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A 7NN theory, incorporating mesonic and dibaryonic excitation mechanisms, is introduced to
give a unified description of NN and 7d reactions. The mesonic mechanism is built into the theory
by extending the conventional meson theory of nuclear force to include the isobar A excitation. The
dibaryonic excitation at short distance is introduced according to current understanding of six-quark
dynamics. The theory is free of the nucleon mass renormalization problem and is therefore tractable
in practice. The model Hamiltonian consists of (a) Vpzz for two-baryon interactions between NN,
NA, and AA states; (b) h,n..a for A excitation; (c) v,n for 7N two-body interaction in nonresonant
channels; (d) F,nnonn for nonresonant pion production; and (e) Hp.,pp for the formation of a di-
baryon state D. Dynamical equations for NN and #d scattering are derived by making the assump-
tion that all NN and md processes can be described in a subspace spanned by NN, NA, AA, 7NN,
and the dibaryon state D. The resulting scattering theory satisfies the essential two-body (NN) and
three-body (7NN) unitarity relations. The projection technique is applied to cast the theory into a
form such that all NN and wd reaction transition matrix elements can be calculated by solving,
separately, a two-body integral equation and a Faddeev-type three-body equation. Both can be
solved by well-established numerical methods. This makes the calculation based on the most sophis-
ticated meson theory of nuclear force possible. Explicit formalisms have also been developed for ex-
ploring the question of the excitation of a dibaryon resonance during NN and 7d scattering from the
point of view of six-quark dynamics. The numerical results obtained from the theory are presented
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in a separate paper.

I. INTRODUCTION

‘"The main feature of intermediate energy nuclear reac-
tion, induced by pion, nucleon, electron, photon, or heavy
ion, is the production or absorption of on-mass-shell
pions. Therefore, a microscopic approach to the problem
should start from a theory of the coupled NN+ 7NN sys-
tem (called the 7NN system from now on). An acceptable
7NN theory should describe simultaneously all of the fol-
lowing processes:

TN—7N(E},, <300 MeV) , (1.1a)
NN-—NN(E,, < 1000 MeV) , (1.1b)
— 7NN, (1.1¢)
md—7d(E},, <300 MeV) , (1.1d)
—7NN, (1.1e)
—NN . (1.16)

In addition, we must face the fact that at this higher ener-
gy two colliding hadrons are more likely to overlap and
the effect of their internal quark structure could become
important. To describe all the processes listed in Eq.
(1.1), it may not be possible to parametrize the baryon-
baryon interaction at short distance solely in terms of the
conventional meson-baryon-baryon form factors or a
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phenomenological repulsive core.

Theoretical investigation in these two directions have
been active in the past few years. The unitary 7NN
models'~7 have succeeded in describing extensive spin-
averaged 7d data, but could not reproduce many features
of the spin observables. Except for the phenomenological
model of Ref. 4, these unitary models and several less am-
bitious approaches®—!? so far have not been able to give a
satisfactory description of NN scattering phase shifts.
Another important development is the extension of the
conventional meson theory of the NN potential to include
the excitation of the A resonance. This approach!3—!® has
achieved reasonable successes in describing NN scattering
up'® to 2 GeV and some 7d scattering data.'® However,
difficulties are also encountered in describing NN spin ob-
servables. The investigation of NN short-range interac-
tion'~2° based on a quark mechanism is still in the
developing stage. The existing models have only made
very qualitative contact with the 7NN data. In particu-
lar, pion production channels have not been considered in
a realistic and unitary way.

All of these theoretical efforts, in particular the attempt
to understand the energy dependences of NN and 7d spin
observables, have clearly indicated that none of these ap-
proaches can succeed without going beyond their present
scope. The main purpose of this work is to unify these
theoretical efforts by extending the unitary 7NN
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theory! =7 to account for six-quark dynamics at short dis-
-tances and show how the theory can be applied in the
study of extensive NN and 7d data. Because of the com-
plexity of the problem, we will report our results in three
separate publications. In this paper we present our theory
and focus on the derivations of basic scattering equations.
In future work, we hope to discuss our numerical strategy
and present our results on NN and 7d scattering.

In Sec. II we discuss the basic 7NN mechanisms based
on the meson theory of nuclear force and the current
understanding of six quark dynamics. We then postulate
a model Hamiltonian of the #NN system which contains
all of the essential physics and can be used to develop a
mathematically rigorous and also manageable 7NN
scattering theory. To relate this work to previous unitary
7NN theories, we derive in Sec. III all 7NN scattering
equations governed only by the mesonic mechanisms. In
Sec. IV, we develop formalisms which include the excita-
tion of a dibaryon state D in the study of NN and wd
scattering. In Sec. V, we summarize our results. All nu-
merical results and comparisons with the data are present-
ed in separate papers.

II. MODEL HAMILTONIAN

To motivate our approach, let us first discuss qualita-
tively the mechanisms which should be considered in de-
fining the 7NN interactions. The interaction at long dis-
tance is due to the one-pion exchange, which is conven-
tionally taken to describe the high partial-wave NN phase
shifts. This pionic force is also responsible for exciting
the nucleon to the A isobar state, which then decays into
the wN state asymptotically if the collision energy is
above the pion production threshold. In the current 7NN
models and the model we are going to consider, this pion-
ic excitation is described by constructing an isobar model
with a 7B'«<>B vertex (B and B’ could be N or A) to fit
the 7N scattering phase shift. Its relation to quark
dynamics can be established through the chiral (cloudy)
bag model,?*—2% although much work remains to be done
in this direction.

The NN low partial-wave phase shifts clearly indicate
that other mechanisms are at work at shorter distances.
Here, we face an interesting and still unclear situation.
First, it is undeniable that the heavy mesons, such as w
and p, are observed experimentally and they must play
some role in determining the NN force. However, the ex-
change of heavy mesons is unrealistic if the size of a
baryon is comparable to or larger than their Compton
wavelength. This seems to be the case, as suggested by
bag model study of nucleon structure. Therefore, the
most probable mesonic process other than the one-pion
exchange is the ‘“‘sequential” exchange of two-pions. The
most detailed analysis of the two-pion-exchange mecha-
nism is the nonperturbative approach of the Paris group.?’
It is, therefore, advantageous to develop a theoretical
framework in which the Paris potential (as well as other
phenomenological or meson-exchange potentials) can be
taken as the starting point to define the baryon-baryon in-
teraction. An important step to describe pion production
is to also define interactions which can couple the NN

channel to NA and AA states. The one-pion-exchange
component of these coupling interactions can be generated
by the vertex interaction wB<>B’. However, no two-
pion-exchange model has been developed in a nonpertur-
bative approach?® to define the interactions between chan-
nels involving at least one A. It might be reasonable to
follow the conventional approach®® by including the ex-
change of a p meson to approximately describe this pro-
cess. (Note that the coupling interaction NN—NA or
NN<«>AA can generate an effective NN interaction. Con-
sequently, if these transition interactions are treated expli-
citly, we need to introduce a procedure to remove from
the Paris potential the uncorrelated two-pion exchange
with intermediate A excitation. This procedure has been
introduced in Ref. 16.)

