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a b s t r a c t 

Information communication technology (ICT) is required in the field of agriculture to solve problems 

arising because of the aging of farmers and shortage of heirs. In particular, environmental sensors and 

cameras are widely used in existing agricultural support systems for easy data collection. Although the 

traditional purpose of these systems is naive monitoring and controlling of the environment, the propa- 

gation of advanced cultivation is now expected by applying the data to machine learning and data mining 

technologies. Therefore, we propose a novel multi-modal sliding window-based support vector regression 

(multi-modal SW-SVR) method for accurate prediction of complicated water stress, which is a plant sta- 

tus, from two data types, namely environmental and plant image data. The proposed method includes 

two methodologies, SW-SVR and deep neural network (DNN) as a multi-modal feature extractor for SW- 

SVR. SW-SVR, which we proposed previously, is a suitable learning method for data with time-dependent 

characteristics, such as plant status. Moreover, we propose a new image feature, remarkable moving ob- 

jects detected by adjacent optical flow (ROAF), to enable DNN to extract essential features easily for pre- 

dicting water stress. Compared with existing regression models and features, the proposed multi-modal 

SW-SVR with ROAF demonstrates more precise and stable water stress prediction. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Sensing technology is becoming more widespread and sophis-

icated, and many studies on artificial intelligence have demon-

trated the propagation of sophisticated intelligence by detailed

nalysis of the data. In the field of agriculture, many studies on

he propagation of advanced cultivation have been conducted to

olve several problems arising because of the aging of farmers and

hortage of heirs. These studies quantify and analyze complicated

lant statuses from various data, such as environmental data, plant

mage data, and growth status, and farmer’s decisions based on ex-

erience and intuition can be reproduced [1–4] . In particular, the

ropagation of stress cultivation based on water stress is strongly

xpected to improve profit for fruits with high sugar contents. 

The mechanism for producing sweet fruits by stress cultivation

s shown in Fig. 1 . Water stress on plants causes them to expel

ater from fruit and increase its sugar content ratio [5] . There-

ore, fruit size decreases, but sugar content increases. Although the
∗ Corresponding author. 

E-mail addresses: kaneda@minelab.jp (Y. Kaneda), mineno@inf.shizuoka.ac.jp (H. 

ineno). 

r  

r  

p  

s  

w  

ttp://dx.doi.org/10.1016/j.knosys.2017.07.028 

950-7051/© 2017 The Authors. Published by Elsevier B.V. This is an open access article u
mount of water and sugar content in fruit is inversely propor-

ional, excessive water limitation leads to the withering of plants.

herefore, by determining the ease-of-withering from water stress,

nd irrigating plants shortly before they die, the sugar content can

e increased by repeating the procedure shown in Fig. 1 . Mean-

hile, if plants are subject to considerable withering at least once,

hey will die despite being irrigated. It is important to predict fu-

ure water stress and irrigate plants prior to considerable with-

ring. Accordingly, the accurate prediction of water stress enables

ultivation of fruits with high sugar contents. 

Important data in rapid prediction of water stress includes en-

ironmental data, such as temperature, humidity, solar quantity,

nd plant fertility, because it affects the plants’ physiological pro-

esses, which causes water stress [6] . Water stress occurs partic-

larly when the amount of transpiration from the leaves exceeds

hat of the water supplied from the root. Given that the environ-

ental data is strongly related to transpiration, it is also indirectly

elated to water stress. Other data in which water stress appears

emarkably is plant image data. Fig. 2 shows example images of

lants under water stress. The leaves after exposure to water stress

hrivel up and droop compared to those before water stress. Thus,

ater stress is expressed directly in the plant image data because
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Mechanism of increasing sugar content. 

Fig. 2. Example of variation in plant under water stress. 
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leaves wilt significantly owing to water stress. Given that the two

features complement each other’s insufficiencies, complicated wa-

ter stress is expressed multilaterally. 

Meanwhile, there are two issues in predicting water stress ac-

curately from the two kinds of data. First, given that water stress

variation depends strongly on the complicated change in the nat-

ural environment over time, water stress is imbalanced data that

differs considerably in the amount of data for each characteristic.

In the field of agriculture, previous studies have dealt with imbal-

anced data such as water stress, plant disease, and environmental

factors [7–9] . Meanwhile, the majority of methods are restricted to

classification problems, and limited studies deal with the regres-

sion problem as water stress [9] . Furthermore, previous methods

have addressed the imbalance only during the training phase for

over-sampling, under-sampling, and weighting training data. How-

ever, according to our previous research [10] , training data that

constructs models should change according to the characteristic

variation with time of the testing phase. For example, in ensem-

ble learning, the weights to aggregate each model built from dif-

ferent kinds of training data should depend on the variation in

the test data. The second problem is image feature extraction from

complicated plant image data. Recently, convolutional neural net-

work (CNN), which is a type of deep neural network (DNN), has

been widely used for several applications, and surpassed human

intelligence in some computer vision tasks, such as face recogni-

tion, object detection, and object recognition. Furthermore, CNN

has demonstrated state-of-the-art results with respect to image

based plant phenotyping [11] . Therefore, CNN can be expected to

extract image features related to water stress appropriately. CNN

extracts essential features in complicated image data because it

learns how to extract features and main problems with non-linear

processing for image recognition. However, features required for

water stress prediction are not always extracted correctly despite

using CNN as a feature extractor. This failure is attributed to un-

necessary information occupying a large proportion compared with

necessary information for water stress prediction in plant image

data acquired in the greenhouse. Consequently, the unnecessary in-
ormation must be removed before inputting CNN for easy extrac-

ion of features related to water stress. 

