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The spatial and temporal bifurcations to chaos and dimensionality of strange attractors in
Rayleigh-Benard convection are studied in an extended rectangular container with aspect ratios
15.0 and 1.0. With increasing Rayleigh number, oscillatory states, quasiperiodic states, and chaotic
states are observed where the amplitudes of various modes strongly depend on the spatial position.
The chaotic states just above the onset are characterized by low-dimensional attractors and the
correlation dimension of the attractor is investigated as a function of Rayleigh number.

I. INTRODUCTION

It is generally accepted that the mathematical descrip-
tion of turbulent viscous-fluid flow in a small aspect-ratio
container can essentially be reduced to motion of a
finite-dimensional dynamical system. Thermal convec-
tion in a layer heated from below, the Rayleigh-Benard
convection, provides one of the simplest examples of the
transition to turbulence in fluid systems. Many experi-
ments have been done on the routes to chaos, including
period doubling, intermittency, and quasiperiodicity.!~*
Furthermore, measurements of the dimension of attrac-
tors in chaotic regimes have confirmed the low dimen-
sionality at the onset of chaos in small aspect-ratio sys-
tems.>'% In large aspect-ratio systems, however, it is not
clear whether all phase curves are attracted to a low-
dimensional attractor, since the spatial degrees of free-
dom would be the essential factor. The questions attract-
ing our interest now are how high the dimensions of at-
tractors are, if they exist, and what interplay exists be-
tween spatial and temporal structures. We have tried
some experimental approaches to answering these ques-
tions by measuring the time series of the deviation from
the mean gradient of temperature over the whole fluid
layer.

Gollub et al. have measured the velocity field of the
whole layer by using laser Doppler velocimetry both in a
small aspect-ratio container' and in a large aspect-ratio
system.!! The former experiment was intended to clarify
the spatial distribution of the mean flows for the first
Hopf bifurcation and the subsequent period-doubling bi-
furcations. The latter was used to measure the spatial
structure of the convection rolls in a steady state. Wal-
den et al. observed the development of roll patterns with
increasing Rayleigh number for a large aspect-ratio sys-
tem and saw coexistence of more than three incommensu-
rate frequencies.'? Held and Jeffries examined the chaot-
ic behavior of an electron-hole plasma in Ge in parallel
dc electric and magnetic fields.!”> They asked if the spa-
tially uncorrelated states still corresponded to motion in
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a phase space along a strange attractor. The correlation
integral calculated either from a local signal or from the
total current did not show a region of uniform slope for
the embedding dimensions they used, and their main
question has been left unanswered. In this paper we re-
port measurements of the dimension of attractor which is
reconstructed from a local signal of an extended Benard
convection system when it shows spatially inhomogene-
ous fluid motions.

II. EXPERIMENTAL METHODS AND RESULTS

The fluid is confined in a narrow rectangular cell 150-
mm wide (x direction), 10-mm deep (y direction), and 10-
mm high (z direction), with aspect ratios of I', =15.0 and
I',=1.0. Let the left edge of the bottom plane be the ori-
gin of the xy coordinates. The behavior of the fluid in the
convection cell with I',=1.0 is considerably different
from that in the usual large aspect-ratio systems charac-
terized by T X,I“y >>1, since various instabilities, like
cross-roll, zig-zag, and skewed-varicose instabilities are
suppressed. This makes the situation simpler. Our ex-
tended Rayleigh-Benard convection system is a natural
extension of a small aspect-ratio system and elucidates
the role of spatial degrees of freedom by simplifying the
spatial structure to quasi-one-dimensional geometry. The
temperature of the horizontal boundaries on the top and
bottom are regulated to within 5 mK. The working fluid
is water with Prandtl number P=5.5 at 30°C. The bifur-
cation parameter is Rayleigh number R, and we denote
the critical Rayleigh number by R,=1708. Convection
rolls with axes perpendicular to the xz plane are generat-
ed when R is just above the critical value R.. The tem-
perature gradient averaged over the y direction is mea-
sured by the laser-beam deflection method. The laser
beam is moved along the x direction at z=3 mm. The
position of each semilocal measurement is represented by
the dimensionless parameter L which is a ratio of x to the
depth of the fluid container.