The short range part of the NN force is usually treated
phenomenologically. At the present time, much experi-
mental evidence, in particular the NN and 7d spin observ-
ables, have pointed to the need for a more microscopic ap-
proach in defining baryon-baryon (BB) interactions at
very short distances. Especially, the possible existence of
the dibaryon states®! ~33 can be better resolved if we relate
the short range BB force to six-quark dynamics. We dis-
cuss this nontrivial connection to quark dynamics based
on the bag model**~3¢ and the resonating group
method!® 2! of calculating baryon-baryon scattering.

The bag model calculation (for example, the calculation
by Mulders et al.**) has predicted the masses of confined
q° states in each B =2 color-singlet eigenchannel. It has
been suggested that these confined g° states are the so-
called dibaryon (one-body) states which could be excited
at a very short distance during NN or 7d scattering.
Through their coupling to NN, NA, or 7NN channels,
some of these g° states may be responsible for the strong
energy dependences seen in NN and 7d spin observables.
This interpretation implies that the baryon-baryon in-
teraction has two entirely different mechanisms, just like
the situation in the study of low energy nuclear reactions.
The first mechanism is the fast direct process which can
be described by an effective two-baryon potential, despite
the involvement of internal structure of two interacting
objects during the collision. The second process is the
compound state formation in which each baryon has lost
its own identity and a completely different ¢° configura-
tion is excited.

This qualitative picture of ¢g® dynamics is supported by
the resonating group method'®—2! calculations of NN in-
teraction within the nonrelativistic quark model. These
calculations indicate that the quark exchange mechanism
between two nucleons in an s wave can be effectively
represented by a short-range repulsive nucleon-nucleon
force as we have conventionally determined from NN
phase shifts. We therefore argue that the conventional
phenomenology for treating the short range BB interac-
tion can effectively include this “fast” exchange process
of quark dynamics. On the other hand, the compound
state formation of quark dynamics is beyond the descrip-
tion of the resonating group method and must be added
into the theory separately. It is our assumption that this
unknown compound state formation mechanism, being
mainly due to the confining force, can convert the incom-
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ing two baryon into a dibaryon state D with masses
predicted by the ¢° bag model calculation.®* In the same
way that we use a 7N<>A vertex to describe the A reso-
nance, we also introduce a BB<>D vertex®’ to describe the
excitation of the dibaryon state D. The detailed structure
of this dibaryon coupling form factor must be related to
the complicated hadronization mechanism of quark de-
grees of freedom. Clearly, we can only treat this object
phenomenologically at the present time. Our approach is
clearly different from the P-matrix approach proposed by
Jaffe and Low,?® and explored by Mulders.?* It is also
different from the approach by Henley et al.?> We will see
that our model is the most economic way to obtain a
theory which is directly related to the existing unitary
7NN models. Many existing numerical methods which
take into account the essential two- and three-body unitar-
ities can then be readily applied in the study of dibaryon
resonances:

In accord with the above arguments, we now assume
that the most general model Hamiltonian for the coupled
NN+ 7NN system takes the following form

H=Hy+Hiy , 2.1)
HiﬂtzhﬂBﬁB'—f_VBle,B;B'z +HBIBZ<—>D s (2.2)

where H, is the sum of kinetic energy operators, D
denotes the dibaryon states, and B can be N or A (the
theory can be extended'® to include higher mass isobars).
Because of the vertex interaction Az, p', One sees that the
one-particle states |N) and |A) are not stable, and the
model can generate multipion states. This nature of the
model causes difficult theoretical problems in deriving a
mathematically rigorous but also manageable wNN
scattering theory. In particular, in order to rigorously de-
fine the asymptotic 7NN and NN wave functions, an ap-
propriate approximation must be introduced to derive
from the vertex interaction A,p_p a consistent descrip-
tion of both the mass of the physical nucleon and 7N
scattering in the P;; channel. In addition, the same
derivation must also lead to a wNN scattering theory
which satisfies the essential two- and three-body unitarity
relations. As seen in a series of lengthy publications by
Afnan and Blankleider,! and also by Avishai and Mizu-
tani,’ it is not easy to resolve the complexities involved in
achieving these theoretical requirements even for the tra-
ditional model containing only a 7N<«>N vertex. Needless
to say, by considering a general h_p._ p vertex, the prob-
lem will be even more complicated.

In this work we take a somewhat less ambitious ap-
proach. Following Ref. 4, the first simplification is to
keep only the wN<«>A part of the vertex interaction h.
This approximation drastically simplifies the 7NN
scattering theory, because no mass renormalization prob-
lem of the nucleon will ever occur. However, some im-
portant 7N physics is omitted by this simplification.
First, 7N scattering can only occur through the process
7mN<>A<mN in the P33 channel. Second, pion absorption
or production by two nucleons cannot happen except
through the formation of A resonance, i.e., NN7
<—NA<NN. To correct this shortcoming without com-
plicating the scattering theory, we add a two-body poten-

tial v,n to describe 7N scattering in channels other than
Pj3, and introduce a transition operator F, anonNn tO
describe the nonresonant pion absorption mechanism.
Then the interaction H;,; Eq. (2.2) takes the form

Hiy—Hiy =h1rN<—>A +vsN+ VBle’B;BE

+FinnoNNtHp B b - (2.3)

A few words are needed to further justify the model de-
fined by Eq. (2.3). Methods exist in the literature for con-
structing v,y and FnnonN- For practical calculations,
it is simple to construct a separable model of v,y to fit
the 7N phase shifts. One can also apply the conventional
reduction method>® to derive v,y from the field theoreti-
cal amplitudes. The same method can also be used to
derive the nonresonant pion production operator
F.anonN from the mesonic processes. For example, the
earlier work by Koltun and Reitan®® had constructed an
effective operator F yn..nn from the pion rescattering
processes. Their work was later extended*°—*? by several
authors. A detailed model based on the chiral Lagrangian
can be found in the work by Hachenberg and Pirner.*
These classical works can be taken as a reasonalbe starting
point to define the operator F,ynonn in our model.
Therefore, the structure of each term in Eq. (2.3) is to a
large extend known within meson theory. Our model is
therefore not completely phenomenological in nature.