In this paper, we propose a novel learning methodology for

redicting plant water stress called multi-modal sliding window-

ased support vector regression (multi-modal SW-SVR). SW-SVR,

hich we proposed previously [12] , specializes in predicting more

ccurately imbalanced data with time-dependent characteristics,

uch as plant status, than other ensemble regression methods, such

s gradient boosting regression, AdaBoost, bagging decision tree,

nd random forest. The basic theories comprise a specific data

rediction based on data extraction and newfangled weighting

hat determines weights in ensemble learning according to time-

ependent characteristics. The weighting of each specialized model

upplements the mutual strength and weaknesses with each other.

urthermore, multi-modal SW-SVR is an SW-SVR where DNN with

 novel image feature is applied to extract essential multi-modal

eatures from the two data types. Moreover, we propose an im-

ge feature to enables DNN to extract essential features easily to

redict water stress; this feature is called remarkable moving ob-

ects detected by adjacent optical flow (ROAF), which reproduces

he same perspective as farmers on original image data by extract-

ng the plant status of wilted leaves with water stress based on

lant wilting motion. 

The remainder of this paper is organized as follows.

ection 2 presents related work and our previously proposed

ethod in predicting water stress. The proposed methods are

escribed in detail in Section 3 . Section 4 presents the experi-

ents for evaluation of the proposed methods. Finally, the paper

oncludes in Section 5 . 

. Preliminaries 

.1. Propagation of stress cultivation 

Previously, conventional agricultural support systems collected

nvironmental data using sensor network technology to monitor

nvironmental data and control the environment naively [13] . Re-

ently, further utilization of information communication technol-

gy (ICT) for agricultural support has been livelier to propagate

dvanced cultivation of farmers. In particular, the realization of the

atering system dependent on water stress is expected to culti-

ate fruits with high sugar content. Many studies regarding wa-

er stress prediction have been conducted. Conventionally, water

tress is measured on the basis of water potential, which indicates

he moisture retention ability of a plant. Therefore, water poten-

ial is used as an indicator of water stress, and measuring water

otential yields an accurate value of water stress [14] . However,

ater potential is not obtained in real-time because the measure-

ent methods are based on destructive testing. To measure water

tress in real-time, water stress prediction using sensor data, such

s environmental data, plant image data, and growth status, are

oted. Approaches based on growth status, such as stem-diameter

nd natural frequency of leaves, predict water stress accurately be-

ause these data appear to fluctuate according to water stress [1,2] .

urthermore, the stem-diameter approach enables water stress to

e measured with non-destructive and non-contact methods con-

inuously using laser displacement sensors that measure the ap-

roximate shape of objects based on laser light injected by the

ensor. However, it is difficult to apply these approaches practi-

ally because these measuring devices are expensive and require

rofessional knowledge for correct measurement. 

On the other hand, the approaches based on environmental

ata and plant image data are measured easily [3,4] because the

ensors and cameras required for measurement are generally in-

xpensive, and expert knowledge is unnecessary for installation

nd measurement. Furthermore, the approaches measure the data
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Fig. 3. Processing outline of SW-SVR, (a) D-SDC that extracts training data based on movement of the specialized situation, (b) dynamic weighting depending on variation 

in test data. 
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n a non-destructive and non-contact manner. However, compared

ith the approaches based on growth status, it is difficult to pre-

ict complicated water stress that changes based on various factors

rom only external factors, such as environmental data and plant

mage data. In other words, there is a trade-off between prediction

ccuracy and ease-of-measurement. 

We aim for a balance in this relationship and predict water

tress accurately from environmental data and plant image data

sing multi-modal SW-SVR based on ingenious machine learning

echnologies and an image feature. Multi-modal SW-SVR supple-

ents the problem related to prediction accuracy caused by using

nly an external factor that is easy to collect and improves practi-

ality for predicting water stress compared with conventional ap-

roaches. Furthermore, to our knowledge, this is the first-time wa-

er stress is predicted by combining environmental data and plant

mage data using DNN. 

.2. Sliding window-based support vector regression 

Previously, we proposed a new methodology called SW-SVR for

redicting imbalanced data with time-dependent characteristics, as

hown in Algorithm 1 . The basic theories comprise specific data

rediction based on data extraction and a newfangled weighting

hat determines weights in ensemble learning depending on test

ata. 

First, SW-SVR builds plural linear support vector regression

SVR), specialized for each representative situation, such as differ-

nt seasons and climates. The specialized situations are defined

y centers of clusters classified by k-means [15] , instead of ran-

om sampling, so that the specialized situations can represent

ore various situations. The specialized SVRs are built based on

ynamic-short distance data collection (D-SDC) that extracts effec-

ive data for specific data prediction by taking into account move-

ent, which is the feature variation during prediction horizons.

xtracted training data S by D-SDC is based on r , which is a move-

ent of a specialized situation, as shown as follows: 

 t = { ( x i , y i ) | ‖ 

G t − x i ‖ 

< r t } , r t = ‖ 

G t − G 

′ 
t ‖ 

, 

here x is the feature set of the training data, y is the dependent

ariable of the training data, G is a specialized situation, and G 

′ 
s a specialized situation after prediction horizons. D-SDC extracts

raining data whose norm from a specialized situation is shorter

han movement r , as shown in Fig. 3 (a). D-SDC is based on move-

ent r because we consider that the amount of data required for

redicting specific data depends on the characteristics of the spe-

ific data. In particular, more training data is necessary to special-

ze for a situation that changes dramatically with time. Meanwhile,
ovement r is unknown because G 

′ is not observed at the time.

herefore, D-SDC estimates movement r based on movements in

raining data, similar to a specialized situation by weighted aver-

ge, where the weights are reciprocals of the norms between a

pecialized situation and each training data, as follows: 

 t = ‖ 

G t − G 

′ 
t t ‖ 

≈
∑ N 

i =1 w i ‖ 

x i − x 

′ 
i i ‖ ∑ N 

i =1 w i 

where w i = 

1 

‖ 

G t − x i ‖ 

p , 

here N is the number of training data, and p is a weighted

arameter. Then, SW-SVR builds plural linear SVRs as specialized

odels based on the extracted data. Each specialized model accu-

ately predicts the data similar to the specialized situation. 

