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Within a unitary 7NN theory a set of coupled integral equations defined in the NN& NA & 7NN
subspace has been derived for examining the extent to which the NN and 7d elastic scattering
data can be both described by a class of meson-exchange #NN models. The considered models are
constructued by using a previously developed subtraction procedure to extend the Paris, Bonn,
Argonne-V14, and Reid NN potentials to include the coupling to the 7NN production channel.
The pion production through the A excitation is described by a WN<«>A vertex and a Vyn..na tran-
sition potential, while the production through nonresonant 7N interactions is described by a tran-
sition operator F,yn..nn. It is found that none of the constructed models can accurately repro-
duce all NN and wd elastic scattering data, in particularly the data of polarization observables.
Our results indicate that either the conventional phenomenological parametrizations of baryon-
baryon interaction at short distances are not valid in the intermediate energy region, or some
genuine quark dynamics has already been revealed in the 7NN data.

I. INTRODUCTION

The starting point of conventional nuclear theory is a
nucleon-nucleon (NN) potential which accurately de-
scribes the NN elastic scattering below the pion produc-
tion threshold. An equally well-defined theory which
can also describe nuclear reactions induced by inter-
mediate energy probes must start with a 7NN model
Hamiltonian which can describe the following elementa-
ry processes (called the 7NN processes):

™™ —7N (E,;, <300 MeV) , (1.1a)
NN—NN (E,, <1000 MeV) , (1.1b)
—NN7 , (1.1¢c)
md—md (Ej,;, <300 MeV) , (1.1d)
—7NN , (1.1e)
—NN . (1.1f)

In recent years there have been many attempts'~!!' to
develop such a 7NN theory. Each formulation of the
problem has its own sophistication in handling the com-
plications due to the presence of a three-body 7NN reac-
tion channel, and in defining the basic dynamics. But a
realistic way of constructing a 7NN model according to
any one of the existing formulations should proceed as
follows. First, it is necessary to carefully examine the
extent to which all of the 7NN processes listed above
can be described by the well-studied meson-exchange
mechanisms. The simplest procedure to carry out this
study is to construct the 7NN theory by extending the
conventional meson-exchange model of nuclear force to

36

include the delta (A) and pion degrees of freedom. If
this approach fails to bring complete success, one then
takes the next step to consider possible genuine quark
dynamics. For example, the dibaryonic excitation of a
six-quark system, formulated in Ref. 9, as due to a
D<BB vertex interaction, could be indispensable in un-
derstanding various strong energy dependencies of NN
and 7d cross sections.

From earlier coupled-channel NN calculations,
there are some indications that the meson-exchange
model cannot provide a detailed description of all of the
mNN processes. Specifically, the calculations of Ref. 13
had shown difficulties in describing various NN polariza-
tion observables, although a reasonably good fit to the
Arndt phase shifts!> had been obtained. However, these
earlier calculations do not account for all of the pionic
mechanisms within a unitary formulation of the 7NN
problem. They neglect the effects due to the coupling to
the md channel and the nonresonant 7N interactions.
Furthermore, the model dependence of the results has
not been systematically studied. The question concern-
ing the validity of the meson-exchange model in describ-
ing all 7NN processes is therefore not fully answered
with satisfaction. In this paper we report the progress
we have made in trying to establish a quantitative
answer to this important question. This is, of course,
the basis for taking any step to explore the quark physics
contained in the very rich experimental information on
7NN reactions.

To have a proper assessment of this work, it is neces-
sary to clearly define the scope of the present investiga-
tion. We start with the 7NN formulation of Ref. 9,
neglecting the dibaryonic excitation part of the proposed
model Hamiltonian. In handling the crucial 7NN pro-
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duction channel, we focus our attention on investigating
the well-established one-pion-exchange model of the pion
production mechanism. Accordingly, we neglect the ex-
citation of the AA state since, via A— 7N decay, it can
lead to intermediate states containing 27 or wA com-
ponents which are known!’ to be unimportant in
describing NN scattering below 1 GeV. With these
simplifications, the 7NN Hamiltonian takes the follow-
ing form:

H=Hy+H,, , (1.2a)

H, =H\+H;, (1.2b)

where

2
Hi= 3 [hnald)+han)]

i=1

+3 3 [Vnnonn (67 + Va6 + Vann (601
ij

(1.2¢)

2
Hy=3 v.n()+3 3 [Fonn NG +Frn,onn (6,501
i=1 it

(1.2d)

In Fig. 1, we illustrate each mechanism of Eq. (1.2). H,
is the free energy operator. Vyy nn is @ NN two-body
potential. The A excitation and its associated pion pro-
duction are described by a transition interaction
VunonNa and a vertex interaction 4 .n.,a. This is illus-
trated in Fig. 2(a) for a one-pion-exchange model of
VNnonNa- Note that the vertex interaction h,n.,a gen-
erates a one-pion exchange NA<«>AN interaction which
is known to be an important ingredient in describing 7d
scattering. The NA<«>NA interaction induced by a
A—mA vertex contains a wNA intermediate state and
hence is also neglected, consistent with the neglect of the
AA contribution.