The rest of this paper is devoted to deriving, from the
model Hamiltonian Eq. (2.3), a set of scattering equations
for the study of all processes listed in Eq. (1.1). The
essential two-body (NN) and three-body (7NN) unitarity
cuts are built into the scattering theory by considering all
of the wNN interactions in the model space spanned by
NN, NA, AA, and 7NN states. Because of the absence of
the nucleon mass renormalization problem, the derivation
of wNN scattering equations is straightforward. The
main point of our derivation is to cast the scattering
theory in a form such that numerical calculations can be
efficiently carried out within the capacities of the existing
computers. This is achieved by employing the projection
technique to decompose the calculation into two parts.
The first part is to solve a familiar Faddeev-type three-
body equation. The solution is then used to do the 7d cal-
culation and to construct an effective baryon-baryon in-
teraction which contains all of the dynamics due to the
coupling of the baryon-baryon states to the 7NN state.
The second part of the calculation then only involves the
solution of a set of coupled two-body scattering equations.
The advantage of this decomposition is that the important
meson-exchange baryon-baryon interactions which, as
shown in Refs. 13—17, are essential for a correct descrip-
tion of NN scattering, can be treated exactly within the
capacity of most existing computers. In carrying out cal-
culations based on the unified formulation of Refs. 1 and
3, separable NN and wNN interactions have been used,
mainly due to the fact that the number of the coupled NN
and 7NN channels is too large to be handled numerically.
The use of the separable representation could be the
reason why the NN results of Refs. 1, 2, 5, and 6 are not
satisfactory.
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III. MESONIC EXCITATION MECHANISM

In this section, we apply the formal scattering theory*
to develop wNN scattering equations governed by the
mesonic excitation mechanisms. Neglecting the coupling
to the dibaryon state D, the remaining model Hamiltonian
can be written as the following form

H=H,+H,, , (3.1)

where H, is the sum of kinetic energy operators for 7, N,
and the A isobar. The interactions between these three
elementary degrees of freedom of the 7NN system are de-
fined by

Hipy=hmNnoa+Van+ Ve +Fannenn > (3.2)

.51y OF B4
(2.3), which defines all possible direct interactions between
NN, NA, and AA two-baryon (BB) states. Each term of
Eq. (3.2) is graphically represented in Fig. 1. To simplify
our presentation, we will sometimes use shortened nota-
tions, A for A noa, and F for FynoNN-

Since single pion production is the dominant inelastic
channel in NN collision up to ~2 GeV, it is reasonable to
assume that all processes listed in Eq. (1.1) can be
described in the subspace BB@® NN, where the baryon-
baryon (BB) state can be NN, NA, or AA states. The ef-
fects of #NA, wAA, and multipion states are neglected
(all of the following derivations can be easily extended to
include 7NA and wAA. For notational simplicity, we
keep only 7NN in our presentation). Our task is to con-
struct a set of dynamical equations which determine the
transitions between the following three channels:

where Vpp is the simplified notation of V,

Channel i
BB 1
NN 2
md 3

Note that only the NN state of the BB channel (i =1) can
exist asymptotically. The NA and AA states only exist in
the interaction region.

LN ~ e
\\ S’
N
. P
N____h-——-A
h‘ﬂ'N—-A v'ﬂ'N

B, B
BB T NN — NN
(Bj= N or A)

FIG. 1. Graphical representations of the mechanisms con-
tained in the model Hamiltonian Eq. (3.2).

The channel Hamiltonians H; for the i =1,2,3 channel
are chosen to be

H,=(Hy),, (3.3a)
H,=(Hy),, (3.3b)
H;=(Hp)3+VNN,NN > (3.3¢)
where Vynnn is the NN—NN part of Vgp. (Hj);

denotes the part of H of Eq. (3.1) which is just the sum
of kinetic energy operators of particles in the channel i.
The channel wave functions (omitting spin-isospin in-
dices) are defined by

Hy|pup)=(Vmi+p? +Vmi+p)|pLpy), (.4a)

H, | pipok)=(Vmi+p? +V mi+p3
+Vul+k? | p,psk) , (3.4b)

Hy|ladk)=(VM24+d*+V 2 +k?) | ad,k) , (3.4¢)

where p; and k are, respectively, the momentum of
baryon and pion, |ad) is the deuteron state, m;, u, and
M, denote, respectively, the mass of baryon, pion, and
deuteron.

Following formal scattering theory,* the transition ma-
trices between the considered three channels are defined as

! ’ 1
T B =Vt T e

where V; =H —H; is the interaction in the channel i.
From the definition (3.3), we have

V’l = V’2 =Hint s

Il;: iaj’=1’273 ’ (3~5)

(3.6a)

V3 =(Vgg—VNn,NN) +HHanos H0an +HFonnonn - (3.6b)

Because of the presence of vertex interactions /5. and
F aNoNN, the main feature of the transition amplitude is
to provide mechanisms connecting two-particle baryon-
baryon (BB) and three-particle 7NN states. Clearly, Eq.
(3.5) leads to a very large number of coupled integral
equations. As an example, we list in Table I all channels
of J7=2%, T =1 which can couple to each other in NN
and 7d scattering. Unless one makes drastic simplifica-
tions, such as the use of a separable representation of the
baryon-baryon interaction Vjpp, it is very difficult (if not
impossible) to solve these coupled integral equations.
Since the main objective of our subsequent work will be to
explore the extent to which the 7NN data can be
described by meson theory, it is necessary to develop a
scheme in which this kind of simplification of the
meson-exchange dynamics can be avoided in our numeri-
cal calculation. The main point of the derivation present-
ed in this paper is to cast Eq. (3.5) in a form such that the
dynamics in the BB and mNN subspaces can be calculated
separately. Then we will see that well-established numeri-
cal methods for solving the two-body coupled-channel in-
tegral equation** and the Faddeev-type three-body equa-
tion** can be applied within our present computational
power. The core of our formalism is a baryon-baryon
coupled-channel scattering equation. We derive this equa-
tion in subsection A for the study of NN scattering. In
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TABLE I. The baryon-baryon and wNN states which must
be included in solving the 7NN+ NN coupled equation in the
J7=2%, T=1 eigenchannel. [, is the pion angular momentum
relative to the NN pair. Only the /<3 NN pair in the 7NN
state is considered.