Then, conclusively predicted values of SW-SVR take characteris-

ic variation with time of test data into account. In general ensem-

le learning for regression, the weights to integrate each model are

etermined completely in the training stage. However, SW-SVR dy-

amically determines the weights for each prediction repeatedly,

nd the weights are decided by the similarity between the test

ata and each specialized situation in each specialized model as

hown in Fig. 3 (b). A final hypothesis of SW-SVR is shown as fol-

ows: 

 ( P ) = 

∑ n 
t=1 w t H t ( P ) ∑ n 

t=1 w t 

where w t = 

1 

‖ 

G t − P ‖ 

q , 

here P is the test data, n is the number of specialized models,

 ( X ) is a hypothesis of each model, and q is a weighted parameter.

espite characteristic variation with time in the test data, SW-SVR

lways gives priority to specialized models that are more suitable

or predicting test data. 

Meanwhile, SW-SVR uses two kinds of feature extraction to

ap into new feature space to take the presence of noise and non-

inear relationships into account: kernel approximation [16] and

artial least squares (PLS) regression [17] . However, the proce-

ure assumes input of dense sensor data and is not suitable for

mage data that involves many features and multidimensionality.

oreover, the feature extraction does not take multi-modal fea-

ures combining image data and environmental data into account.

herefore, SW-SVR is used to predict future water stress accurately

ased on environmental data and image data; an alternative to fea-

ure extraction for multi-modal features must be considered. 

.3. Deep neural network 

DNN is becoming more widespread because it learns how to ex-

ract features as well as main problems with non-linear processing,

nd the deep construction can represent all relationships approx-

mately. DNN is used rapidly because recent research has solved
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the gradient vanishing problem, which is a long-standing problem

occurring in back propagation: pre-training, dropout, batch nor-

malization, and weight initialization [18–21] . However, when input

data is multidimensional data like image, the number of param-

eters becomes enormous and causes overfitting because all neu-

rons between adjacent layers in DNN are connected. To overcome

the overfitting problem, CNN, which is a DNN with smaller learn-

ing parameters, is widely used and is highly successful in several

computer vision tasks [22,23] . CNN, whose structure is based on a

visual cortex of the creatures’ brain, binds a neuron in each layer

to only neurons of local regions called receptive fields, and not to

all neurons of the previous layer; additional parameters in the re-

ceptive field are shared to all receptive fields. Therefore, it is easier

to prevent overfitting in CNN than in DNN using image data. The

receptive field with sharing the parameter is regarded as a pro-

cess of convoluting a two-dimensional filter with an image. The

layer with convolutional operation is called a convolutional layer

in CNN. Furthermore, CNN also has pooling layers to reduce com-

putational complexity. Repeating convolutional and pooling layers

enables CNN to extract essential features from an image by passing

only distinguishable information of the features obtained by the

convolution process to the next layer. 

However, features required for water stress prediction are not

always extracted correctly, despite using CNN as a features extrac-

tor, because in plant image data, unnecessary information occupies

a large proportion compared with the necessary information for

water stress prediction. The necessary information is the only plant

status of the wilted leaves with water stress, such as texture, luster,

color, and shape. Meanwhile, plant image data also involves con-

siderable unnecessary information, such as background and sun-

light. Therefore, we propose a new image feature to enable CNN to

easily extract the plant status related to water stress from compli-

cated plant image data. The proposed feature reproduces the same

perspective as farmers on original image data by extracting only

the plant status of wilted leaves with water stress based on plant

wilting motion. 

3. Proposed approach 

3.1. Plant water stress prediction using multi-modal SW-SVR 

We propose a novel plant water stress prediction method using

multi-modal SW-SVR to reproduce farmer’s cultivation precisely.

Our method uses two kinds of data: image data in which water

stress variation is expressed directly as plant wilting, and environ-

mental data related to plant transpiration, which is the cause of

water stress. Given that the two features complement each other’s

insufficiencies, complicated water stress is expressed multilaterally.

Multi-modal SW-SVR is an SW-SVR to which DNN with a novel

image feature is applied to extract essential multi-modal features

from the two data types ( Fig. 4 ). SW-SVR is suitable for data

with time-dependent characteristics, such as plant status. SW-SVR,

which we proposed previously, builds many models specialized for

various situations and aggregates the models effectively accord-

ing to time-dependent characteristics. Meanwhile, DNN can ex-

tract multi-modal features from different data types because non-

linear processing is applied to each feature comprehensively [24] .

CNN extracts particularly essential features suitable for main prob-

lems from image data, unlike the complicated conventional meth-

ods that require human expertise. In the proposed multi-modal

SW-SVR, multi-modal features are extracted by DNN based on en-

vironmental data, and a proposed image feature from which only

features related to water stress in plant image data are easily ex-

tracted. Specifically, features are first extracted from plant image

data in CNN, and then integrated with environmental data in the

same network. Then, SW-SVR predicts water stress based on the
ulti-modal features while following water stress variations with

ime. 

In the network, an image processing method for motion detec-

ion, called optical flow, is applied to image data to extract impor-

ant features related to water stress in similar plant image data.

ptical flow represents motion based on spatiotemporal variation

rom two image data, and leaves with water stress are clarified by

ptical flow because water stress in plant image data is expressed

s wilting motion. Furthermore, we propose an image feature us-

ng plural optical flow, called remarkable moving objects detected

y adjacent optical flow (ROAF), which extracts the plant status of

he wilted leaves with water stress based on plant wilting motion;

his is unlike conventional region extraction methods. Specifically,

OAF reproduces the same perspective as farmers on the original

mage data. 

