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ABSTRACT 30 

During the Middle Pleistocene, the nature of glacial–interglacial fluctuations changed from 31 

low-amplitude and a periodicity of 41 kyr to high-amplitude and quasi-periodic of 100 kyr. The 32 

origin of the Mid-Pleistocene Climate Transition (MPT) is an unsolved mystery. At present, 33 

there is a debate about whether the initiation of the MPT was a gradual or an abrupt process. 34 

This study investigated the process of initiation of the MPT from reconstructions of eustatic 35 

sea–level changes, as a proxy for global ice volume, based on a reexamination of lithofacies and 36 

fossil occurrences from shallow-marine sediments (the Omma Formation) exposed on the west 37 

coast of Japan. The Omma Formation comprises 19 depositional sequences spanning marine 38 

isotope stages (MIS) 56–21.3, reflecting sedimentation under alluvial plain to offshore 39 

conditions. The data indicate that (1) sea–level was lowest during MIS 22 (~0.9 Ma); (2) 40 

sea–level during MIS 34 (~1.13 Ma) and MIS 26 (~0.96 Ma) was lower than during any other 41 

glacial stage, except for MIS 22; and (3) sea–level during MIS 22 was at most 20 m lower than 42 

during MIS 34 and 26. Together, these findings suggest that the initiation of the MPT was a 43 

gradual, rather than abrupt, process. 44 

45 

1. Introduction46 

Glacial–interglacial cycles, and corresponding changes in eustatic sea–level, have had a 47 

considerable impact on both global climate and ecosystems throughout the Quaternary. Between 48 
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2.7 and 1.2 Ma, these cycles occurred with a periodicity of 41 kyr (the “41-kyr world”), and are 49 

attributed primarily to changes in the Earth’s obliquity (Raymo and Nisancioglu, 2003; Huybers, 50 

2006). In contrast, for the past 0.7 Myr, glacial cycles have followed an approximately 100-kyr 51 

periodicity (the “100-kyr world”) (Hays et al., 1976; Imbrie et al., 1992). The timing of the 52 

glacial–interglacial cycles is explained by the theory postulated by Milankovitch in the early 53 

20th century, which changes in boreal summer insolation are responsible for changes in the 54 

volume of boreal glacial ice sheets. However, the transition from the 41-kyr to the 100-kyr 55 

world, termed the Mid-Pleistocene Climate Transition (MPT) (e.g., Pisias and Moore, 1981), 56 

appears to bear no relation to orbital forcing. Furthermore, there is little agreement as to when 57 

the MPT occurred. 58 

Clark et al. (2006) suggested that the constructed LR04 ‘‘stacked’’ benthic 18O record 59 

(Lisiecki and Raymo, 2005) (Fig. 1) shows the MPT beginning at ~1.25 Ma with a gradual 60 

increase in global ice volume and decrease in deep-water temperature. This hypothesis was 61 

supported by Sosdian and Rosenthal (2009), who reconstructed early Pleistocene eustatic 62 

sea–level (and hence global ice volume) changes with orbital-scale resolution using changes in 63 

the 18O of seawater based on analyses of 18O and Mg/Ca ratios of the epifaunal benthic 64 

foraminifera Cibicidoides wuellerstorfi and Oridorsalis umbonatus from North Atlantic Deep 65 

Sea Drilling Project (DSDP) site 607 (Fig. 1). However, Yu and Broecker (2010) questioned the 66 

result of Sosdian and Rosenthal (2009), because of the confounding influence of carbonate ion 67 

saturation on epifaunal benthic foraminiferal Mg/Ca ratios. 68 

Recently, Elderfield et al. (2012) provided a record of eustatic sea–level for the past 1.5 69 

Myr from Ocean Drilling Program (ODP) 181, site 1123, off New Zealand (Fig. 1). The record, 70 

based on 18O and Mg/Ca ratios of the shallow-infaunal benthic foraminifera Uvigerina spp. 71 

(the shells of which are barely affected by carbonate-ion saturation), suggests that the MPT was 72 
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initiated by an abrupt increase in Antarctic ice volume at MIS 22 (~0.9 Ma). According to 73 

Elderfield et al. (2012), the uncertainty of the sea–level changes are ± 20 m. More recently, 74 

