B-type olivine fabrics developed in the fore-arc side of the mantle wedge along a subducting slab

Miki Tasakaa, Katsuyoshi Michibayashib *, David Mainpricec

aDepartment of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan

bInstitute of Geosciences, Shizuoka University, Shizuoka 422-8529, Japan

cGéosciences Montpellier, UMR 5243 CNRS/Université Montpellier II, Montpellier, France

* Corresponding author. Institute of Geosciences, Shizuoka University, Shizuoka 422-8529, Japan. Tel.:+81 54 238 4788; fax:+81 54 238 0491.

E-mail address: sekmich@ipc.shizuoka.ac.jp

Re-submitted to Earth and Planetary Sciences Letters 15th May 2008
Abstract

B-type olivine fabrics are pervasive within highly depleted dunites of the small-sized Imo peridotite body located within the subduction-type Sanbagawa metamorphic belt of the southwest Japan arc. The dunites contain various microstructures, ranging from porphyroclastic to fine-grained intensely sheared textures. The Mg/(Mg + Fe) atomic ratios (Fo number) of olivine within these dunites are consistently around 0.9, as are the Cr/(Cr + Al) atomic ratios (Cr number) of chromian spinel, suggesting their evolution from a highly depleted magma (boninite). These data provide strong thermal constraints on the formation of the highly depleted dunites, as their formation requires hot, hydrous, shallow mantle (>1250 °C at <30 km depth) in the mantle wedge. Because the Sanbagawa metamorphic belt finally entrained these peridotites during progressive retrogression, B-type olivine fabrics probably developed in the fore-arc side of the subduction zone, above or along the subducting slab, possibly in association with dehydration fluids derived from the slab. The previously documented small magnitude of S-wave splitting can be explained by the seismic properties of B-type peridotites within an anisotropic layer of approximately several kilometers in thickness, oriented by flow parallel to the subducting slab, under maximum temperatures of 880–1030 °C depending on the flow stress. These findings indicate that such a B-type layer could constitute a dominant source of seismic S- and P-wave anisotropy in mantle wedge regions.

Key words: B-type olivine fabric, dunite, mantle wedge, hydration, subduction, seismic anisotropy
1. Introduction

Water is pervasive in mantle wedges due to extensive dehydration of the underlying subducting slab (e.g., Tatsumi, 1989; Hacker et al., 2003; Stockhert and Gerya, 2005). The mantle wedge is therefore one of the mostly likely sites where water influences the development of olivine fabrics. Indeed, olivine fabrics characterized by an a-axis maximum oriented perpendicular to the flow direction (B-type fabric; Jung and Karato, 2001a; Katayama and Karato, 2006; Jung et al., 2006) are thought to develop in the mantle wedge under conditions of high water activity and high stress (Karato, 1995, 2003). There is growing interest in the role of olivine fabrics in the mantle-wedge part of fore-arc mantle, where the maximum seismic-wave velocity is oriented normal to the direction of plastic flow in the upper mantle (Audoine et al., 2004; Nakajima and Hasegawa, 2004; Kneller et al., 2005, 2007, 2008; Lassak et al., 2006; Conder and Wiens, 2007; Long et al., 2007), yet only a handful of natural examples of such fabrics have been briefly reported (e.g., Mizukami et al., 2004; Skemer et al., 2006).

B-type olivine fabrics have been described from peridotites of the Higashi-Akaishi peridotite body of the Sanbagawa metamorphic belt in southwest Japan (Mizukami et al., 2004); however, such fabrics only occur within olivine with fine-grained texture; typical coarse granular peridotites possess the more common A-type fabrics that develop under anhydrous conditions at high-temperature and low stress (Mizukami et al., 2004; Mizukami and Wallis, 2005). Therefore, the rare occurrence of B-type fabrics indicates that they are not the dominant fabric of the fore-arc region.

In the present paper, we present new examples of B-type fabrics within a small peridotite body located close to the Higashi-Akaishi body. B-type fabrics not only occur within peridotite with porphyroclastic to fine-grained equigranular texture, but also within dunites that possibly evolved from highly depleted magma. In our discussion, we compare the seismic properties of the B-type olivine fabrics with measured seismic anisotropy in the fore-arc region of the mantle wedge. Our findings indicate that B-type fabrics explain the phenomenon of fast trench-parallel S-wave polarization and fast trench-normal P-waves.