The system architecture for our method is shown in Fig. 5 . We

ssume that the proposed system is processed on our previously

mplemented agriculture support system for greenhouses [25] . In

he previously proposed system, a network in a greenhouse col-

ects image data and environmental data, and sends control signals

o control the equipment. Moreover, in the cloud system, future

ater stress is predicted, and control signals based on the predic-

ion is sent to the greenhouse. We added cameras to take plant im-

ge data, and stem-diameter sensors, to the system. Stem-diameter

ensors are only used for labeling of grand-truth for predicting wa-

er stress, which is described in detail in the succeeding section.

n this study, mainly the water stress prediction methodology in

ig. 5 is mentioned. Finally, we assume that actuators for irriga-

ion, such as pumps, are controlled based on the prediction; then,

lants are watered before they die. 

.2. Remarkable moving objects detected by adjacent optical flow 

ROAF consists of the following procedures: optical flow (OF)

nd pooled optical flow (POF). The process of generation for one

OAF and an example of ROAF are shown in Fig. 6 (a) and (b),

espectively. First, an optical flow, which is an image processing

echnology, is used to recognize the wilting motion of plants. Opti-

al flow represents motion based on spatiotemporal variation from

wo image data. In our methods, deep flow [26] , which is an opti-

al flow algorithm, is used. Deep flow extracts dense optical flow,

nd the motion of non-rigid objects can be grasped. Therefore, the

lant’s motion is detected easily and robustly in plant image data

hat involves considerable information not related to water stress. 

Optical flow expresses the motion including moving leaves due

o water stress, from the image data. However, optical flow can ex-

ract only the difference between two points, and any movement

hat occurred previously cannot be considered completely. Mean-

hile, even if there is no movement on the leaves at the current

ime, the water stress on the leaves is given if the leaves with-

red in the past. Therefore, features related to water stress can

lso be extracted from leaves that wilted during past fixed peri-

ds. Then, we propose the POF as a new optical flow methodology

onsidering a wilting motion that has already occurred. The main

ethodology of POF is pooling adjacent optical flow. Basic pool-

ng processing in CNN is a non-linear down-sampling methods for

ne channel, but maximum values for each pixel from the plural

ptical flow are calculated in our pooling processing. As a result,

he new optical flow is generated considering all withering mo-

ion that occurred in previous fixed periods. Specifically, POF repre-

ents the location of only the leaves subject to water stress. POF is

lso effective in terms of noise removal because only motions with

hange over a time are emphasized. The motion counteracts tem-

oral noise and motion on leaves. Given that noise caused mainly

y the wind occurs frequently and irregularly on the leaves, it is

seful to be able to remove these noises automatically based on
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Fig. 4. Overview of multi-modal SW-SVR. 

Fig. 5. System architecture. 
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he relative difference in motion. If the maximum values obtained

rom POF are very small, on a supposition that water stress cannot

ccur on the pixel, the pixel is excluded from the extraction target

ixels. 

To irrigate plants correctly during stress cultivation, farmers

ave focused on some important plant statuses of leaves, such as

exture, luster, color, and shape, which are included in the origi-

al image data. Meanwhile, we propose a POF that describes the

ocation of only leaves subject to water stress by combining plu-

al optical flow. Finally, we apply POF to the original image data

hat includes considerable information to extract the above plant

tatus from only leaves with water stress focused on by POF; the

xtracted original image data by POF is named ROAF. ROAF is gen-

rated by mask processing when the POF is used as a mask image,

nd only pixels with detected optical flow in POF are extracted in

he original image data. ROAF reproduces the same perspective as

armers in the original image data, and CNN can be learned us-

ng image features obtained from the viewpoint because when all

alues of the targeted plural pixels by the kernel in convolutional

ayer become zero, the information is not transmitted from the

ixels to the neurons in the next layer. Specifically, the neurons

re not firing. By setting the pixels in which POF is not detected

o zero, the pixel information is not transmitted and is not used to

pdate weights in CNN. Consequently, weights in CNN are updated

sing only the important plant status considered by farmers in the

riginal image data. 
.3. Network architecture for DNN 

Fig. 7 and Table 1 show a network architecture for DNN that

chieves compatibility between reducing the number of parame-

ers and improving the generalization performance. Considerable

mage data with labels is generally collected through an inter-

et service, such as ImageNet [27] , for problems of general object

ecognition. Therefore, even if the number of parameters increases

wing to the complication of network architecture, DNN can learn

orrectly from the considerable image data. However, given that

here is no plant image data associated with stem-diameter avail-

ble on the internet, the image data must be generated, and it is

ifficult to gather many of the plant image data. Meanwhile, fewer

ata compared to the amount of the parameters leads to over-

tting in the learning process. Accordingly, the network focuses on

he trade-off relationship between reducing the number of param-

ters and improving generalization performance. 