In order to characterize the periodic state of the sys-
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tem, we chose major peaks in the power spectrum which
is normalized by the total power of the time series. The
dependence of the peaks on the distance L is shown for
different R in Figs. 1(a) and 1(b). We have noticed that
there are two types of spatial distribution of spectral
power. In the first type (type A), the power is high near
one side wall and diminishes toward the other side wall,
while the power of the second type (type B) is high near
the center of the layer and low near both side walls.
When one increases R, one oscillating mode of type 4
generally appears, as shown in Fig. 1(a). The tempera-
ture field of the convection rolls is oscillatory in the left
half of the layer, but stationary in right half. At larger R
the spatial bifurcation (transition to different spatial
structure) is accompanied by a temporal bifurcation.
This involves another mode of type A which rises from
the other side of the container. In the overlapping re-
gion, type-B modes rise simultaneously with relatively
small amplitudes and with frequencies corresponding to
linear combinations of two type-4 modes f, (74.4 mHz)
and f] (68.0 mHz) [Fig. 1(b)]. Further increasing R pro-
duces stronger type-B modes. At some particular value
of R, nonperiodic oscillations appear and their spectral
peaks are broadened. At the same time the power spec-
tra also present the broadband noise.

To investigate nonperiodic fluid motion, the correla-
tion dimension of the attractor is calculated for the local-
ly measured time series by the method proposed by
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FIG. 1. Spatial distribution of the spectral powers of the
characteristic frequencies: (a) periodic oscillation; (b) quasi-
periodic oscillation. One of the first type-B modes (frequency
fa=f1—f)), indicated by the dotted line, rises in the center of
the layer.
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Grassberger and Procaccia.!* The correlation dimension
D of an attractor is estimated by the exponent which is
given by the asymptotic behavior r2 of the integral corre-
lation function,

N
Clr,N)=—= 3 H(r—|X,~X,]), (1)
N=ij=
i#j
where H(r) is the Heaviside function and X; is a vector in
d-dimensional phase space obtained from the reconstruct-
ed time series by using delay time 7. In practice, the
correlation integral was evaluated by a random sampling
of reference points. The averaged number of points in a
ball with radius r for the reference points was calculated
to evaluate Eq. (1).

Above the onset of chaos, the estimated correlation di-
mension becomes nearly constant when d is over 10. But
the minimum embedding dimension d. which is neces-
sary to obtain the dimension of the attractor depends on
the delay time. A poor choice of the delay time T breaks
the criterior for which an m-dimensional attractor is em-
bedded to a (2m + 1)-dimensional phase space. If T is
much smaller than the value T; corresponding to the first
zero in the autocorrelation function or the value corre-
sponding to the first minimum in the mutual information
function,!® d, is quite large. When we employed T=1.22
sec, which is small in comparison with T;, d. was about
40 (T; is 3.58 sec for the corresponding time series).
When T was 3.66 sec, d. was about 10. We consider that
the essential factor determining the properties of embed-
ding of an attractor may be “the embedding time”'®
which is the product of the embedding dimension and the
delay time.!’

It is practical to plot the derivative of the correlation
integral with respect to log,r as the function of log,r in
order to find the detailed structure of the attractor. Fig-
ures 2(a) and 2(b) demonstrate the slopes of the correla-
tion integral versus log,r for two different spatial points
with various embedding dimensions. The slope in Fig. 2
was determimr:d by using the least-square method for the
subinterval (log,r —0.4,log,r +0.4) of the horizontal axis
in the log-log plot of C(r). C(r) was calculated by using
1000 data points and 1000 reference points. In Fig. 2(a)
there are two plateaus with a width of a factor of 2.
When 30000 data points and 3000 reference points are
used for the computation of C(r), the plateau obtained
from the smaller length scale becomes wider to a factor of
3.2 and the width of another plateau barely changes from
the width of the plateau obtained by using 1000 data
points. We expect that the plateau of the smaller length
scale is made wider than a factor of 3.2 by using a much
higher number of data points. The width of the plateau
of Fig. 2(b) also becomes wider with an increasing num-
ber of data points.