Rohling et al. (2014) reconstructed eustatic sea–level changes over the past 5.3 Myr using 75 

eastern Mediterranean planktonic foraminiferal 18O records. The authors reported a strong 76 

agreement between their reconstruction and the sea–level estimates of Elderfield et al. (2012), 77 

although the 95% probability interval of the Rohling et al. (2014) is ±6.3 m. 78 

Prior to these studies, Bintanja et al. (2005) reconstructed the sea–level curve during the 79 

past 1.1 Myr from an ice-sheet–ocean-temperature model and the LR04 ‘‘stacked’’ benthic 18O 80 

record (Lisiecki and Raymo, 2005), although they did not discuss the pattern of initiation of the 81 

MPT. According to Bintanja et al. (2005), the uncertainty of their sea–level changes is ± 10 m. 82 

Consequently, independent constraints on sea–level during the early Pleistocene glacial 83 

periods are required to help determine whether the initiation of the MPT was a gradual or an 84 

abrupt process. As the upper limits of U/Th dating and polar ice cores records are 0.5 Ma and 85 

0.8 Ma, respectively, shelfal and nearshore sedimentary records provide useful constraints on 86 

eustatic sea–level changes during the early Pleistocene. 87 

Existing shallow-water sediment records include those of the Wanganui Basin in New 88 

Zealand (Beu and Edwards, 1984; Abbott and Carter, 1994; Carter and Naish, 1998; Kondo et 89 

al., 1998), the Croton Basin in southern Italy (Rio et al., 1996; Massari et al., 1999, 2011), the 90 

Merced Formation in northern California (Carter et al., 2002), the Seoguipo Formation in 91 

southern Korea (Kim et al., 2010), and collisional marine foreland basin of southern Taiwan 92 

(Chen et al., 2001) (Fig. 1). However, because these marine basins are too deep to detect small 93 

fluctuations in sea–level, none of these previous studies identified depositional sequences that 94 

correspond to MIS 22–24 in their lithostratigraphic schemes. In contrast, the depositional 95 

sequence in the Omma Formation, Central Japan, is firmly correlated with MIS 55–21 96 
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(Kitamura and Kawagoe, 2006) (Fig. 2) and thus encompasses this transitional period. To 97 

investigate the process of initiation of the MPT, this study reconstructed eustatic sea–level 98 

changes in glacial period, as a proxy for global ice volume, based on a reexamination of 99 

lithofacies and fossil occurrences from the Omma Formation. 100 

 101 

2. Geological setting of depositional sequences in the Omma Formation 102 

The Omma Formation is exposed around Kanazawa City, along the west coast of Central 103 

Japan (Fig. 1). The formation is up to 220 m thick in the type section along the Saikawa River at 104 

Okuwa. The Omma Formation overlies the middle Miocene Saikawa Formation (Ogasawara, 105 

1977) and is in turn overlain unconformably by the Utatsuyama Formation (Ichihara et al., 106 

1950) (Fig. 2). The marine Saikawa Formation is mainly composed of massive siltstone 107 

(Ogasawara, 1977). The Utatsuyama Formation is about 100 m thick and comprises fan-delta 108 

deposits of alternating beds of mudstone, coarse-grained sandstone, and conglomerate (Nirei, 109 

1969). 110 

Biostratigraphic and magnetostratigraphic data (Takayama et al., 1988; Ohmura et al., 111 

1989; Sato and Takayama, 1992; Kitamura et al., 1994) indicate that the basement of the Omma 112 

Formation at the type section is located between the first occurrence (FO) of Gephyrocapsa 113 

oceanica (1.664 ± 0.025 Ma; Berger et al., 1994) and the FO of Gephyrocapsa (large) (1.515 ± 114 

0.025 Ma; Berger et al., 1994) (Fig. 2). These data show that the top of the formation is located 115 

below the Brunhes–Matuyama magnetic polarity reversal (Fig. 2). 116 

The Omma Formation has been divided into lower, middle, and upper parts (Fig. 2) 117 

(Kitamura et al., 1994, 2001). The lower and middle parts consist of 14 depositional sequences 118 

(Fig. 2, L1–L3, M1–11) that include the following architectural elements, in ascending 119 

stratigraphic order: (1) a basal sequence boundary that is superposed on the ravinement surface; 120 
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(2) a transgressive systems tracts (TST) (2–5 m thick) consisting of a basal shell bed of 0.3 m 121 

thick (a condensed onlap shell bed) overlain by fine- to very-fine-grained sandstone; (3) a 122 

maximum flooding horizon coinciding with the horizon with the highest concentration of 123 

sand-size carbonate grains; (4) a highstand systems tracts (HST) (2–3 m thick) consisting of 124 

fine-grained sandstone and sandy siltstone; and (5) a regressive systems tracts (RST) (<1 m 125 

thick) comprising fine-grained sandstone with a coarsening-upward trend (Kitamura et al., 126 