The term H; [Eq. (1.2d)] describes the effects due to
nonresonant 7N interactions. v,y is a two-body 7N po-
tential and Fyno,nn IS @ transition operator. We will
consider a one-pion-exchange model of F yn.nN, s il-
lustrated in Fig. 2(b). The reasons for using this ap-
proach instead of explicitly including a #N<>N’ vertex
to account for the 7N nonresonant effects have been dis-
cussed in Ref. 9. Basically, it originates from the recog-
nition of the well-known fact that a theory with a
mN<N' vertex intrinsically contains a ‘“‘many-body”
problem in defining the physical nucleon, and hence the
resulting unitary formulation of the #NN scattering pro-
cesses listed in Eq. (1.1) is much more complicated than
the straightforward scattering theory developed in Ref.
9. We do not claim that our formulation is better than
others. It is just a different way of treating the pionic
effects in developing a tractable unitary #NN model
which can be used directly in many-nucleon calculations.

Starting from the model Hamiltonian defined by Eq.
(1.2), it is straightforward to derive from the general for-
mulation of Ref. 9 a set of coupled integral equations for
the study of NN and wd elastic scattering. In this work
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FIG. 1. Graphical representation of the model Hamiltonian
Eq. (1.2).

we make a simplification that the nonresonant interac-
tion H) is treated perturbatively. This approximation,
which greatly reduces the numerical complexities in-
volved in the problem, is justified in the A-excitation en-
ergy region in which extensive experimental data are
available for a careful test of the #NN theory. In Sec. II
we will explicitly present the resulting scattering equa-
tions and specify the dynamical input to our calcula-
tions.

In Sec. III we discuss our numerical strategy in calcu-
lating the NN and wd elastic scattering amplitudes. It
will be seen that the full calculation can be decomposed
into two parts. The first part is to solve a Faddeev-Alt-
Grass-Sandhas (AGS) equation for generating the multi-
ple scattering part of the 7d amplitude and a NA—NA
amplitude which is needed in constructing one of the
four driving terms of a two-body Lippmann-Schwinger
equation. The solution of the Lippmann-Schwinger
equation will then be used to generate the NN elastic
scattering amplitude and a new NA«<NA transition am-
plitude, which now contains the NN scattering informa-
tion, to calculate the effect of pion absorption in md
scattering.

m
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fr S

/ /T
N £
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(a) (b)

FIG. 2. Graphical representations of the one-pion-exchange
mechanisms of the transition operators ¥'xn,na and F N, NN-
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In the first part of Sec. IV, we present our NN results.
We will analyze in detail the subtraction procedure uti-
lized in defining Vnynnn of Eq. (1.2). It will be clear
that the main model dependences of our 7NN study are
in the parametrizations of the transition interactions
Vunona and FoynonN, and in the choice of the starting
low energy potential. We then explore whether the fit to
NN data can be achieved by making use of these free-
doms of the model. The NN potentials used in this
search are the Paris,'® Bonn (1975),'” Argonne V14,'3
and Reid'® potentials.

The second part of Sec. IV presents our md results.
We discuss the pion absorption effect in 7rd scattering,
and its close relationship with the corresponding NN
prediction in a unitary approach. We also compare our
results with data in order to further establish the validity
of the meson-exchange 7NN model.

Section V is devoted to discussing possible sources of
the problems encountered in our study and the necessary
further improvements of the model.

II. THE NN AND 7d SCATTERING EQUATIONS

The derivation of NN and wd scattering equations
from the model Hamiltonian Eq. (1.2) can be carried out
straightforwardly following the general formulation in
Ref. 9. To simplify the calculation, the nonresonant in-
teraction H is treated in perturbation. Then the equa-
tion for calculating the NN amplitude can be cast into a
one-channel Lippmann-Schwinger form,

Txn, NN (E) =V nn(E)
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where
Vanonn(E)=Vnn, NN+ U(h}])\I,NN(E)
+ UK NNE)+URA NN (E) (2.2)
with
Pya
U%}I)\I,NN(E) =V NN,NA m VNA,NN ’ (2.3a)
(2) Pra
UNN, NN (E)=VNN,Na E_H,—3,(E) Xna,Na(E)
Pya
X m V'NANN (2.3b)
2 P
U(;) E)=F NN
NN, NN (E) NN, 7NN i§1 E—Ho—vn(i)tie
XF#NN,NN . (2.3¢)

Here Pyn, Pna, and PN are, respectively, the projec-
tion operators for the NN, NA, and 7NN intermediate
states. The A excitation is contained in U} nn and

Uk nn- The A self-energy is defined by

PerN

_ 2.4
E—H0+i€ ( )

2
ZA(E)= 2 hA,,,-N(l.)

i=1

han,ali) .

The transition potential Vyn..Na IS parametrized as a
static one-pion exchange with a dipole form factor
(A2—pu?)/(q*+ A2) at each meson-baryon-baryon vertex.
Its form has been given explicitly in Ref. 23. The opera-
tor Xna na in Eq. (2.3b) describes the coupling to the wd
channel. It will be defined later.