7NN
T JT NN NA AA 1, NN
1 2+ D, 35S, 38, 0 3P, +3F,
D, D, 1 'So,'D,,381+°D,,’D,
3D, D, 2 3PP, +F,,'F,
°G, D, 3 'D,,’S1+3D,,’D,
'p, 4 3P2 + 3F2
762
SG2

subsections B and C, we show that the resulting BB am-
plitudes are basic inputs to the formalisms for the 7d
scattering and pion absorption or production.

A. NN scattering

According to Eq. (3.5), the NN scattering amplitude is

defined by
Txn,nn(E)=(NN |7 |((E)[NN) . (3.7)

We will show that this amplitude can be obtained by solv-
ing a two-body integral equation. To proceed, we define
the projection operator on the baryon-baryon ( BB) space

P=|BB){BB |
=PNN+Pna+Paa
= [NN)(NN| + [NAY(NA| + [AAY(AA|, (3.82)

where |NN), |NA), and |AA) are the eigenstates of
the kinetic energy operator H, [as defined in Eq. (3.4a)].
Since 7NN is the only three-particle state considered, the
numerator of the propagator of Eq. (3.5) can be decom-
posed as

1=P +Q )
with

Q=1—P=|7NN){zNN]| ,

(3.8b)

(3.8¢)

where | 7NN) is also the eigenstate of H, [as defined in
Eq. (3.4b)]. The next step is to write Eq. (3.5) in such a
way that the interaction in the #NN Q space can be
separately handled by the standard three-body method.
Let us introduce a baryon-baryon transition operator
which is defined by projecting the operator .7 1;(E) of Eq.
(3.5) on the P space ‘

T(E)=P7 (E)P , (3.92)
where, according to Eq. (3.6a) for V| and Eq. (3.8),
T 1(E)=H;,,+H; P+Q (3.9b)

mE——H—f—ié‘Him .

The on-energy-shell matrix element of T between |NN)
states defines the NN elastic scattering, i.e.,

Tnnnn(E)={(NN| 7 ,(E) |NN)
=(NN|T(E)|NN) .

We will see in subsections B and C that other parts of the
matrix elements of T in P space are the basic inputs to the
calculations of all NN and 7d reactions listed in Eq. (1.1).

By employing the standard Feshbach projection pro-
cedure, we get from Eq. (3.9) that (from now on, + i€ in
the propagator will be omitted)

P

T(E)= _— .
(E) V(E)+V(E)E_HO_V(E) V(E) , (3.10a)
where the effective BB interaction is
V(E)=PH,P+PH;;,0—2—QH,.P. (3.10b)

o)
By using Eq. (3.2), we have
PH; P=Vpp ,
QH i P=h noa +FaNNoNN >
QHQ =Hy+v,n+ VNN,NN -

The above relations allow us to write Eq. (3.10) explicitly
as

0 ‘

VIE)=Vpp+(haneos +Fonnes
) 88 + (M anoa HF N NN)E~H0—U,,.N—VNN,NN

X (B aNes +FonnenN) - (3.11)

Using the following well-known operator relations for
any two operators 4 and B, :

1 1 1 1
R ey S (3.12a)
1 1 1
=— B—
<t T 5% (3.12b)
1 1 1
=—4—7—, 3.12
AT A4 (3.12¢)
with
1
=B +B B, 3.12d
T + 1_B ( )
we can write the propagator of Eq. (3.11) in Q space as
%
E —Ho—v,n—VNN NN
Qo Qo Qo
= to(E , 3.13
E-H, E-m,eBE_ g, G113
where

to(E)=(VNN,NN F+VaN) + (VNN NN+ VN
Q

E —Hy—VNNNN—VUgN

X (VNN NN HUaND -

(3.13b)
Io(E) is the 7NN—7NN amplitude which can be dealt
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with by employing the standard three-body method.*’
Substituting Eq. (3.13a) into Eq. (3.11), we can write the
effective two-baryon interaction as

—H, E—H, ’’

V(E)=Vap +SAE)+ V(B + V3(E)+ Vo(E),  (3.14)
where
2
i Q
= i ———h; 3.15
suB)= 3 hlLn, (3.152)
2
— t__Q .
VE(E)—Ejh, T (3.15b)
2
ViE)= 3 hi Q i oE)y—2 (3.15¢)
ij

gt o 9] ]

V,(E)=F FoH, TE_H, tQ(E)E__HO F

1 o Y Y _

+§ [F E—H, E—H,°E—_H, Ih'
T (Y] o o

. F
+h (E—Ho T E—H, F " H,
(3.15d)

h; and F are, respectively, the shortened notation for the
transition operators A, and Fanonn- Bach-term of
the above effective BB interactions is graphically illustrat-
ed in Fig. 2. Clearly, =, is the A self-energy, Vy is the
one-pion-exchange interaction between NA states,
V3 and V, contain all of the dynamics in the #NN inter-
mediate state.

To emphasize the A resonant effect, we regroup the
terms of V(E) into

V(E)=Vjy +3a(E)+V.(E) , (3.16)
where

Vep="Vpp—VnaNa » (3.17a)

VoE)=VyanatViE)+Vs(E)+V,(E).  (3.17b)

VNa,Na is the NA—>NA part of the BB interaction Veg.
V, clearly contains all of the “connected” BB interactions
due to the coupling to #NN. Our next task is to write the

A _— D —
AR
N N
s, (E) v, (E) V,4(E)

s
7
H
TS
1
1
Tedeyy

Eoal

Vg (E)

FIG. 2. Graphical representations of the effective baryon-
baryon interactions defined by Eq. (3.15).
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scattering equation (3.9) in terms of X,, V'pp, and V.
This can be done straightforwardly by finding algebraic
relations between the following resolvents

P
R(E)*E—HO—V(E)
= - P , (3.18a)
E_HO_VBB—VC(E)_EA(E) .
P
R = 5, B —V.B) (3.18b)
RyE)=— P (3.18¢)
AT E _Hy—3A\E) :

Note that the only interaction in R,(E) is the A self-
energy 2A(E). The “connected” BB interaction V, is iso-
lated in R.(E). R(E) is the exact BB propagator in Eq.
(3.9). By using the operator properties Eq. (3.12), it is
easy to see that

R(E)=R.(E)+R.(E)VpgR(E) , (3.19a)
=R.(E)+R(E)VgR.(E), (3.19b)
=R (E)+R.(E)To(E)R.(E) , (3.19¢)

where

To(E)=Vpp+ VpaR(E)Vpp . (3.20)

By comparing the second terms on the right-hand sides of
Eq. (3.19) it is evident that

Veg(E)R(E)=Ty(E)R.(E) , (3.21a)
R(E)Vgp(E)=R(E)T,(E) . (3.21b)

Substituting Eq. (3.21) into Eq. (3.20), we get the follow-
ing integral equation form of T,

To(E)=Vpp+ ViR (E)To(E) ,
=Vpp+To(E)R,(E)V)p .