2000). The upper part of the formation consists of five depositional sequences (Fig. 2, U1–U5) 127 

associated with back-marsh to inner-shelf environments (Kitamura and Kawagoe, 2006). Erect 128 

stumps and tracks of elephants and deers have been found from back-marsh deposits (Kitamura 129 

and Kawagoe, 2006). These parts of the Omma Formation show no progressive shift in litho- 130 

and biofacies toward deeper or shallower deposits. 131 

Except for four depositional sequences in the upper part, during the deposition of each 132 

sequence, the molluscan fauna changed from cold-water, upper-sublittoral species to 133 

warm-water, lower-sublittoral species, followed by a return to cold-water, upper-sublittoral 134 

species (Kitamura et al., 1994). The term “cold-water species” is applied to fauna living in the 135 

area north of southern Hokkaido and/or in water deeper than 150–160 m off Sanin and 136 

Hokuriku. These species are present in the Pacific coast area north of the Boso Peninsula at 137 

35°N, where the warm Kuroshio Current diverges away from the Japanese Islands. The term 138 

“warm-water species” is applied to fauna living in the area south of southern Hokkaido, and 139 

living at the area shallower than 150–160 m depth off Sanin and Hokuriku. The area off Sanin 140 

and Hokuriku is strongly influenced by the warm Tsushima Current, which is a branch of the 141 

warm Kuroshio Current. These species are present south of 35°N on the Pacific coast of Japan. 142 

The cyclic changes in molluscan content in these depositional sequences indicate that ocean 143 

conditions and water depth fluctuated concurrently. Specifically, increased water depths 144 
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correspond to periods of warmer marine conditions associated with the inflow of the warm 145 

Tsushima Current. Thus, the depositional sequences of the Omma Formation are correlated with 146 

obliquity-driven glacio-eustatic changes, with a periodicity of 41 kyr (Kitamura et al., 1994). 147 

Kitamura and Kimoto (2006) correlated 19 depositional sequences in the Omma Formation with 148 

oxygen isotope stages 56 to 21.3 using a combination of sequence stratigraphic, biostratigraphic, 149 

and magneto stratigraphic data (Fig. 2). As noted above, the Omma Formation contains only 150 

shallow-marine facies that can be perfectly correlated between oxygen isotope stages and 151 

depositional sequences during MIS 55–21. 152 

 153 

3. Sea–level reconstruction 154 

Water depth in sedimentary basins can be influenced by several factors, including 155 

compaction, basement subsidence, sediment supply, hydro-isostatic effects, and eustatic 156 

sea–level changes. The basement rock on which the Omma Formation was deposited (i.e., the 157 

Saikawa Formation sediments) was consolidated prior to deposition of the Omma Formation, 158 

since the lower unconformity is penetrated by marine rock-boring bivalves (Kitamura, 1997). 159 

The sediments of the Omma Formation are unconsolidated and consist primarily of very-fine- to 160 

fine-grained sandstone, with a burial depth equal to the total formation thickness (210 m). From 161 

the porosity–depth relationship (Sclater and Christie, 1980; Ramm and Bjiørlykke, 1994), 162 

sandstone porosity within the formation decreases by only 5% from the surface to a burial depth 163 

of 250 m, indicating that the water–depth curve is only weakly affected by compaction. 164 

With the exception of depositional sequence U4 (DS U4), which corresponds to MIS 165 

22–21.4 (Kitamura and Kawagoe, 2006), the sequence boundaries for the depositional 166 

sequences of the Omma Formation coincide with ravinement surfaces formed by shoreface 167 

erosion during marine transgression (Bruun, 1962). As the depth of shoreface erosion is 168 
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generally less than 40 m (e.g., Saito, 1989), water depths at sequence boundaries probably 169 

remained at least than 40 m for the 800-kyr period between MIS 56 and 21.3, indicating that 170 

basin subsidence kept pace with sediment supply. 171 

Being located far from the former continental ice-sheets, the marine basin of the Omma 172 

Formation was influenced by hydro-isostasy alone, in which rising (falling) sea–level causes 173 

basin subsidence (uplift) due to increasing (decreasing) water load. Consequently, relative 174 

sea–level during glacial periods can be compared directly, allowing water-depth changes 175 

represented by the Omma Formation to be used as a proxy for eustatic sea–level changes. 176 