To evaluate U QIL,NN [Eq. (2.3¢c)] we assume that the

_ Pyn transition operator F,yn.onNN can be parametrized ac-
+ VNN NN (B )_———E _Hotie Tyn,NN(E) cording to the static one-pion exchange followed by a
0 7N two-body interaction v,y of Eq. (1.2d) [Fig. 2(b)].
(2.1 We then have (suppressing isospin indices)
|
1 [r] 2 1 1
URK, NN (E)= L <NN 01-q———F un(q2g (E, ))F en (@) —— 01+ NN), 2.5)
NN, (277_)3 © E] i 2 ,LLZ NN{q NN{q q,2+#2 iq
T

where q is the momentum of the exchanged pion, u is Fonen (@)= Bi—u? o

the pion mass, f2=41 (0.08) is the usual coupling con- NN Q@+8 )

stant, and

(E,)=v.n(j) P v (i)
g 71— TI‘NJ E—HO‘—Uﬂ-N(j)_i'ie TrN.]
=t[E —Ex(p)]—v.n), i) . (2.6)
Here we have defined a N scattering operator,
P,,.N
t(w)=vﬂN+U’ﬂ'N N - (2.7)

U
a)—HO—UTrN+l€

The 7NN form factor is taken to be the usual dipole
form,

The NN—NN interaction Vyynn in Eq. (2.2) is
defined by the subtraction procedure developed in Ref.
13. For a given choice of the starting low-energy NN
potential V), it is defined by

3 .
Vanonn=Vo— 3 UNN~NN(E;) .

i=1

(2.9)

The subtraction energy E is chosen such that the low
energy NN phase shifts and various NN cross sections
in the intermediate energy region can be best reproduced
when Eq. (2.1) is used in the calculation. Qualitatively,
the subtraction procedure is to remove the effects due to
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the excitations of intermediate NA and 7NN states,
which are contained in the phenomenological part of the
starting low energy NN potential V), so that there is no
double counting.

The effect of the wd channel on NN scattering is con-

|
J

XnaNalE)=ZnaNalE)+Zna Na(E)GNa(E)X Na Na(E)

Xna,md(E)=ZNa,7d(E)+Znp,7d(E)G 7a(E)X 14 7a(E)+Zna Na(E)GNA(E) X Np ma(E)

X 4 NA(E)=Z ;g NAlE)+Z 1g NA(E)GNa(E)X na,NA(E)

Xﬂ’d,‘le(E):Zﬂ'd,NA(E)GNA(E)XNA,ﬂ'd(E) )

where
z (E)—<NA B (NN 2 AN>
Na, NalE)= &N B T e TN
is the one-pion-exchange term and
PTTNN

ZNA,‘n'd(E): <NA

7Td> ,

h [ i
A, 7N E_H0+i6gNN,d

(2.12a)
z PTTNN
»a,Na(E)=(md 84NN g _+ll—€th,A NA
—H,
(2.12b)

is the one-nucleon-exchange term. g4 Ny is the form fac-
tor in the separable representation of the NN potential
in the presence of a spectator pion. The propagators in
Eq. (2.10) are

__ Pna
T E—Hy—3,E)’

1
T E—Hy—S4(E)”’

GNA(E) (2133)

G a(E) (2.13b)

1
E—H0+i6

1

TNA,NA(E) = VNA,NN

T.-S. H. LEE AND A. MATSUYAMA
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T E_H,tie o )E-H0+ie
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tained in the amplitude Xy, na Of Eq. (2.3b). Assuming
that the NN interaction in the presence of a spectator
pion can be taken as a separable form, Xys na can be
obtained by solving the following coupled Faddeev-AGS
equation in the subspace NA® 7d:

+ZNa,7d(E)G 7g(E)X g Na(E) (2.10a)
(2.10b)
(2.10c)
(2.10d)
(2.1

where Z4(E) is given in Eq. (2.4) and
Sd(E)=<7rd g4 NN—P—”N—"i——gNNd de> . (2.14)

U E —Hg+ie ’

In the same approximation, the 7d scattering ampli-
tude can be cast into the following form:

abs

abs (2.15)

TograE)=X 4 a(E)+ T (E)+THR G(E) .

The first term is the multiple scattering amplitude due to
the 7N<«>A mechanism. It is the solution of Eq. (2.10d).
The pion absorption effect is calculated from

T3 ra =X ra Na(E)Gna(E)Ta Na(E)

XGNa(E) X Na,md(E) (2.16a)

with

1

VNN - (2.16b)
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The third term on the right-hand side of Eq. (2.15) con-
tains the effect due to the nonresonant 7N interaction,

¥§ﬁd<E)=< k| S tonlE —Ex(p)]

i=1

(+)
Xﬂd,E> )

(2.17)

where IX(i) ) is the md scattering wave function gen-
erated from the solution of the Faddeev-AGS Eq. (2.10).
t,N is the nonresonant 7N ¢ matrix defined by Eq. (2.7)
and is calculated in the presence of a spectator nucleon.

