヵπ)=T%ι (σ (r))(ヵπ),

by the induction hypothesis

物 ι(〔 [T]〕九・)(π)=7″ι(σ (■))(π),

for eachグ , 11く グ:≦ π. If力 >π then both the trees are undemed onヵ π.

Theorelm 5。 3

1.「 ;ρ匡〔Γ〕ち,〔F〕 ち,力″αη 乱́ Sο″η F;ρ ο%Σ .

2.「 ;ρ ≠ 〔F〕 9,/a″ sο%θ wル SO'蒻循 F;ρ ο%Σ .

3.Δ =〔△@〕 z・,/a″ η 抄′η △・

Proof: 1.Let θ:Σ →Σ(〔
「
〕。)be the function demed by θ(s)全 [〔s〕 9],for s∈ Σ.

Suppose″ :s∈ r then″ :[〔 s〕 g]∈ 〔Γ〕9by demition.It remains to show that θ is a

40

homomorphisnl from ρ tO〔
「
〕ち。Suppose s★ :(4′…,場)∈ ρ,where★ =+(Or★ =一).By

Lemma 5。 1,〔 s〕 9=`(〔あ〕9,… ,〔為〕g)r,where f≦ r(Or f≦ W).Thus by constrllction,we have

[〔 s〕 9]★ :([〔あ〕],...,[〔 場〕。])∈ 〔
「
〕ち,as required.

2.Consider the safe sOrting島 ={α :′ ,ι :s};J偽 ={′+:0,s+:()}on{s′ }.The inequality
is obvious from the followings:〔

「
。〕。0=(α :r,み :r};〔 F。〕9。 ={α :[r],ι :[r]};〔 F。聰。={[r]十 :

()}.

3. The pr00f is by Lenllna 5.3 since any type in△ is c10sed. □

coronary 5.2

1.J「 ;ρ卜sP:()ヵγα%ル sο″循 Γ;ρ ttι%〔 F〕θ〔Γ〕ち卜sP:()。
2.〔

「
〕ρ=〔〔Γ〕θ〕IF〕 b.

6 Concluding Remarks

In this paper, the sorting system by name matching and the typing system by structure
matching with subtyping were related via the transformations. The introduced sorting (typ-
ing) system is quite closed to the typing system by Liu and Walk er l7l Oy Pierce and Sangiorgi
lI2]), So the results obtained in this paper are applicable to the investigation of the correspon-
dence between them. If we forget the polarities (the tags and subtyping), then the resulting
sorting (typing) system turns out to coincide with a variant of Milner's sorting system [tO] (tfre

typing system by Vasconcelos and Honda [16]). Thus, our results interpret the relationship
between both the systems as well.

The correspondence between Milner's sorting and the typing system [16] is informally
discussed with the illustrative example in [15] and more formally discussed in [16]. The idea
is that a set of basic sorts and sorting defines a regular system of equations; such a system has
a unique solution whose components are represented as regular trees;then derive a typing from
the solution. Conversely, trees in a finite set of regular trees are components of the unique
solution of a single system of equation [3]; from such a system the set of sorts and sorting are
obtained.

The transformation from sortings to typings has a similar flavor to the one from regular
system equations in canonical form to recursive types discussed in [1,14]. To make clear the
coffespondence between the two transformations, we derive a regular system of equations from
an object sorting. Let Q be a safe object sorting on E. For s € X, the flnite type (s) o with
subject sorts taken as type variables is defined by

if s+:(め ,s― :(み ∈ρ for some(み
if s+:(乃 ∈ρ for some(み ,and s― ∝あ%(2)
if s― :(み ∈ρ for some(め ,and s+¢ あ2(ρ)
if s¢ あ%(ρ).

□

０

０

０

Ｔ

ｒ

ｌ

ｌ

！

く

―

ｌ

ｌ

ｔ

△
〓

The system E@) of equations is obtained from Q by

E (JZXs :(s)sls c X).

Proposition 6. 1 ([14]) Let Q be a safe object sorti,ng onZ. For any sort s in2, (s)s:'
((s, E(g)), wkere ((s, E(g))) i.s tke gfle represented by tke type uariable s w.r.t. the systern

of eqontions E(Q). (Note tlnt Tree (s, E(J2))-Tree ((s, E(JZ))\ ttoX rneans tlmt s w.r.t.