(3.22a)
(3.22b)

Because R, contains the interaction ¥V, in the denomina-
tor, Eq. (3.22) is not useful for a practical calculation. A
more useful form can be derived by using the following
relations

R.(E)=RA(E)+RA(E)V (E)R.(E) , (3.23a)
—RA(E)+R,(EV,(ER,(E) , (3.23b)
=RA(E)+RA(E)T.(E)RA(E) , (3.23¢)

where

TAE)=V(E)+ V. (E)R.(E)V.(E) . (3.24)

Equations (3.23) leads to

VAE)R(E)=T(E)RA(E), (3.25a)

RAE)V (E)=RA\(E)T.(E), (3.25b)

and hence,

TE)=V(E)+V.(E)RA(E)T(E), (3.26a)
=V (E)+ T (E)RA(E)(E) . (3.26b)
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Substituting Eq. (3.23¢) into Eq. (3.22), we obtain the fol-
lowing integral equation [recalling Eq. (3.18c) for RA(FE)]

P

ToEY=Vin +Vin 5 4(E)

To(E)

. r

E —Hy—3A\(E)
P

XE —Hy—3A(E) To(E)

+ Vs T.(E) .

(3.27a)

or
p

—__.__V'

E—Hy,—3,\(E) %8

Y S

E —HO—EA(E)
P

S S
XE _Ho—3AE) *F

+To(E) T.(E)

(3.27b)

If we set T, to zero, Eq. (3.27) reduces to the form of the
conventional coupled-channel equation.’>~!® It is impor-
tant to note here that, in our approach, the “width” Z,(E)
is the propagating off-shell A is defined in terms of the
mN<>A vertex as described by Eq. (3.15a). This is the

TBBZ(VI’;B+V¢)+(V1’~}B+VC)R(V§B+Vc)

consequence of the 7NN unitary cut, as discussed in Ref.
16.

We now show that the full BB scattering T matrix, Eq.
(3.10), can be expressed in terms of Ty and T,. To facili-
tate this derivtion, we need to relate R(E) to R,(E) by
[using Eq. (3.12) again]

R(E)=RA(E)+RA(E)[Vpp+V.(E)]JR(E), (3.28a)
=RA(E)+R(E)[Vpp+V.(E)IRA(E), (3.28b)
=RA(E)+RA(E)Tpp(E)RA(E) , (3.28¢)

where

Tpp(E)=[Vpp+V(E)]+[Vpp+ V. (E)]

XR(E)Vgp+V.(E)]. (3.29)

It follows that
R(E)[Vgp+V.(E)]=RA(E)Tgp(E), (3.30a)
[Vip+V (E)]R(E)=Tgp(E)RA(E) . (3.30p)

By using all of the above properties, it is straightforward
to express Tpp in terms of Ty and T, as follows

=(Vpp+ VeaRVpp)+ (V. + V. RVpp+VppRV,+V_.R V.)

=To+Ve+VeRTo+ToR V. +V (R, +R, VesR)V,

=To+Vo+T,RaTo+ToRAT, +T,RaVo+T,RA\ToRAT,

=(Ve+TRAV )+ (To+TcRATo+ToRAT +TcRAToRAT,)

=T (E)+[14+T(E)RAE)ITo(E)[14+RA(E)T.(E)] .

Defining the scattering operators
QM (E)=14RA\(E)T(E)
QT E) =1+ T(ERAE),
we can write Tgp as a familiar distorted-wave form

Tys(E)=T.(E)+ Q. (E)To(E)YQLTUE) .

(3.31)

(3.32a)

(3.32b)

(3.33)

The physics of Eq. (3.33) is clear. The connected operators T, and QLi) describe pion multiple scattering between two
baryons. The operator T couples this multiple scattering process to other 7NN dynamics through the transition in-

teraction Vpp="Vgp—Vna na [see Ty in Eq. (3.27)].

The last step of our derivation is to use Eq. (3.16) for the effective BB interaction V(E), and the above operator rela-

tions to write the BB scattering operator 7 (E) Eq. (3.10) as



1

T(E)=V(E)+V(E)m

V(E)

32 THEORY OF MESONIC AND DIBARYONIC EXCITATIONS IN . .. 523

=(Vap+3Za+V )+ (Vg +Zp+ VIR (Vpg +2Zpa+V,)

=[(Vap+Ve)+(Vpp +VIR(Vpp + V)]

+[Za+ZaR (Vg + V)] +[(Vpp+ Ve )RZA+ZARZ4]

=Tpp+(Zp+ZaRATep) +[TppRAZA+ZA(RA+RATpgRA)IZA]

=[ZSAE)+ZA(E)RA(E)EAE)]+[1+ZA(E)RA(E)]Tpp[ 1+ RA(E)ZA(E)]

—H, E—H,
Tpp ,
E—Ho—3, P E_Hy—S\E)

=tA(E)+

where
tA(E)=Z3\(E)+ZA(E)RA(E)Z,(E)
E—H,

T E_H,—3,(E) 2E)

(3.35)
describes the “disconnected” NA interaction. We will see
later that 7, plays an important role in deriving equations
for the study of the 7d reaction.

It is evident from the definitions of =, [Eq. (3.15)] that

(NN |4 |[NN)=0,
E—H,

Therefore, the NN elastic scattering amplitude is simply
TNN,NN: <NN ! y11(E) I NN)
=(NN | T(E) |NN)

=(NN|T.+ Q" T,QF[NN) . (3.36)
Recalling the definition Eq. (3.32) for Q\*), we see that
the NN amplitude can be completely expressed in terms
of T, and T,, which can be obtained by solving two
separate integral equations, Eqgs. (3.26) and (3.27). We
note that the 7NN branch cut is isolated in T, which only
diverges logarithmically. Therefore, the kernals of the in-
tegral Eq. (3.27) for T, are compact. This equation can
be solved by using standard matrix methods on the real
momentum axis. Of course, care must be taken to handle
the 7NN branch cut in evaluating 7,. The standard con-
tour rotation method* is most convenient in our ap-
proach. Since only two-baryon states are coupled to each
other in Eq. (3.27) for T\, the size of the resulting integral
equation can be handled by most existing computers. In
this way, calculations with meson-exchange models of
Vg, such as the one derived from the Paris potential, can
be done exactly. No separable approximation is needed.