Water depth change, as recorded by the Omma Formation, has been reconstructed by 177 

analyses of lithofacies and fossil occurrences (Kitamura, 1991; Kitamura et al., 1994; Kitamura 178 

and Kawagoe, 2006; Kitamura and Kimoto, 2006) (Fig. 2). Non-marine sediments, comprising 179 

back-marsh deposits found in the lowest levels of DS U4 (MIS 22), suggest that sea–level 180 

during MIS 22 was lower than at any other time between MIS 56 and 21 (Kitamura and 181 

Kawagoe, 2006). Kitamura and Kimoto (2004) and Kitamura and Kawagoe (2006) described 182 

well-sorted, fine-sand units that contain parallel laminations or hummocky cross-stratification in 183 

the upper levels of depositional sequences 8 and U1, corresponding to MIS 36–34 and 28–26, 184 

respectively (Fig. 2). These sediments do not contain fossils such as molluscs and foraminifera, 185 

due to the dissolution of calcareous shell materials. Sedimentary structures indicate that the 186 

sediments were deposited in a lower shoreface environment. Because the fair-weather wave 187 

base lies at depths of about 5–15 m (Walker and Plint, 1992), the depth of the lower shoreface is 188 

inferred to be 5–15 m. The reexamination herein indicates that, with the exception of MIS 22, 189 

sea–level was lower during MIS 34 (~1.13 Ma) and 26 (~0.96 Ma) than during any other glacial 190 

stage between MIS 56 and 21. 191 

 192 
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4. Discussion and conclusion 193 

Based on a reexamination of lithofacies and fossil occurrences from the shallow-marine 194 

Omma Formation, sea–level was lower during MIS 22 than at any other time between MIS 56 195 

and 21. This finding is in close agreement with the findings of Bintanja et al. (2005), Elderfield 196 

et al. (2012), and Rohling et al. (2014), and supports the argument for a significant increase in 197 

global ice volume at MIS 22, referred to by Clark et al. (2006) as the 900-ka event. 198 

This reexamination also indicates that sea–level was lower during MIS 34 and 26 than 199 

during other glacial stages (except for MIS 22) of the same time period, in agreement with the 200 

conclusion of Bintanja et al. (2005). According to Elderfield et al. (2012) and Rohling et al. 201 

(2014), sea–level in MIS 34 and 26 was not significantly lower than in the other glacial periods 202 

between MIS 56 and 21. This is inconsistent with the new evidence of the present study. 203 

The differences in sea–level between MIS 22 and the two glacial stages MIS 34 and 26 are 204 

estimated to have been 20 m (Bintanja et al., 2005), 40 m (Rohling et al., 2014) or 50 m 205 

(Elderfield et al., 2012) (Fig. 2). As noted above, the water depth is thought to have been 206 

between 5 and 15 m during MIS 34 and 26. Conversely, the sea–level during MIS 22 is 207 

uncertain, because the study area emerged and was a back-marsh environment during this period 208 

(Fig. 2). When the difference in sea–level of 50 m (20 m) is applied, the elevation of the study 209 

area is estimated to have been 35–45 m (5–15 m) during MIS 22. As back-marsh commonly 210 

develops in low coastal plains, it is likely that the difference in sea–level was 20 m, as 211 

determined by Bintanja et al. (2005), rather than the 40–50 m estimated by Elderfield et al. 212 

(2012) and Rohling et al. (2014). 213 

As noted above, the uncertainties in estimates of sea–level from geochemical data range 214 

from ±6.3 m to ±20 m (Bintanja et al., 2005; Elderfield et al., 2012; Rohling et al., 2014). In 215 

contrast, as hydrographic conditions change drastically from shoreface to offshore, lithofacies 216 
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are highly sensitive to changes in sea–level during sea–level low stands. It is therefore likely 217 

that the inconsistency between this study and the geochemical studies of Elderfield et al. (2012) 218 

and Rohling et al. (2014) reflect uncertainties in the estimates from geochemical data. 219 

This means that the early Pleistocene sea–level curve of Bintanja et al. (2005) is more 220 

suitable than those of Elderfield et al. (2012) and Rohling et al. (2014), and that the initiation of 221 

the MPT was a gradual (e.g., Clark et al., 2006), rather than abrupt, process (Elderfield et al., 222 

2012). 223 
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Figure 2 Columnar section of the Omma Formation at its type section along the Saikawa River 377 

at Okuwa. Comparison of water-depth changes reconstructed from the Omma Formation and 378 

eustaic sea–level changes inferred from geochemical signals of benthic foraminifera in deep-sea 379 

sediments (Bintanja et al., 2005; Elderfield et al., 2012). 380 