E @) represents the same tree as tke Me ((s, E(J2)))). n

Conversely, given a regular system E of. equations in canonical form we define the cor-

responding object sorting A@) with type variables appearing in .E and two constants T, I
taken as subjects sorts.

a(D A{o*: (B)l o-G\o e E)U{a-:(hlo- (F)o e E)
U{a*:G)la-G), e E}u{a-: 1p) | o- (F)* e E) U e,(E),

where

Qr(E) 4 {
{.t. : ()', r- : (r)*} if E contains r

- t 0 otherwise.

Proposition 6.2 ([14]) Let E be a regwlnr system of equatioms i.n canonical forrn and p be a

fiQe uariable, T, or L, tken (Pis(r) : ,E(P, E>) . f,

From typings without subtyping to Milner's sortings, as stated in [16], well'typing induces

well-sorting. But, as illustrated in Section 5.2,in general well-typing doesn't always implies

well-sorting along the given translation. But, we convince that the following conjecture must

hold.

Conjecture 6。 l J/△ 卜TP:。 物θ%厖ι″ αぉお α妙 ″ば △。S%θλ′′笏′△。<△一 滅″バ△。)⊃ ιわ%(△)

απグ△。(χ)≦ ΔO)′″ α″″∈ あ %(△)一 απグバ3;氏 卜sP:().M)″ ′勿 ′△。卜TP:。 .助 θ [ヱ2

□コイ].

Finally, the relations between incremental systems and non-incremental systems are dis-

cussed in both sorting and typing in [14].

References

I f] Amadio, R.M., Cardelli, L., Subtyping recursive types, TOPLAS, 15, No.4, pp.575-631,

1993.

l1l Barendregt, H.P., Lambda calculi with types,in. Handbook of Logi'c in Computer Sci-ence,

Volume 2,Background: Computational Structures, Edts. S. Abramsky, D.M. Gab-bay, and

T.S.E. Maibaum, Oxford Science Publications, 1992.

I g] Courcelle, B., Fundamental properties of infinite trees, TCS,25, pp.95-169, 1983.

t 4] G., Cousineau, M., Nivar., On rational expressions representing infinite rational trees: 8th

MFCS, ZNCS 74,pp.567-580, 1979.

t5] Hindley,R.,The completeness theorem for typing l-terms, TCS,22,pp.L-7,pp.L27-133,

1983.

[6]Gay,SoJ.,A sOrt inference algorithn for the polyadic π‐calculus,in 20th a,1993.

[7]Liu,X.,Walker,D。,A pol卿 Orphic type system for the polyadic π‐calculus,C∝1/R%

“

,962,pp。 103-116,1995。

[8]Milner,R。 ,Ca22%πグ6α″,%α%″ Cθπ協絲θ%り ,Prentice Hall,1989.
[9]Milner,R.,Functions as processes,励 κИ′ '90,LⅥ刃,盤,199o.
[10]Milner,R。,The p01yadic π_calculus:A tutorial,Technical Report ECS‐ LFCS‐91‐ 180,
LFCS,Dept.of C01mput. Sci。 ,Edinburgh Univ.,1991.

[11]ヽ任ilner,R.,ParrOw,J。,Walker,D。,A calculus of mObile prOcesses,Part l and Ⅱ,拗 筵 &
Cο″ .,100,No。 1,pp.1-40,pp.41-47,1992.

[12]B.,Pierce,Do Sanglorgi,Typing and subtyping for rnobile processes,Dep.of C01mputer

Science,University of Edinburgh,1994.

[13]Sangiorgi,D。 ,Expressing mObility in prOcess algebras:缶 st_Order and higher‐ order para‐

di811ls,Ph.D.Thesis,Edinburgh University,1992.

[14]Togashi,A.,On typing systems for the polyadic π‐calculus,2磁 %グ
“
′Rψο″1/96,

COGS,University of Sussex,1996.

[15]Vasconcelos,V.T。 ,HOnda,K。 ,Principal typing‐ schemes in a polyadic π‐calculus,CS 92¨ 4,
Keio University,1992.

[16]Vasconcelos,V.T。 ,HOnda,K.,Principal typing schemes in a polyadic π‐calculus,CON‐
CUR'93,IノⅥCS,715,pp.524-538,1993。

(1996年 9月 4日 受理)