If we neglect the nonresonant pion production interac-
tion F,nNnoNN» then

(3.34)
[
Q) |NN)— |[NN) , (3.37a)
(NN|T.|NN)—O0. (3.37b)
The NN scattering amplitude becomes
Tnnonn={NN|To(E)|NN) . (3.38)

Equation (3.38) is precisely the equation used in the study
by Betz and Lee.* This approximation should be reason-
able to study NN and wd scattering in the region where
the nonresonant pion production is not important.

B. md scattering

The 7d scattering has been extensively studied by using
the well-studied three-body method.*> A more useful and
practical approach to study md reactions is, therefore, to
separate the three-body multiple scattering process from
the rest of the 7NN dynamics. In this section, we intro-
duce such an approach to show that all #d amplitudes
listed in Eq. (1.1) can be expressed in terms of the solution
of a Faddeev-type equation and the BB amplitude T of
Eq. (3.34). For notational simplicity, we negiect the less
important AA state in the following presentation. Includ-
ing the AA state is straightforward.

The only tool needed in the following derivations is
again the operator relation Eq. (3.12). The first step is to
decompose the total Hamiltonian Eq. (3.1) into two parts

H=Hp+Vy, (3.39)
where
Hp=Ho+vNn+honoa+ VNN +Prana > (3.40)
Vott= (Vg — VNN,NN) +F7NNoNN
=(VpB — V'NnN,NN — PNa,Na )+ FanneNN
=VNNoNA T FaNNoNN - (3.41)

The main feature of Hy is that it does not couple the
7NN channel to the NN state. Therefore, Hy defines the
standard pion or A multiple scattering process which can
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be handled by a three-body method (such as the method
described in Refs. 45 and 46).

In the considered space BB® 7NN, the 7d reaction am-
plitudes determined solely by Hyr can be formally written
as

TS =Vi+Vf——VF, :
i m Vi (3.42a)
=VFioit, (3.42b)
=iV, (3.420)
where i,j=1,2,3 denote, respectively, the NA, 7NN, and

7rd states. Note that the NN channel can be excluded in
solving Eq. (3.42), because there is no pion absorption
mechanism in Hyp. The channel interactions V; are de-

Thy pa={(md| TS |md) ,
Tina=(md| T |NA), etc.

(3.47)

Methods of calculating these amplitudes have been widely
discussed in the literature*® and will be described in our
subsequent papers in which we present our numerical re-
sults. Here, we focus on the role of V.

According to Egs. (3.6) and (3.44), we see that the chan-
nel interaction V; defined previously in Sec. IIIA is

Vi =V,~F + Voer. Then, the scattering amplitude Eq. (3.5)
for 7d scattering can be written as
Trama={md| T 33| md) , (3.48)
where
T 33=( V3 + Vo) +( V3 + Voff) (V3 + Vo) . (3.49)

fined by The next step is to use Eq. (3.39) to write [via Eq. (3.12)]
vi=vi 1 1 1 1
= T , 3.5
—Hp— E—H E—Hy E—H; ““E—H, (3.50)
=hsNea +0a8 + VNN NN+ PNaNa > (3.43) where
1
Vi=Hp—K,—Hq Tote=Vott+ Vot g7 Vot - (3.51)
=h”N“*A +uan+Vrana B4 1t follows that
where Hy=H,+ Vnnnn is the Hamiltonian for the 1 1
deuteron. The scattering operators are defined by Vott E—H T ot E—H; (3.52a)
(£)_ 1 F 1 1
=l4——V;. 345 - -
O = T Hpxie (349 5o = po g e (3.520)
The channel wave function can be written as By using Eq. (3.50), we have
1X;)e=af" | j) F o oF_ 1 F_ o F | pF_ 1 F
Vi+V Vi=Vi+Vi———"7V
e , AT Vs 3+ SE—Hy 3
= j i 3.46
SE_HF offE_HF 3
where H; has been defined in Eq. (3.3). (3.53)
For our later calculations, we need to solve Eq. (3.42) in ’
order to determine the following Faddeev amplitudes Equations (3.50)—(3.53) lead us to obtain
|
= Vi V=LY
33 3 3 E—HF 3 off off = 17 E—_H off
1 1 1 1
124 V. F
+VieTg off+VoffE_HV3+V3E H, ToffE_HFVS
= TE 4 Tt Ve T 4 Togg = —VE g i1 1 pr
— 433 off 3E__HF‘ off offE__H E— HF offE__HF' 3
=T+ |14V T (14— ¥
E—Hp |'° E—Hp
=TH 405 Togal*t (3.54)
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where ©§t) have been defined in Eq. (3.45). By using Egs.
(3.46) and (3.47) we then can write the 7d amplitude Eq.
(3.48) in a compact distorted-wave form

Tﬂd md = 1rd 1rd+<X1rd IToff|X(+) (355)

The above derivation can be readily extended to obtain the
amplitude for breakup process

TN, ﬂd_TgNN ra+ OCRN | Toge | Xog ') (3.56)

We now need to evaluate the second term of Eqs (3 55)
and (3 56). Since the Faddeev wave function |X1,d ) or
| X'Xn) does not have NN, 7NA, or 7AA components, it
is obvious from Eq. (3.41) that

Vote | Xomi' ) =(Vnona + Frnomnn) | X55)

=Pan(VNNoNa +FNN, oNN) X" (3.57)

where Pyy is the projection onto the NN state. It then
follows that

X | Vot | X5) =0 .
By using Eq. (3.51) and the above property, we get
X(+)> .

Vo Vote

_ _ Pyn
(X(qrd)|Toff|X§r§)>=<X§rd) tEH
(3.58)

Making use of Eq. (3.8) for the definition of the BB tran-
sition operator, we have

Pnn Pnn Pnn 1 Pxn
E—-H E—H, E—H, Hini + Hin g Him E—H,
Pnn Pnn Pxn

= T —_—. 3.59
E—H, E—H, “™“NE_H, (3.9

Note that T'yn NN is the exact NN amplitude defined by Eq. (3.36).