Although we may not say that the plateau of the larg-
est length scale implies scaling behavior since it is only a
factor of 2 wide, its dependence on the spatial parameter
L gives us some information on the structure of fluid
motion. It should be noted that two plateaus appeared in
Fig. 2(a) and only one plateau appeared in Fig. 2(b), al-
though the same parameters were utilized to evaluate
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FIG. 2. Curves of the slope of the correlation integral C(r)
as a function of log,r for different embedding dimensions
d=35,10,20 at R/R.=34.0. The values of the plateaus are
shown by the dotted lines: (a) for measuring point L=2.0, the
values of the plateaus are 1.8 and 2.7; (b) for L=7.0, only one
plateau appeared in the curves. The value of the plateau is 3.6.

C(r). This difference may have originated from the spa-
tially nonuniform oscillation in the fluid layer. Figure 3
summarizes the value of the plateaus in Fig. 2. Near the
side walls two plateaus appeared, and in the central part
of the layer only one plateau appeared. Inhomogeneity of
fluid motion can also be verified from the measurements
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FIG. 3. The values of the plateaus vs L at R /R, =34.0.
When multiple plateaus are observed in Fig. 2, the plateau of
smaller length scale is indicated by the symbol @ and another
plateau is indicated by the symbol + . The plateau of the larger
length scale does not correspond to the dimension of the attrac-
tor.
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of the spatial distribution of the spectral power.

As R is increased continuously from the onset value of
chaos, the degree of chaos develops. Figure 4 shows a
nonperiodic time series of the temperature gradient at the
measuring point L=7.0 from R /R, =34.7 to 46.2. In
developed chaotic regimes, the correlation dimensions be-
come spatially uniform and no attractor having two
characteristic length scales were found. Figures 5(a) and
5(b) show two typical examples of the dimensional values
measured in the whole layer for R /R, =46.2 and 50.4,
respectively. Each data set contains 30000 points. The
delay time is 7=2.0 sec and the sampling time is 7=0.5
sec. The deviation of the estimated correlation dimen-
sions from the value of dimensions averaged over the
whole layer is smaller than unity in all cases. In order to
test the temporal steadiness of the correlation exponent, a
long time series containing 10° points was measured at
the measuring point L=7.0 for R /R, =52.2. The time
series was divided into five data subsets each containing
20000 points. We investigated the fluctuation of the
correlation exponent for these five data subsets. The
averaged dimensional value of five trials is 6.5, and the
fluctuation from the averaged value is about 0.6. There-
fore, we consider that the deviation of the estimated di-
mensions in Fig. 5 has mainly originated from the statisti-
cal error caused by the finiteness of data sets. However,
if the attractors would evolve on much longer time scales
than that of our measurements, the estimated dimensions
might be much larger and the steadiness of fluid motion
may not be verified.

In computation of the correlation dimensions for

0 TIME(sec) 800

FIG. 4. The change of time series of the temperature gra-
dients at L=7.0 with increasing R. The Rayleigh numbers of
time series from bottom to top in Fig. 4 are R /R, =34.7, 37.8,
41.8, and 46.2. The amplitude of signals were normalized.
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FIG. 5. The correlation exponents vs the distance L for (a)
R/R.=46.2and (b) R /R, =504.

developed chaotic attractors where R /R, is greater than
53, a spurious plateau appeared in the correlation in-
tegral as shown in Fig. 6(a). This plateau may lead to
inaccurate and spurious estimates of dimension. The ap-
pearance of a spurious plateau may be caused by the
effect of autocorrelation of chaotic signal in a limited
data set. Therefore, we used a modificated version of Eq.
(1) proposed by Thieler.!® The slightly modificated corre-
lation integral is
2 N N-n
Cr,NW)=—7 3% 3 Hr—|X;,,—X;|), (2)
N n=Wi=I