III. NUMERICAL PROCEDURES

All of the numerical calculations are carried out in the
partial-wave representations of the NN, NA, and m-“d”
channels, where d denotes an eigenstate of the NN sub-

|

Xop(p:p0, E)=Zop(p,po, E)+ 3, f p'*dp'Z oy (p,p',E)G,(p",E)X ,4(p',po,E) ,

y=NA,7nd

with a,f=NA,7d. p, is the #d on-shell momentum
E=(mi+p3)'*+u*+p3)'"?.

Note that in solving Eq. (3.1) the nonresonant 7N in-
teraction is not included. Its effect is included in U
[Eq. (2.3¢)] for NN scattering and Thy,4 [Eq. (2.17)] for
md scattering.

Because of the logarithmic singularities of the driving
term Z,z, Eq. (3.1) is solved by using the standard
method of contour rotation.?? The procedure is to use
the property that all of the singularities of Eq. (3.1) are
in the upper-half of the complex p plane and hence we
can write the integration of Eq. (3.1) as an integration
over a complex axis

=pexp(—if) . ‘

V&p',p, E)Tf 1(p,po, E)
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system in the 7NN channel. For a given total angular
momentum J and parity P, the momentum-space matrix
elements of all 7NN scattering equations given above
are reduced to a set of coupled one-dimensional integral
equations. To solve these equations, we need to carry
out partial-wave decompositions of their driving terms.
This task is straightforward but tedious, as can be seen
in Ref. 20 for the one-particle-exchange driving terms,
and many existing publications?! for baryon-baryon in-
teractions. We omit this part of the presentation and
concentrate on the methods of solving scattering equa-
tions. For a concise presentation, all of the orbital-spin-
isospin quantum numbers needed to specify the resulting
one-dimensional integral equations will be suppressed.
Only the channel labels NN, NA, and 7d will be kept.
The first step of the calculation is to solve the
Faddeev-AGS equations defined by Eq. (2.10). In the
partial-wave representation it can be written as

For 6>0 and p >0, p. is in the lower half of the com-
plex momentum plane and hence the driving terms Z’s
defined on the p. axis do not have singularities. By
choosing appropriate mesh points for the integration
over p., Eq. (3.1) can be cast into a finite complex matrix
equation and can be solved easily to obtain the matrix
element X 4 4(po,po,E) for calculating the multiple
scattering part of the md scattering amplitude in Eq.
(2.15), the half-off-shell matrix elements X .4 na(Po,Pc, E)
and Xya »q(p,po,E) for calculating the pion absorption
effect Eq. (2.16) in md scattering, and the fully-off-shell
matrix element XNA Na(pe,pl,E) for evaluating the NN
driving term U{\ nn of Eq. (2.3b). We now move to
discuss these two calculations.

In the partial-wave representation the Lippmann-
Schwinger Eq. (2.1) can be written as

pldp , (3.2)

( ,po,E)"'sz

TF(p',po,E)=

0 E—-2m*+p®)'%+ie

where a denotes the usual NN eigenchannel quantum numbers JST and ! is the relative orbital angular momentum.

The drlvmg term V §

(i)

3
VNN (PP E) =V nn (P Po) + S UNN NN (PP E)

i=1

+ is the partial-wave projection of the following momentum-space matrix elements:

(3.3)

In terms of the chosen integration variable p on the real axis and p. on the complex axis, the A excitation parts of the

effective NN potential can be written explicitly as
UN NN NN (P, Po E

U NN (PP, E

f dpVNn,Na(P, P)GNA (P, E)VNa, NN(Ps PO, E)

)= fdpcdp;VNN,NA(p’7P;)GNA(pé’E)XNA,NA(Pé’Pc’E)GNA(pwE)VNA,NN(pc’pO)-

(3.4a)

(3.4b)

We follow Ref. 7 to calculate the matrix element of the NA propagator in the nonrelativistic baryon approximation
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1

, 3.5)
E—m—mpy—pi/2una—3sE,pa)

GA(E,pp)=

where m, is the A bare mass and unya=mm,/(m +m,). The A self-energy evaluated in the presence of a spectator
nucleon is

2.2
SuEpy= [ [h(q)| q"dq

E—m —pi/2m —pi/2[m +E_ (q¢)]—E.(¢)—Ex(q)+i€e

(3.6)

The form factor 4 (q) and the bare mass m, of the A are determined by fitting the 7N P;; phase shifts. In our fit we
have m, =1280 MeV and
A )

Ai+q®

h(g)=0.98——»t 4

4q (3.7)
V2m +u) p

with A,=358 MeV/c. We have also tried other parametrizations of 4 (q). But we find that the 7NN results are not
very sensitive to this change, as far as m, and the parameters of /4 (g) are fixed by the same fit to the P;; phase shift.
All results presented in this paper are based on Eq. (3.7).

The matrix element of the nonresonant interaction defined in Eq. (2.5) in the 7 =1 NN channel can be written ex-
plicitly as

2
1
(q"UZ)FvNN(qIZ) S 2
q2+,u2

f

Uk (P E)= [ dk p

X (T (q',q,0)+8T3(q',q,0)]1+TH(q",q,0)q'":q

+1[8T%(q",9,0)—TH(q",q,0))(0-q')(a,-q)} 7(q:03)F (g%, (3.8)

q* +u
where o=E —EN(k), q=p—k, and q'=p’—k. T$;,; is the 7N amplitude in the channel of isospin I and total angu-
lar momentum J, with a=S and P denoting the / =0 and 1 7N partial wave, respectively. The coefficient of each
term in Eq. (3.8) is obtained from calculating the matrix element of the isospin factor in the considered T =1 NN
channel.