Contrivances in our DNN are described below. First, initial val-

es for weight parameters are determined based on He initializa-

ion [21] for efficient learning in DNN. Initial values are highly im-

ortant because the progress of learning depends greatly on the

nitial values. Previously, initial values were defined randomly in

eneral, but He initialization is based on Gaussian distribution and

isperses all activation maps. The network is trained efficiently

ased on moderately diverse data. Next, network A is a general

our-layer CNN with batch normalization layers [20] to extract
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Fig. 6. Feature extraction based on the proposed ROAF, (a) process of generation for one ROAF, (b) example of ROAF. 
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essential features from ROAF efficiently. Batch normalization is

used for acceleratory learning in DNN, and the role of batch nor-

malization is similar to He initialization. Batch normalization ad-

justs the activation distribution to vary it properly. The kernel size

of the convolution layer was limited to three to reduce learning pa-

rameters. Then, network B enlarges the number of dimensions of

the environmental data by using non-linear conversion in the fully

connected layer. Given that environmental data has never had a

complicated relationship compared with the image data, one fully

connected layer is used to extract essential features from the envi-

ronmental data. Finally, network C integrates the features based on
he image data and environmental data extracted by networks A

nd B, respectively, in a 1 × 1 convolution layer as the fusion layer.

y setting the number of sheets of kernels in the 1 × 1 convolu-

ional layer to less than the number of channels of the inputted

ata, the new data with fewer channels is outputted. The layer

as few learning parameters, but the features between different

hannels can be integrated efficiently compared with other fusion

ethods [28] . Finally, the integrated features are inputted to two

ully connected layers. 
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Fig. 7. Network architecture for multi-modal feature extraction. 

Table 1 

Detail of parameters for network as shown in Fig. 7 . 

(a) Detail of parameters for network A. 

Layer Patch Stride Map size Function 

data – – 144 × 144 × 3 –

conv1 3 × 3 2 72 × 72 × 24 PReLU 

norm1 – – 72 × 72 × 24 –

pool1 2 × 2 2 36 × 36 × 24 –

conv2 3 × 3 1 36 × 36 × 48 PReLU 

norm2 – – 36 × 36 × 48 –

pool2 2 × 2 2 18 × 18 × 48 –

conv3 3 × 3 2 9 × 9 × 96 PReLU 

norm3 – – 9 × 9 × 96 –

pool3 2 × 2 2 5 × 5 × 96 –

conv4 3 × 3 2 3 × 3 × 96 PReLU 

norm4 – – 3 × 3 × 96 –

pool4 2 × 2 2 2 × 2 × 96 –

(b) Detail of parameters for network B. 

Layer Patch Stride Map size Function 

data – – 6 –

fc – – 384 PReLU 

(c) Detail of parameters for network C. 

Layer Patch Stride Map size Function 

data – – 1 × 384 × 2 –

fusion – – 384 –

fc1 – – 64 PReLU 

norm – – 64 –

fc2 – – 1 PReLU 
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.4. Environmental data related to water stress 

Water stress occurs particularly when the amount of transpira-

ion from the leaves exceeds that of the water supplied from the

oot. Transpiration is related to various environmental data, such

s temperature, humidity, solar quantity, and plant fertility. Mean-

hile, a collection of data must be easy to use as features because

he same environment used measure the features must be con-

tructed in applications. Then, we use scattered light wireless sen-

or nodes [25] to measure all of these data. These are a cube cov-

red with light shielding frames, with the exception of one surface,

nd the sensor node can collect temperature, humidity, and two

olar quantity types. Silicon photodiodes for sensing solar quan-

ity are installed on and in the sensor node. The silicon photodi-

de on the sensor node collects direct light, and another silicon

hotodiode in the sensor node collects scattered light. Given that

cattered light is not affected by shadows, it always determines the
verall solar brightness. Therefore, solar quantity in plant commu-

ities can be measured as scattered light. Moreover, based on the

haracteristics of scattered light, the sensor nodes installed on and

n the plant community can measure plant fertility because plants

row in the direction of the light. Scattered light in a plant com-

unity decreases according to plant growth. Consequently, the ra-

io of scattered light in plant community to that on plant commu-

ity indicates continuous non-contact plant fertility. 

.5. Definition of water stress 

In our method, stem-diameter is measured as the water stress

f the dependent variable during the training phase. Water stress

ccurs by decreasing the amount of water in the plant; the in-

rease and decrease are revealed explicitly by the thickness of

tem-diameter. Then, water stress can be measured based on the

tem-diameter. According to the study that evaluated the rela-

ionship between stem-diameter and water stress, plants subject

o water stress tend to increase the maximum variation in stem-

iameter per day [1] . Furthermore, stem-diameter enables water

tress to be measured continuously in a non-destructive and non-

ontact manner using a laser displacement sensor that measures

he approximate shape of objects based on laser light injected by

he sensor. Measuring the stem-diameter with a laser displacement

ensor enables us to gather considerable data mechanically nec-

ssary for machine learning. Therefore, we adopted stem-diameter

s dependent variable. Meanwhile, the installation method and site

ere determined based on the opinions of experienced farmers. 

Although there is a strong relationship between stem-diameter

nd water stress, it is difficult to use the stem-diameter directly as

 dependent variable because it also changes with growth of the

lant. Then, we focus on the current difference from the thickest

tem-diameter and define the difference in stem-diameter (DSD)

s the dependent variable. DSD is expressed as the difference be-

ween the maximum stem-diameter (SD) observed thus far and the

urrent stem-diameter (SD i ) as follows: 

S D i = max ( S D 0 , . . . , S D i ) − S D i . 

The maximum value continuously updates with plant growth.

y calculating the decrease from the maximum stem-diameter, the

ariation due to plant growth is ignored, and only the amount of

ater stress can be quantified from the stem-diameter. 

. Experiments 

.1. Prototype implementation 

We implemented a prototype of the proposed method in a

ow-stage dense planting cultivation for tomatoes in Shizuoka pre-

ectural agriculture and forestry research institute. For a specific

omato seedling, we installed a small outdoor camera (GoPro

ERO 4 Session, Woodman Labs) and a laser displacement sensor

HL-T1010A, Panasonic) for stem-diameter measurement. Moreover, 

cattered light wireless sensor nodes were installed on and in the

lant communities. Our targeted locations were four cultivation

eds where twenty-four tomatoes were cultivated in each bed. In

ur experiment, nursery trees cultivated in the center of each cul-

ivation bed were targeted to predict future water stress. Fig. 8 (a),

b), and (c) show an overhead view in one cultivation bed, the lay-

ut of measuring equipment for one targeted tomato, and over-

ead view in entire protected horticulture, respectively. All cam-

ras were attached to the steel pipes of the cultivation beds, and

he cameras were installed at locations where the targeted tomato

as at the center of images. Paired scattered light sensors installed

n and in plant communities can measure temperature, humidity,

olar quantity, and plant fertility. In this evaluation, the average
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Fig. 8. Experimental environment, (a) overhead view in one cultivation bed, (b) layout of measuring equipment for one targeted tomato, (c) overhead view in entire protected 

horticulture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Detail of each data for evaluation. 