By Eq. (3.59), we get

O3 | Toge | X585 = X5a" | (Vo nn + Fanin, i )G an (E)Vin,na -+ Frwonn) [ X ') (3.60)

where

=~ 1 1 1

GNN= T .
NN E—H0+E—H0 NN.NNTET

The physical meaning of Eq. (3.60) is clear. It describes the effects of pion absorption on 7d scattering because of the

appearance of an intermediate NN (no pion) state.

Substituting Eq. (3.60) into Eq. (3.55), we get the final form for 7d scattering

1

' - 1
T rama=Trama+ Xa’ | (Vxann +Fann,nn) E_H, + E_H, TNN,NNHO“

Recalling Eq. (3.46), we see that Eq. (3.61) can be com-
pletely expressed in terms of T,.,d d> Tﬁd,NA, and Tﬁd,,,NN.
These amplitudes can be calculated by using the numeri-
cal method recently developed by one of us.* The same
calculation will also yield the breakup amplitude T .4 NN-

C. Pion absorption and production

Following the above derivations, we will show that the
7NN<NN transition amplitude can be calculated from
the Faddeev amplitudes T§ defined by Eq. (3.42) and the
BB amplitude T defined by Eq. (3.34). First, we consider
the md—NN process. Since the interaction Eq. (3.6) in
the NN channel (i =3) can be written as V3 = vi+ Vot
where V4 and Vf are given in Egs. (3.41) and (3.44), we
can write, according to the definition Eq. (3.5),

(Vn,na +Frn, o) [ Xd?) o (3.61)
-
Trann={md| 73 | NN)
1
= (m (75 + Vo) g He [NNY)
+{(md | Fynnonn | NN (3.62)
By using Eq. (3.50), we get
1
Trg NN = <7Td off HHi"‘ NN>
F_ 1 1
+ <7Td V3 “E‘_‘_H“F '1 + Voffﬁ JHim NN>
+{7d | Fynnonn | NN) (3.63)

Neglecting the contribution from #NA and 77NN states,
the first term on the right-hand side of Eq. (3.63) can be
evaluated as follows
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<1Td -1 NN> — <m1 F P NN
off E—H int = 7TNN—NN E—_H int
Pyn 1
={(7d |FznNoNN E_H, Hine+Hine 7= Hine | NN
~ 1
=F 4 NN E_H. —H, (T)NN,NN > (3.64)
where
ﬁ‘frd,NN=<7Td,FﬂNN—>NN INN) . (3.65)
By using the definitions of Faddeev amplitudes [Eq. (3.47)], the second term of Eq. (3.63) can be evaluated as follows
1 Pya P.nN
<de ngHint NN> =TfaNa E_H, VnanN + T g, mNN E‘_LI};‘FVNN,NN » (3.66)
<77'd 7 (S 1 NN>—TF 1l pan—t—T
3 E—HF off E—H int — 4 7d,NA E _H() NA,NN E _HO NN,NN
FTE e F 1 7 (3.67)
ﬂd,ﬁNNE_HO 7NN,NN E-—HO NN,NN - .
Substituting Egs. (3.64)—(3.67) into Eq. (3.63), we obtain
T =Tk ———l————'V 1+ S — T
7, NN = Lmd NA H, NA,NN E—H, NN,NN
F 1 1
+ |1+ T'rrd,'n'NN——_E " H, Fonnonn [ 14 E_H, TN, NN (3.68)

Equation (3.68) can be obviously extended to describe
pion production from NN scattering

: 1
T NN,NN= TiNN,NAE—_I—{;(T )NA,NN

F
+ TﬂNN,wNN——E o Fo NN, NN
—H,

X (14 (T)nw NN |+ F NN NN

E—H,

X (3.69)

1
1+ E_H, (T)nn,NN

This completes our deviations of 7NN scattering equa-
tions for the study of all NN and 7d processes listed in
Eq. (1.1), assuming that the coupling to dibaryon state D
can be neglected.

IV. COUPLING TO DIBARYON STATE D

In this section we introduce the coupling of a dibaryon
state D to NN and 7d reactions. Following the notations
of Sec. III, the considered total Hamiltonian Eq. (2.3) is of
the form ‘

H=H,+Hiy+Hpps » 4.1)

where H;, has been defined in Eq. (3.2). The transition T'

matrices Eq. (3.5) between the considered three reaction
channels NN, 7d, and #NN then take the form

1
E—Hy—Hi,—Hp_pp+i€

ﬁ‘ij(E)=ﬁ;+f7; 9} , (4.2a)

Vi=V{+Hp.ps , (4.2b)

where V; has been defined in Eq. (3.6). Note that with
the choice of channel Hamiltonian Eq. (3.3), all channel
wave functions do not have a dibaryon component.®’
Therefore, we have

<ilHD<—>BBlj>=O’ fOI' l,_]=1,2,3 (4.3)
By using Eq. (4.3) and the properties of Eq. (3.12), it is
straightforward to write Eq. (4.2) as

T E)=T 4(E)+ T PUE) , (4.42)
ﬁ‘ﬁ-f”(E)=a)§-_’+(E)HDQBBQ}+)(E) , (4.4b)
where the scattering operators are defined by

() 1 .

FAE)=1 ', 4.
o B =t e g e @3)
QB =14 ! (V! 4+ Hppp)

/ E—Hy—Hy—Hp pptie ~’ boBB

(4.6)
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7 ;; and w{T)(E) are only determined by mesonic process-
es and can be computed by using the formalism developed
in Sec. III. The task now is to develop a practical method
for calculating the second term of Eq. (4.4a).

By using Eq. (4.5) and the operator relation Eq. (3.12),
we can write Eq. (4.6) as

1

QF(E)=1 H
s (E) +E“‘H0_‘Hint_HD<—>BB DeBB
1 1
+ v+
E—Hy—H, ' E—Hy—H—Hp_pp
1
Hp pp—————V!
e Hy—Hiy |
1 (+)
=14 Hp_ pp |0;

E—~Hy—H; —Hp. pp
(4.7)

Since w}”ﬁHDeBBw;“:O [because of Eq. (4.3)], we can
use Eq. (4.7) to write Eq. (4.4b) as

TPUE) =0\~ (E)Hp 5 QT (E)
Ewﬁ-_)+(E)HEB_,DgDD(E)HD_,BBw}+)(E) s (4.8)
where

1
E—-Hy—H—Hp,pp

8gpp = <D D> . 4.9)

Since the dibaryon state D does not couple directly to the
7NN state in our model (see Ref. 38), a straightforward
operator algebra yields