Note that only the 7N interaction in the Sy;, S3;, Py, and P3; channels are included in Eq. (3.8). The 7N P,
channel is dropped here since the contribution from its nucleon pole term is a two-pion exchange interaction which
can be generated from the one-pion-exchange part of the ¥'yn nn in solving the scattering Eq. (3.2). Including the P,
channel in calculating U%:;’&NN obviously will cause a double counting problem. This treatment of P,; could be inac-
curate in the energy near the pion production threshold. But it is not an important issue in the present study, since
our focus is on the A excitation region. We use the 7N amplitudes of Ref. 24 in our calculation of Eq. (3.8).

Equation (3.2) can be solved by the standard matrix method,?' since the 7NN singularities have been integrated out
and the driving term ¥ § is finite on the real momentum axis. Once the NN amplitude is obtained, we can then cal-
culate the pion absorption effect on 7d scattering according to Eq. (2.16),

T3 na(Pospo, E)= fPczchPJZdPC'de,NA(PO,PcyE)GNA(Pc,E)TNA,NA(PC’P&E)GNA(PJ’E)XNA,n—d(Pc'Po,E) ,  (3.9a)

where

1

S E— 4 , ’
E —2Ex(p)+ie NN, NA(Psp¢)

TnaNa(pespl, E)= fPZdP VnanN(Pe,p)

Vna,NN(PesP) T (p.p" E) Van,Nalp'spe)
E —2En(p)tie NONNPPL B E g (ptie

+ f pidp p'*dp’ (3.9b)
Here Ey is the nucleon energy and Ty NN is the NN amplitude calculated from the partial-wave solution T/ of Eq.
(3.2). Again, in order to evaluate Eq. (3.9a), we must evaluate the NA— NA matrix element on the complex mesh
points p,.

The last step is to add the effect of 7N nonresonant interaction to the #d amplitude, according to Eq. (2.17). We
use the standard on-shell approximation for the 7d wave function in each partial wave,

1
X(,,ﬁ_)g(p)=)((,,§,g(p)—>?5(p —po)SIE (3.10)
0

where S 4 is the S matrix calculated from the Faddeev-AGS solution [Eq. (3.1)]. We then have

Tfr;ldl,zfrd(pO’p07E)= > fpzdp S;ézXﬂ'd,Na(vap)Ga(p’E)XNa,'n'd(p’pO)S;'éz ’ (3.11)
a
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where a specifies the quasiparticle channel in a separable
representation of the #N ¢ matrix and G, is the corre-
sponding quasiparticle propagator.

The total wd amplitude then takes the form

T'n'd,‘n'd(po’pO}E):Xﬂd,vd(p07p0’E)
+T5% 7a(P0:P0s E)

+ T3 (P0sP0s E) (3.12)

This completes our discussion of our numerical pro-
cedures. The calculations of NN and wd elastic scatter-
ing observables are well documented.

IV. NUMERICAL RESULTS

The main finding of Ref. 13 is that the meson theory
of nuclear forces can describe the main features of NN
scattering data up to 1 GeV, but cannot reproduce the
strong energy dependencies of polarization cross sections
Ao'? and Ao'®™ near 800 MeV. In the first part of this
section, we want to use the formalisms presented in Secs.
IT and III to reassess this conclusion by investigating
several questions concerning the model dependence of
the results obtained in Ref. 13, and examining the extent
to which the fit to the data can be improved by includ-
ing the effects due to nonresonant 7N interactions. We
then present our results of 7rd elastic scattering.

A. NN elastic scattering

To make contact with the NN study of Ref. 13, let us
first consider only the one-pion-exchange A-excitation
mechanism?’ (i.e., setting USIL,NN =0) and choose V, of
Eq. (2.9) to be the Paris potential.'® Our NN calculation
then only has two parameters, E; for the subtraction in
defining ¥y nn by Eq. (2.9), and the cutoff parameter
A, for the dipole form factors of the Vynona- Since an
acceptable 7NN model for nuclear studies must be as
good as the conventional nuclear theory in describing
the low energy nuclear properties, we require that the
parameters E; and A, must be chosen such that the
original Paris phase shifts below 200 MeV must be
reproduced within 5%. It is found that E; <50 MeV is
acceptable, as shown in Fig. 3. The cutoff parameter A,
is limited in the range A, <750 MeV/c. In Fig. 4 we see
that the 'S, and 3P, phase shifts calculated with
A,=900 and 1200 MeV are clearly not acceptable. For
higher partial waves, the low-energy phase shifts can be
reproduced to a much higher accuracy than that seen in
Figs. 3 and 4.