Name Image Environmental data Network architecture 

ROAF-S ROAF Used Fig. 7 

ROAF ROAF Unused Fig. 9 

POF-S POF Used Fig. 7 

POF POF Unused Fig. 9 

Org-S Original Used Fig. 7 

Org Original Unused Fig. 9 
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values of the two temperatures and humidities were used as fea-

tures because these data do not differ significantly between the in-

ternal and external plant communities. Meanwhile, scattered light

wireless sensor node can measure the two solar quantity types;

the upper and inner silicon photodiodes measure direct solar and

scattered light, respectively. However direct solar measured by the

sensor node installed in plant communities is extremely unstable

and must not be used as a feature because the presence or ab-

sence of shadows on the sensor changes frequently owing to move-

ment of leaves caused by the wind. Consequently, we used six fea-

tures: average temperature, average humidity, ratio of paired scat-

tered light, upper direct light, upper scattered light, and inner scat-

tered light. Meanwhile, we replaced the laser displacement sensors

at the upper part of the plants after several weeks because stem-

diameters away from the upper part do not change with growth. 

We collected all data during certain growth stages, from the

eight-leaf stage for a period of one month. We assumed practical

applications for control of the watering systems. It is highly im-

portant to control watering precisely during the period to cultivate

fruits with high sugar content because plant growth is the fastest

during this period. Data was collected at one-minute intervals, and

up to 45,0 0 0 data were gathered within the period from one cul-

tivation bed. 

4.2. Experimental condition 

We evaluated the performance of multi-modal SW-SVR using

actual agricultural data collected by the prototype. In the evalu-

ation, future DSD was predicted because this knowledge enables

farmers to irrigate to the occurrence of severe wilting. According to

farmers, tomatoes completely wither within approximately 30 min;

then, we predicted the DSD 1 h later with a provisional margin. We

performed two evaluations on the detailed performance of multi-

modal SW-SVR. In the first evaluation, to investigate DNN using

ROAF and environmental data, six features for inputting DNN were

compared: ROAF-S, ROAF, POF-S, POF, Org-S, and Org. The details

of the comparison are shown in Table 3 . The features combin-

ing image data and environmental data were inputted to the net-

work architecture as shown in Fig. 7 . In contrast, the features with

only image data were inputted in another architecture as shown in

Fig. 9 . The architecture is based on Fig. 7 , and the only difference

is the omission of the fusion layer. The details of training, valida-

tion, and test data are shown in Table 2 . The time points all of

these data were corrected appropriately and used for evaluation.

To evaluate the generalization performance of each feature, culti-

vation beds of the training data are different to that of the valida-

tion and test data. This is because we assume an application that
ollects data for a certain period and then measures the remain-

ng period using a model tuned with the collected data as with

he calibration period of the conventional sensors for agriculture.

herefore, we used the validation data with the same cultivation

ed as and different collection period to the test data: the valida-

ion data is data collected before 12/Aug./2016, and the test data is

he data collected after this in the same area. 

AE = 

1 
N 

N ∑ 

i =1 

∣∣y i − ˆ y i 
∣∣, RMSE = 

√ 

1 
N 

N ∑ 

i =1 

(
y i − ˆ y i 

)2 
, 

SE = 

N ∑ 

i =1 
( y i − ˆ y i ) 

2 

N ∑ 

i =1 

( y i −ȳ ) 
2 

, RAE = 

N ∑ 

i =1 

| y i − ˆ y i | 
N ∑ 

i =1 

| y i −ȳ | 
, 

Meanwhile, important parameters are tuned by using random

ampling: learning rate, batch size on mini-batch learning, and

ropout rate. Finally, the error indicators include mean absolute er-

or (MAE), root mean squared error (RMSE), relative squared error

RSE), and relative absolute error (RAE) as follows: where N is the

umber of test data, y is the true value, ȳ is the average value of

ll true values, and ˆ y is the predicted value. All models were tuned

ased on validation data. The models that have the lowest MAE for

alidation data were selected as tuned models. 

In the second evaluation, we compared the performance of

W-SVR with extracted features by DNN. The comparisons were

onventional regression algorithms: decision tree (DT), k-nearest

eighbor (k-NN), linear SVR, gradient boosting (GB), random forest

RF), and SVR with a radial basis function kernel. Moreover, to eval-

ate the superiority of fine-tuning with SW-SVR and the above re-

ression algorithms, DNN was used for comparison. These regres-

ion methods are used instead of the output layer in the trained

NN. The error indicators were the same as the first evaluation:

AE, RMSE, RSE, and RAE. Unlike the first evaluation, a grid search

s used for parameter tuning. 

All implementations for the evaluation were executed in

ython. In particular, chainer [29] was used for implementa-

ion of DNN, and implementations in scikit-learn [30] were used
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Fig. 9. Network architecture for image-only data. 

Table 3 

Comparative features for DNN. 

Data Area Periods The number of time points 

Training data 1, 2, 3 05/Aug /2016–03/Sep./2016 15 ,778 

Validation data 4 05/Aug./2016–12/Aug./2016 1372 

Test data 4 12/Aug./2016–03/Sep./2016 4606 

Algorithm 1 Sliding window-based support vector regression. 