1

gDD:m ) (4.10)

1

where K, is the kinetic energy of the dibaryon D. The ef-
fects of all mesonic interactions on the propagation of D
are contained in

P

o =0 Hy— Mo
- —44Lint

Hpg_,p

= Hp_,pp Hpp_,p

E—H,

P P
T(E .
E—H, ( )E___HOHBB-—»D , (4.11)

+HD—>BB

where T(E) is the BB scattering matrix defined in Eq.
(3.9) or (3.34).
By using Egs. (4.8)—(4.10), we finally obtain

1

o o (—)+
T ij(E)= T ;{E)+w; (E)HBB"’Dm

X Hp ppait(E) . 4.12)

Equation (4.12) has a familiar form employed in many
studies® =3 of the dibaryon resonance. However, our
Hamiltonian formulation of the problem has clearly
separated the “trivial” mesonic processes from the cou-

pling to the six-quark state D. Our approach rigorously

satisfies the essential two-body (NN) and three-body
(wNN) unitarity relations and is, therefore, distinctly dif-
ferent from the existing prescriptions.3! 33

To illustrate the structure of the above equations, let us
evaluate Bp for the special case that only the NA state is
coupled to the dibaryon D state Hp_ g =Hp. ,na. This is
the case which will be explored first in our subsequent cal-
culation. By using Egs. (3.34) and (3.33), we can explicit-
ly evaluate the NA—NA T matrix needed in calculating
the second term of Eq. (4.11).

1 ' 1
Bp= HD«-»NAE—_—_%—OHNA—»D +Hp.na E—H, *E_H, Hyaop

+ DNAE  H E—Ho—3, MNAE T TS E_H, NaD
(4.13)
Recalling Eq. (3.35) for 2,, it is simple [use Eq. (3.12)] to see that
1 ' 1 1 1 1 1 1
t = IA+2 b
E—H, E—Hy “E—H, E—H, ' lE—HO N E—HO]
1 1 1
= 2
E—H, = |E—H0 SE—Ho—3,
SR (4.14)
E—Hy—3, ‘
From Eq. (3.33), we have
1 1
T; = |T, 1+T,————— |Ty |1+ 77T, . 4.
NA,NA e+ |1+ ”‘E—HO—ZA 0 [ + E—He—3, ¢ o (4.15)
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Substituting Egs. (4.14) and (4.15) into Eq. (4.13), we then have

Bp(E)=Xp(E)+ Yp(E)+Zp(E)+ Wp(E) , (4.16)
where
= 1
Xp(E)=H, ———H ,
p(E) PN s HNap
Yo(E)=H L7 L
D —4IDNA E*HO_EA c E——Ho—EA NA—D »
5 1 1
Zp(E)=H, T H ,
p(E) P—NAE g 3, O H, 3, Na-D
~ 1 1
Wp(E)=H, T T H
p(E) DN Tl 3, “E—Hy—3, "E—H,_3, Na—D
1 1 1
H, T T, H
=+ D-»NAE__HO_EA OE—HO——EA “E—Ho—3, NA—D
1 1 1 1
H T T T H . 4.17
DN T S, CE_Hy—35 CE—Ho—3s CE—Ho—3s NA=D @17
Finally, it is instructive to see the structure of Eq. (4.8) in NN scattering:
T v = (NN | .74 | NN)
1
(=) (+)
= NA)H —_———H NA
(¢nn | NAYHyg,p E_K,_B, p,na{NA [ 4xk)
=(T) L 1+(T,) SN H —~—1—H
T UINNNAE T TS e ¢ NANA T S tie NaeD B g g, 1DeNA
X |1+ L L (4.18)

e (]
E—Ho—3tie Je/Nana

(T .
E—Hy—Satic | INaNN

Similar forms can also be obtained for describing the dibaryonic excitations in other 7NN processes. As seen in this ex-
ample, all of the matrix elements of YﬁID ) can be calculated entirely from the matrix elements of Ty, T,, and the Faddeev

amplitude TF. This completes our derivations.

V. SUMMARY

We have presented a theory of mesonic and dibaryonic
excitations in the 7NN system. The theory not only ex-
tends our conventional meson theory of nuclear force to
include the A excitation and the production of on-mass-
shell pions, but also makes contact with six-quark dynam-
ics. Taking into account the complexities involved in for-
mulating a rigorous and tractable scattering theory for a
practical calculation, we postulate that the 7NN dynamics
can be described by the model Hamiltonian Eq. (2.3). As-
suming that the coupled 7NN and NN dynamics can be
described in the subspace NN&NA® AAe7NNoD, we
have derived the 7NN scattering equations for a unified
study of all NN and 7d processes listed in Eq. (1.1). By

" employing the standard projection techniques, we show
that all NN and 7d amplitudes, given explicitly in Egs.
(3.36), (3.61), (3.68), and (3.69), can be expressed in terms
of three basic matrix elements of Ty, T,, and T¥. Equa-
tion (3.26) for T, and Eq. (3.42) for T'¥ contain the three-
body 7NN branch cut. Both can be handled by using the
three-body method.**¢ The two-body Eq. (3.27) for T,

can be solved by using the standard matrix method.**
With this decomposition of the three-body and two-body
dynamics, we plan to demonstrate, in future work, that all
NN and 7d scattering can be studied starting from the
most sophisticated nucleon-nucleon potential, such as that
done in Ref. 16, based on the Paris potential.

Our approach to the bibaryon resonance is different
from existing studies.’! 3> In a Hamiltonian formulation
presented in Sec. IV, our theory separates the effects due
to the “trivial” mesonic processes from the six-quark
dynamics. In addition, our formulation respects the
essential two-body (NN) and three-body (#NN) unitarity
relations. Our study of the dibaryon resonance will be
discussed in future work.

To close this paper, we want to mention that the
baryon-baryon Eq. (3.27) can also be used with a suitable
modification*® to calculate the matrix elements of NA in-
teraction in nuclear matter, which can be used to study
both the phenomenological A-nucleus spreading poten-
tial*® extracted from pion-nucleus scattering, and the so-
called A-hole Landau parameter,” which plays an impor-
tant role in the application of the Landau-Migdal theory
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of nuclear excitations. In the near future, we will make.

our first attempt to use the 7NN matrix elements generat-
ed from our theory to carry out a microscopic study of

pion-nucleus reactions. In particular, we will reexamine

the work by Ohta, Thies, and Lee,*! in order to resolve the

most fundamental problem of pion physics: How the pion
gets absorbed by nuclei.
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