The optimum value of the cutoff parameter A, is
determined by considering various NN total cross sec-
tions in the intermediate energy region. In Fig. 5, we
again see that A,>750 MeV/c is not acceptable for
describing the total reaction cross section og. Our final
choice of A, is made by requiring the best fit to the NN
total cross sections. In this way we arrive at the value
A,=650 MeV, since it gives the best description of the
famous polarization data®® as shown in Fig. 6. Accord-
ingly, the phase shifts calculated with A,=650 MeV are
in good agreement with the Arndt phase shifts, as re-
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. | N | . 1
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FIG. 3. The 'S, phase shifts calculated with E; =10 and 50
MeV are compared with the Paris phases (dots). E; is the sub-
traction energy of Eq. (2.9).

ported in Refs. 13 and 25. The discrepancies shown in
Fig. 6 show the limitation of the 7NN model with only
A excitation included.

The results discussed so far are based on the assump-
tion that the NN—NA transition is due to one-pion ex-
change only. The conventional model also includes a p
exchange. It is therefore interesting to see whether the
fit to the NN data can be improved if we also consider
this shorter range A excitation mechanism. It is well
known that the p exchange tends to cancel the 7 ex-
change. Therefore, when the p exchange is included, the
cutoff A, for 7 exchange has to be increased accordingly
in order to retain the best reproduction of the low ener-

T T T

o —A,=650 7

40 == A,=900
————— Ay=1200

301 4

2o ]

1 1
200 300

I
0 100
Elqb(MeV)

FIG. 4. Dependence of the calculated NN phase shifts on
the cutoff parameter A, of the one-pion-exchange NN<—NA
potential.
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FIG. 5. Dependence of the calculated NN total reaction
cross section on the cutoff parameter A, of the one-pion-
exchange NN<«>NA potential. The data are taken from the
compilation of Ref. 26.

gy phase shifts and the total cross sections up to 1 GeV.
We have explored this possibility and have not been able
to find a set of A; and A, which can give a better fit to
the polarization total cross sections shown in Fig. 6. In
all of our subsequent calculations we will therefore only
keep the 7 exchange in defining the NN—NA interac-
tion.

We now turn to investigating the major model depen-
dence in our approach. So far we use the Paris potential
as the starting low energy potential ¥, to define the
NN-—NN interaction by the subtraction defined in Eq.
(2.9). It is natural to ask whether our NN results can be
improved if other existing low energy NN potentials are
used in our calculation. The chosen low energy NN po-
tentials must be as good as the Paris potential in describ-
ing low energy NN phase shifts and various important
nuclear properties (such as the nuclear binding in three-
nucleon systems and nuclear matter). In addition, they
must all have the well-established one-pion-exchange

4 301 -

o (mb)

4 20 =

[T
.o l.l‘|§ 'y
.

1 Il 1 1 1 1 1 1
300 600 800 1000 O 400 600 800 1000
E|gp (MeV)

FIG. 6. Same as Fig. 5, but for the total cross sections with

spin orientations of the projectiles and the target nucleon
specified. We follow the notations of Ref. 26.
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FIG. 7. Dependence of the calculated total NN reaction

cross section on the starting low energy NN potential. The
calculations are done with A,=650 MeV/c for Vyn..na-

tail. The potentials which satisfy these criteria and are
used in this investigation are the Bonn!? (1975), ANL
V14,'8 and Reid" potentials. Because of their different
treatments of the intermediate range interaction, their
short-range parametrizations are radically different from
each other and also from the Paris potential. This
difference in defining short-range dynamics will certainly
be seen clearly at higher energies.

For each one of the considered low energy NN poten-
tials, we repeat the same procedure discussed above to
see whether the NN data can be fitted. To fit both the
low energy phase shifts and the total reaction cross sec-
tion, we find that all potentials favor E; < S0 MeV and
A, <750 MeV/c. For the same parameters E, =10 MeV
and A,=650 MeV/c their phase shifts are comparable
to that of the Paris potential. Their corresponding pre-
dictions of total reaction cross section o are compared
in Fig. 7. Clearly, the total reaction cross section oy is
insensitive to the choice of the starting low energy NN
potential. However, their predictions of the polarization
total cross sections are very different. Figure 8 shows
that with £, =10 MeV and A,=650 MeV/c none of the
constructed models can reproduce the strong oscillation
of the polarization data. We have carried out extensive
calculations in the region E; <50 MeV and A, <750
MeV/c for all of the considered potentials and have also
investigated possible improvements by using a 7+p
model of Vyn na- No improvement has been found.

The above-mentioned studies suggest that the A-
excitation model cannot give a detailed description of all
7NN processes even in the A-excitation energy region.
The best we can obtain is the model based on the Paris
potential with the parameters E; =10 MeV and A =650
MeV. This model is essentially the model first developed
in Ref. 13. To see clearly the starting point of our sub-
sequent investigations, we show in Fig. 9 the NN phase
shifts (solid curves) calculated from this A excitation
model. The higher partial wave phase shifts are similar
to what have been presented in Ref. 13 and therefore are
neglected here because they are irrelevant to our studies.