Input: 

Training data set: S = { ( x 1 , y 1 , x ′ 1 ) , . . . , ( x N , y N , x ′ N ) } where x i ∈ X, y i ∈ Y, x ′ 
i 
∈ X ′ 

Test data: P 

Number of models: n 

Weight parameters: p , q 

Preprocessing: 

1. Apply normalization to X and X ′ 
2. fit kernel approximation and PLS regression to X and X ′ 
3. M i = ‖ x i − x ′ i ‖ , i = 1 . . . N

4. G t ← each center of kmenas (X ) , t = 1 . . . n 

For t = 1 to n do 

1. D ti = ‖ G t − x i ‖ , i = 1 . . . N

2. r t = 

N ∑ 

i =1 

( w i M i ) / 
N ∑ 

i =1 

( w i ) where w i = 1 /D p 
ti 

3. S t = { ( x i , y i ) | D ti < r t } , i = 1 . . . N

4. H t ( X ) ← train LinearSVR ( S t ) 

Output: 

H ( P ) = 

n ∑ 

t=1 

( w t H t (P) ) / 
n ∑ 

t=1 

( w t ) where w t = 1 / ‖ G t − P ‖ q 

Fig. 10. Error indicators of DNN in test data when using each feature for input of DNN. 
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or conventional regression algorithms. The code is available at

ttps://github.com/MinenoLab/MultiModalSWSVR . This evaluation 

as performed on a machine with Intel Core i7-5820K Processor,

eForce GTX TITAN X, and 48GB of memory. 

.3. Result and discussion 

Fig. 10 shows each error indicator of DNN for the test data

hen the features are varied. The results show that the prediction

erformance of ROAF-S is the best, followed in descending order by
hat of ROAF, POF-S, POF, Org-S, and Org. In particular, ROAF-S with

he best features is able to reduce the prediction error of MAE by

pproximately 35% compared with Org. Moreover, given that only

SE of ROAF-S was less than 1, the result demonstrates that the

rediction of ROAF-S is better than that of the naive model; all pre-

iction values are the average of true values. Meanwhile, the pre-

iction errors are greatly reduced each time the used image data is

mproved and can be further reduced by adding the environmen-

al data. In particular, the good effect of ROAF is significantly larger

https://github.com/MinenoLab/MultiModalSWSVR
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Fig. 11. True values and predicted values of DNN in test data when using each feature for input of DNN. 
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than that of the environmental data because the prediction error of

ROAF is less than that of Org-S. 

Fig. 11 shows true values of the test data and predicted val-

ues of DNN based on each feature. According to the results, ROAF-

S tracks the characteristics of the test data particularly compared

to other features. Furthermore, the result clarifies the effects of

adding environmental data and ROAF in more detail. Compared

with Fig. 11 (b) on ROAF and Fig. 11 (f) on Org, although all large

DSD variation cannot be captured from ROAF, it is possible to cal-

culate the prediction values closer to the true values as a whole

because ROAF extracts only important leaves subject to water

stress. Specifically, the versatile and essential features are indepen-

dent of cultivation beds. Meanwhile, the original image data in the

same cultivation bed are highly similar to each other because the

data is taken continuously from the same location. Consequently,

the features depend substantially on the cultivation bed. In this

evaluation, the cultivation beds for training and that for validation

and testing were divided because practical use is assumed. There-

fore, DNN based on the original image data specializes only the

cultivation bed for training and predicts considerably different val-

ues from true values for test data with a different cultivation bed.

On the other hand, the model based on ROAF involves high gen-

eralization performance for test data of different cultivation beds.

Next, compared with Fig. 11 (a), (c), and (e) on using environmen-

tal data and Fig. 11 (b), (d), and (f) on not using that, the addition

of environmental data allows the possibility of DNN with ROAF to
apture large variations of DSD more correctly. The result demon-

trates that ROAF, which is versatile and an essential image fea-

ures rerated to water stress, also increases the effect including en-

ironmental data. 

Next, Fig. 12 shows each error indicator when SW-SVR and the

omparative models predict future DSD using the extracted fea-

ures by DNN based on ROAF-S. The result demonstrates that the

rediction performance of SW-SVR is best in the models. In partic-

lar, SW-SVR is able to reduce the prediction error of MAE by ap-

roximately 20% compared with that of DNN. Moreover, although

ther prediction errors are worse compared to DNN, SW-SVR is the

nly model that can use the extracted features based on ROAF-S

ffectively. Fig. 13 shows the true values and predicted values of

NN based on ROAF-S, SW-SVR, and SVR, which is the best model

n the comparison. SW-SVR outputs the predicted values close to

he true values compared to SVR, and the prediction is highly sta-

le. In particular, the test data predicted largely in DNN can be

redicted accurately in SW-SVR, and it is possible to capture the

haracteristic variation of DSD correctly. In contrast, the predicted

alues of SVR closely approximate that of DNN, to which substan-

ial noise is added; the predicted values of SVR was more unstable

han that of DNN. Consequently, when using the conventional re-

ression algorithms, it is difficult to make better relationships be-

ween the dependent variable and independent variables extracted

y DNN than the output layer of DNN. Meanwhile, the reason for

he reduction in the prediction error in SW-SVR is that the charac-
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Fig. 12. Error indicators of each model in test data when using ROAF-S for input of DNN. 

Fig. 13. True values and predicted values when using ROAF-S for input of DNN, (a) compared with DNN and SW-SVR, (b) compared with DNN and SVR that is the best 

model in all comparisons. 

Fig. 14. True values, weights, and predicted values for each specialized model in test data, (a) the specialized model for high water stress, (b) the specialized model for low 

water stress. 
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eristic variation with time in untrained test data can only be cap-

ured with the data extraction of D-SDC and dynamic weighting in

W-SVR. 