where W =1 gives the standard formula defined by Eq.
(1). Equation (2) was evaluated by a random sampling of
150 reference points and by 30000 data points. For the
same data set in Fig. 6(a) the correlation integrals corre-
sponding to various W were computed. The effect of a
spurious plateau is negligible at over W=35 in our data.
Figure 6(b) shows a log-log plot of the correlation in-
tegral for W=10 as an example. Even if a clear effect of
the spurious plateau like Fig. 6(a) is not found in the
correlation integral, the estimated dimension obtained
from Eq. (1) is slightly corrected by Eq. (2) within a few
percent when the dimension of the attractor is about 5.
Furthermore, high-dimensional attractors whose dimen-
sion is about 9 are obtained from Eq. (2) at R /R, =54.6.
But one may not be justified in claiming the validity of
the result since the width of the scaling region is only a
factor of 2 (Fig. 7).

III. DISCUSSION

We have presented data showing the evolution of the
temporal and spatial structure of chaos in an extended
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FIG. 6. (a) Log-log plot of the standard Grassberger-
Procaccia correlation integral for embedding dimensions
d=4_8,12,...,36. (b) Log-log plot of the modificated correla-
tion integral defined by Eq. (2) for the same data set of Fig. 6(a)
with W=10.

Rayleigh-Benard convection system with an aspect ratio
of 15.0. The first and subsequent Hopf instabilities occur
near the side wall of the container. The distribution of
spectral powers is apparently inhomogeneous in the fluid
layer in periodic and quasiperiodic regimes. Inhomo-
geneity of fluid motion also exists just above the onset of
chaos, and its structure is reflected in the evaluated corre-
lation integrals. On the other hand, the estimated corre-
lation dimensions in each position of the fluid layer are
spatially uniform in developed chaotic regimes.
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FIG. 7. The development of the correlation dimension as a
function of R /R, at L=17.0.
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The inhomogeneous distribution of the spectral powers
may give rise to attractors whose structure has more than
one length scale. In this case an interesting problem
occurs in estimating the dimension of the attractor. If
one can not measure all the characteristic length scales
due to the instrumental noise, the true dimension of the
attractor may not be obtained from its correlation in-
tegral. The same problem is met in a chaotic system
forced by a chaotic modulation with small amplitude.
Let us consider the Henon system weakly modulated by
the logistic system with amplitude € as an example. We
have carried out numerical simulations of this system
with additional random noise. The correlation integral at
some chaotic state in such a system has two characteris-
tic slopes in the log-log plot. Denote the dimensions of
the Henon and logistic attractor by D; and D,, respec-
tively, when both systems are independent of each other.
For small €, one of the slopes for the larger length scale is
equal to D, and another slope for the smaller length scale
is roughly equal to D, +D,. The critical length for the
crossover is of order €. In the length scale below € the
system seems to have a product structure of both sys-
tems. However, one can measure the product structure

- of the forced system only if the additional noise level is
sufficiently small in comparison with the amplitude e.
When the noise level is also of the order €, the system
looks like the Henon system without modulation at the
length scale above the noise level. The smallest length
scale one can measure determines the “effective dimen-
sion,” which is calculated for the length scale just above
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the noise level.

The two-plateau structure (the structure having two
slopes in the log-log plot of the correlation integral) is
also expected to appear in a diffusively coupled oscillator
system when the diffusion constant is small. For the ex-
tended Rayleigh-Benard convection system each oscilla-
tor of the coupled system may correspond to the spatially
localized mode, if it exists, in the fluid layer. From these
considerations it is tempting to propose that the two-
plateau structure, such as Fig. 2(a), is caused by the spa-
tially localized modes. However, we may not conclude at
the present time that the two-plateau structure is caused
by spatial localization of modes for the following two
reasons. First, the width of the plateau defined by the
larger length scale in Fig. 2(a) is not wide enough.
Second, the inhomogeneous distribution of the spectral
powers does not always mean the existence of indepen-
dent physical subsystems. Further study is required to
identify the spatial localization of modes in chaotic state.
Furthermore, experimental studies for more extended
convection systems may help us to understand the spa-
tiotemporal structure of spatially distributed systems.
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