Within our formulation, the next possibility of im-
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FIG. 8. Same as Fig. 7, but for the total polarization cross
sections as defined in Fig. 6.

proving the meson-exchange #NN model is to consider
the nonresonant interaction H5 of Eq. (1.2). In NN
scattering, this additional pionic effect is described by
U (rgl)quN [Eq. (2.5)]. We will still focus our attention in
the A resonant energy region in which our perturbative
treatment of nonresonant 7N interactions is suitable.
The question we want to answer is the following: Can
the discrepancies, shown in Fig. 9, between the data and
the predictions by the A-excitation model (solid curves)
be removed by including U\ nn in our NN calculation?

Within the one-pion-exchange model of the transition
interaction F_yn..nN, the strength of U ﬁ,{;’NN is deter-
mined by the range parameter [, of the form factor
F_nn(g), Eq. (2.8). We consider two different methods
in determining .. The first one is to assume that the
7NN form factor [Fig. 2(b)] for the transition opera-
tor F ynonN 1S identical to that of the Vynona- Then
the parameter [, is taken to be 650 MeV/c as deter-
mined above. The results calculated from this choice of
the parameter are the dashed curves in Fig. 9. It is seen
that the nonresonant 7N interactions only significantly
influence the NN phase shifts in the 'S, and *P, chan-
nels. In the 'S, channel, the inelasticity is increased by
a factor of about 2, in better agreement with the data.
Note that it is very difficult to improve this inelasticity
in the A-excitation model since the 'S; NN channel only
couples with the L =2 D, NA channel. The effect of
nonresonant 7N interaction on polarization total cross
sections is found to only increase the theoretical values
by about 1 mb at all energies, and hence does not yield
the needed strong energy dependence near 800 MeV seen
in Fig. 6.

The second way of determining the strength of the
nonresonant transition interaction is to adjust the cutoff
B, for the transition operator F yn.nN to fit a piece of
NN data which is most sensitive to the nonresonant 7N
interaction. As shown in Fig. 9(a), the S, inelasticity is
most influenced by the nonresonant 7N interaction. We,
therefore, first adjust B, to fit this data and then see
whether the overall fit to NN data can be improved.
The resulting cutoff is found to be about 3,=1200 MeV.
The improvements are illustrated in Table I. It is seen
that the largest effect due to the change fB3,=650
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FIG. 9. The calculated T =1 NN phase shifts are compared
with Arndt’s data (Ref. 15). The solid curves only contain the
A excitation, while the dashed curves also contain the effect
due to the nonresonant term UR\ nn. The differences are
negligible for / >2 partial waves. The results of / >2 partial
waves have been published in Ref. 13 and hence are omitted
here.

MeV/c — 1200 MeV/c is to change the 'S, inelasticity
from 7.61 to 10.12, which is much closer to the data.
However, the other partial waves are relatively insensi-
tive to the cutoff B, and hence no improvement in fitting
the polarization cross sections is obtained.

In summary, the main effect of nonresonant 7N in-
teractions is to increase the inelasticity of the S, chan-
nel to a value comparable to the data. Its effects in all
other partial waves (except 3P,) are small compared
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TABLE 1. Dependence of phase shifts on the cutoff parameter 3, [Eq. (2.8)] of the form factors of U ﬁr’q,NN at E,, =800 MeV. §

and p are in degrees.

1S, 3P, 3p, D, F,
B 8 P 8 P 8 P 5 p 8 P
a —48.61 3.21 —35.83 19.82 —44.89 25.40 2.75 20.04 —17.02 19.30
650 —48.17 7.61 —33.24 21.51 —43.32 26.11 2.84 20.23 —6.80 19.41
1200 —48.78 10.12 —30.81 22.77 —42.17 26.68 2.75 20.30 —6.79 19.43
2 Calculation with U4 nn =0.
with the A resonant effect, and therefore cannot explain
the strong energy dependencies of the polarization total IO 71 T

cross sections near 800 MeV.
This completes our NN study in this work. We will
discuss necessary future works in Sec. V.

B. md elastic scattering

In this subsection we present our 7d results. To com-
pare with the well-established Faddeev-AGS 7d calcula-
tion, we first consider our calculation in the limit that
the pion absorption effect is neglected; namely, setting
the absorption amplitude T3% ; in Eq. (2.15) to zero. In
this multiple scattering limit, our approach differs from

the exact Faddeev-AGS wd calculation®~>2"=3 only in

50 T T T T T

L Ll

do/df) (mb/sr)
o

Il | 1 1 1
30° 60 960° 120° 150° 180

o

FIG. 10. The effect of the nonresonant amplitude ThE .4
[Eq. (2.15)] on the wd differential cross section (a), vector (b)
and tensor (c) analyzing power at T, =140 MeV.

+’:~:::+:+ 1

220MeV —

do/dQ (mb/sr)

002k .
120°
6

(e

180

FIG. 11. The wd elastic differential cross sections calculated
without (solid) and with (dashed) the pion absorption effect are
compared with the experimental data (Ref. 26).
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our perturbative treatment of the nonresonant 7N in-
teraction. To have a sensible comparison with the data,
it is necessary to justify this approximation which drasti-
cally simplifies the numerical task. This is done by ex-
amining whether the effect of the nonresonant amplitude
described by TR 4 of Eq. (2.15) is similar to what has
been found in the exact Faddeev-AGS 7d calculation, in-
cluding all s and p #N amplitudes. In Fig. 10 we show
our results calculated with (solid curves) and without
(dashed curves) including the nonresonant amplitude
TNR .4 of Eq. (2.15). The effects shown in Fig. 10, in
particular the dramatic change in the vector analyzing
power it;,, agree with that of the calculation by Giraud
et al.?’ (see their Fig. 6). On this ground, we consider
that our perturbative treatment is adequate and can be
used as a good starting point for investigating the pion
absorption effect.