Fig. 14 indicates the weights of each specialized model, true val-

es of test data, and predicted values of each specialized model

hen focusing on specialized models for two situations: high wa-

er stress and low water stress. Note that whether the models are

pecialized in which situations is decided from an average of the

ependent variable of the training data used for building each spe-
ialized model. That of the specialized model for high water stress

hown in Fig. 14 (a) is 0.043, and that of the specialized model for

ow water stress shown in Fig. 14 (b) is 0.014. Fig. 14 (a) shows that

he specialized model for high water stress can predict data with

arge DSD relatively accurately, at the same time, weights for inte-

ration when predicting the data is increased. On the other hand,

ata with low water stress outside the specialization is not pre-

icted correctly, but the weights when predicting the data is re-

uced. Fig. 14 (b) further shows that the specialized model for low
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Fig. 15. Error indicators of SW-SVR in test data when using extracted features by DNN, (a) error indicators of SW-SVR when using each feature for input of DNN, (b) MAE 

of SW-SVR and DNN when using each feature for input of DNN. 
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water stress can predict only data with low water stress more ac-

curately, and the weights increase when only predicting the data

with low water stress. These results demonstrate the effectiveness

of SW-SVR from two viewpoints. First, specialized models built by

extracted training data by D-SDC can predict only specialized sit-

uations accurately. Second, dynamic weighting is strongly affected

by each specialized model only when the models can accurately

predict the test data with time-dependent characteristics. Specif-

ically, the specialized models for various situations have a great

relationship in which mutual strength and weaknesses are inter-

polated with each other. Based on above advantage in SW-SVR, it

is believed that it is the only model that can make full use of the

multi-modal features extracted by DNN effectively. The first eval-

uation mentioned above describes the effectiveness of extracting

multi-modal features using DNN, and this second evaluation men-

tions that SW-SVR can build a more effective model based on the

extracted multi-modal features by novel approaches not character-

istic of other models. From these discussions, it is meaningful to

distinguish between DNN for extracting multi-modal features and

SW-SVR for future prediction. 

Finally, Fig. 15 shows each error indicator of SW-SVR for var-

ied features in DNN. Fig. 15 (a) shows that ROAF-S is the best fea-

ture for predicting future water stress even when the processing

of the output layer in DNN is replaced with SW-SVR. In particu-

lar, the features based on ROAF-S reduced the prediction error of

MAE by approximately 41% compared with those based on Org in

SW-SVR. Meanwhile, compared with DNN and SW-SVR as shown

in Fig. 15 (b), SW-SVR demonstrates better prediction performance

than the output layer of DNN for all features. Although the best

feature for SW-SVR is ROAF-S, the differences between ROAF-S and

other features in SW-SVR are smaller than that of DNN. Scatter

plots of SW-SVR predicted values with respect to the true values

of DSD using each feature for input of DNN are shown in Fig. 16 .
he results indicate that the ROAF-S has the highest positive corre-

ation coefficients of all extracted features. Although, it is believed

hat SW-SVR can build a model effectively for various features ex-

racted by DNN, further studies are required to reveal the detailed

erformance of multi-modal SW-SVR. 

. Conclusion 

We proposed a novel plant water stress prediction method us-

ng multi-modal SW-SVR to reproduce farmers’ cultivation pre-

isely. Given that plant image data and environmental data com-

lement each other’s insufficient information, the complicated wa-

er stress is expressed multilaterally. In multi-modal SW-SVR, DNN

s applied to feature extraction in conventional SW-SVR to predict

ater stress accurately based on the environmental and plant im-

ge data. DNN extracts multi-modal features related to water stress

sing the proposed image feature, ROAF, which expresses image

ata of leaves only using water stress based on plant wilting mo-

ion. ROAF reproduces the same perspective on the original image

ata as farmers, and DNN can be learned with the viewpoint in

omplicated plant image data and environmental data. We eval-

ated the proposed multi-modal SW-SVR with ROAF using actual

gricultural data. The experimental results demonstrated that the

odel built from the multi-modal features combining ROAF and

nvironmental data, surpasses that based only on original image

ata significantly in terms of prediction error. Moreover, the pro-

osed ROAF enables SW-SVR to predict future water stress more

ccurately than DNN and existing regression algorithms. 

In future work, the introduction of motion information must

e considered. Although ROAF focuses on leaves with large move-

ents owing to water stress, the information regarding magnitude

nd angle obtained in optical flow have not been used directly.

owever, problems exist in applying the optical flow directly to



Y. Kaneda et al. / Knowledge-Based Systems 134 (2017) 135–148 147 

Fig. 16. Scatter plots of predicted values with SW-SVR with respect to true values when using each feature for input of DNN. 
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NN because the former is highly dependent on the camera lo-

ation and shoot date, resulting in different scales of optical flow

or each image data. The scale difference increases considerably if

oth the cultivation beds and the shoot date differ. Therefore, nor-

alization of the optical flow must be taken into consideration to

liminate the scale. Next, we built a model with validation data

nd test data using the same cultivation bed. This model needs to

e calibrated for each field as required when in use. Therefore, we

ill train the model using new training, validation, and test data

n a completely separate cultivation bed. Meanwhile, as another

pproach to extract features related to water stress more faith-
ully in DNN, we consider using a recurrent neural network (RNN),

uch as long short-term memory (LSTM), which can consider the

emporal relationship of a specific period. We will aim to capture

he short-term and long-term time relationship by further devising

n image feature substitute for ROAF and DNN. Moreover, multi-

odal SW-SVR is a generic method rather than a specific method

or a specific application such as water stress prediction. Therefore,

e would evaluate the performance using a more general dataset,

uch as meteorological data and moving objects. 
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