We now show the effect of pion absorption and com-
pare our results with the data. To see the main feature
of our approach, let us recall that the pion absorption
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FIG. 12. Same as Fig. 11, but for the vector analyzing
power.

term T‘,‘,%s,,,d of Eq. (2.15) is directly calculated from the
full NN amplitude Tyn,nn through Eq. (2.16). We also
recall that the full NN amplitude Ty nn is in turn
influenced by the coupling to the wd channel through
the calculation of the NN driving term U\ nn of Eq.
(2.3b) from the Faddeev-AGS amplitude Xy, na- This
mutual coupling is, of course, the consequence of our
unitary formulation of the 7NN problem. Note tha. the
strength of this coupling is mainly determined by the
range parameter A, of the form factor of the transition
interaction Vyn.oNa- Its value A,=650 MeV has been
determined in the NN study. Therefore, there is no ad-
justable parameter in our calculation of the pion absorp-
tion effect in 7d scattering. The direct constraint from
the fit to NN data is the characteristic of a unitary ap-
proach.

We compare in Figs. 11-13 the 7d data with our re-
sults. The solid curves are the multiple scattering results
obtained by setting the absorption amplitude T2 ; of
Eq. (2.10) to zero. It is seen that only the differential
cross sections at large angles are significantly changed by
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Same as Fig. 11, but for the tensor anaiyzing
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the m-absorption effect (dashed curves). Its effects on
tensor and vector analyzing powers are negligible.
Agreements of our results with the data are comparable
to all previous calculations. Clearly, much work
remains to be done to remove the discrepancies between
the theory and the data.

V. DISCUSSION

In this work we have investigated the extent to which
the NN and wd elastic scattering can be described by a
meson-exchange 7NN model of the form of Egs. (1.2).
Although the main features of the data have been repro-
duced, it is clear that none of the constructed models
can be considered to be a complete success. In this sec-
tion we would like to discuss possible sources of the
problem and necessary future works.

First, it is likely that the pion production mechanism
cannot be completely described by the conventional
one-pion-exchange parametrization as shown in Fig. 2.
It is possible that the pion can also be produced by some
short-range mechanisms which cannot be phenomeno-
logically accounted for by adjusting the range parame-
ters of the pionic form factors of the transition operators
Vanona and Foanonn- For example, we can imagine
within the existing quark-pion models’! that the pion
can be produced in the region where two nucleons have
lost their own identities and a six-quark ‘‘dibaryon” state
is formed. If this dibaryon state does not have a large
overlap with the NA wave function, then this process
cannot be represented by a NN —NA transition followed
by a A—mN decay. Similar arguments can also be put
forward to question the adequacy of the one-pion-
exchange model of the nonresonant pion production
operator FynoNN-- A microscopic construction of such
a quark model of pion production could be difficult in
practice. A more realistic way of developing a working
7NN model is to extend the well-defined one-pion-
exchange models for Vyn.na and Fynoonn to include
some phenomenological terms so that the NN data, such
as polarization data Ao, Ac'?, can be fitted. Since the
results obtained from the present model are already very
close to the data, the search for these phenomenological
terms is probably not too difficult in practice.

The second possible source of the problem could be
due to the intrinsic deficiencies of the starting low ener-
gy NN potential. A common feature of the considered
potentials (Paris, Bonn, Argonne V14, and Reid) is that
their short-range part is determined phenomenologically
by fitting the NN data below the pion production
threshold. In using the subtraction procedure Eq. (2.9)
to define the NN interaction in the presence of pion and
A degrees of freedom, we essentially assume that the
same phenomenological short-range core is also valid at
higher energies. Although this turns out to be rather
successful in preserving the good description of the low
energy NN phase shifts, it is difficult to decide whether
this is a good assumption. For example, within the
quark picture, a nonlocal form could be more realistic in
representing the short-range baryon-baryon interactions,
because of the composite structure of the baryons. A lo-
cal form of potential could be sufficient for describing
low energy phenomena, but could be a bad representa-
tion of some essential nonlocal quark effects which are
important in the high energy region. Perhaps the prob-
lem will be solved if we start our construction of the
7NN model with a low energy potential which has in-
corporated the nonlocal nature of the baryon-baryon in-
teraction, deduced from a well tested quantum chromo-
dynamics (QCD)- based quark model of the nuclear
force. Such a desirable NN model has yet to be con-
structed.

To close we want to point out that the predictions of
the 7NN model based on the Paris potential reproduce
the main features of all NN and wd scattering data. Al-
though further improvements are needed, it can be used
as a good starting point for investigating the other 7NN
processes listed in Eq. (1.1), the intermediate energy nu-
clear reactions, and also the questions concerning the
presence of A or 7 in nuclei.
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