2. Geological setting and sample description

The Sanbagawa belt of southwest Japan (Fig. 1A) is one of the world’s best-documented examples of a subduction-type high-pressure/temperature metamorphic
body. The following brief outline of the geological setting of the study area is largely after Mizukami and Wallis (2005). The Sanbagawa belt represents the deeper parts of a strongly deformed accretionary complex that formed during the Cretaceous subduction of oceanic lithosphere at the Eurasian continental margin (e.g., Banno et al., 1986; Takasu and Dallmeyer, 1990; Wallis, 1998; Okamoto et al., 2000). The highest-grade part of the Sanbagawa belt is exposed in the Besshi area, central Shikoku (Fig. 1A), where it is divided into the Besshi unit and a series of high pressure (HP) bodies that record eclogite facies metamorphism (Kunugiza et al., 1986; Takasu, 1989). The Besshi unit consists mainly of pelitic, basic and siliceous schists. Peak metamorphic conditions are generally of the greenschist to epidote-amphibolite facies, and the unit is divided into chlorite, garnet, albite-biotite and oligoclase-biotite zones based on the mineralogy of metapelites (Fig. 1A; Banno et al., 1978; Enami, 1982; Higashino, 1990). The metamorphic history of the Besshi unit is characterized by a series of clockwise $P-T$ paths involving an increase in temperature subsequent to peak metamorphic pressure (0.6–1.1 GPa; Enami et al., 1994; Aoya, 2001). The HP eclogite bodies consist mainly of mafic and ultramafic lithologies. The mafic rocks are schistose or consist of massive garnet-bearing epidote amphibolite with local relic eclogite. These bodies are distinguished from the Besshi unit by significantly higher peak metamorphic pressures, above 1.5 GPa (e.g., Takasu, 1989; Wallis et al., 2000), and the fact that they structurally overlie the unit (Wallis and Aoya, 2000; Aoya, 2002).

The most intensely studied ultramafic body in the Sanbagawa belt is the Higashi-Akaishi peridotite body, which consists mainly of dunite and intercalated layers of wehrlite, clinopyroxenite, chromitite, and minor garnet-bearing rocks (Horikoshi, 1937; Yoshino, 1961, 1964; Mori and Banno, 1973; Enami et al., 2004; Mizukami et al., 2004; Mizukami and Wallis, 2005). Thermobarometric analyses of the garnet-bearing rocks indicate ultra-high pressure (UHP) conditions above 3 GPa (Enami et al., 2004).

The small Imono peridotite body is located 5 km to the east of Mt. Higashi-Akaishi (Fig. 1A) and has a rectangular surface outcrop over an area of 300 × 400 m2 (Fig. 1B). The Imono body is dominantly dunite (Kunugiza et al., 1984). The dunite is serpentinized in places, presumably related to exhumation; however, the earlier olivine-rich microstructures and associated petrological information are well preserved in some outcrops. We collected 37 oriented samples from the eastern side of the Imono peridotite body at a large outcrop that extends over 100 m section (N08 in Fig. 1B). The
aligned spinel grains define foliation plane (XY) and lineation (X) within the sample, X, Y and Z are the axes of the orthogonal structural reference frame we will use to describe the sample orientation. We observed these structures on bleached and saw-cut samples in the laboratory. The foliation generally strikes WNW–SSE and dips moderately to the NNE; the mineral lineation plunges to the north (Fig. 1B). The orientations of the foliation and lineation are consistent with those measured in the Higashi-Akaishi peridotite body (Yamamoto et al., 2004).

3. Microstructural analyses

We analysed microstructures in all samples using thin sections cut perpendicular to the foliation (Z) and parallel to the lineation (X) (i.e., XZ-sections). Because the Imono peridotite body is dominated by dunite, the samples consist mainly of olivine and a small amount of spinel, with various degrees of serpentinization. For further analyses, we selected 5 of the 37 samples that showed the best-preserved peridotite microstructures. The complete set of samples will be described elsewhere.

Among the five analysed samples, four contain porphyroclastic texture with fine-grained (~0.05 mm) neoblasts (Fig. 2A–D). Porphyroclasts are 1–3 mm in size, which have intense undulose extinction, kinking, and the development of sub-grain boundaries. The porphyroclasts tend to become smaller with increasing proportion of neoblasts (Fig. 2A–D). The aspect ratios of the porphyroclasts are generally around 2. One sample (N08H-2) is cut by a thin, fine-grained (~0.05 mm) equigranular layer (Fig. 2E). Sample N08Ha consists entirely of a fine-grained equigranular texture (Fig. 2F), with relatively straight grain boundaries that meet at triple junctions.

The sizes of olivine grains were measured in each sample, and the outlines of approximately 200 olivine grains were carefully traced from photomicrographs. The area \(A \) of each grain was then measured using Scion Image software. Grain size \(D \) was calculated as \(D = 2(A/3.14)^{0.5} \) (e.g., Michibayashi and Masuda, 1993; Okamoto and Michibayashi, 2005), representing the diameter of a circle with the same area as that of the grain. The average grain sizes for the samples analyzed in this study vary between 30 and 400 µm (Supplementary Table 1).

4. Textural analyses

We measured the crystal-preferred orientations (CPOs) of olivine grains from
highly polished thin sections using a scanning electron microscope equipped with an
electron-backscatter diffraction system (JEOL JSM6300 with HKL Channel5), housed at
the Centre for Instrumental Analysis, Shizuoka University, Japan. We measured between
196 and 384 olivine crystal orientations per sample (Fig. 3), visually confirming the
computerized indexation of the diffraction pattern for each orientation. The measured
olivine CPOs are presented on equal area, lower hemisphere projections in the structural
(XZ) reference frame (Fig. 3). To characterize the CPOs, we determined the fabric
strength and distribution density of the principal crystallographic axes (for the J index and
pfJ index, see Mainprice et al., 2000; Michibayashi and Mainprice, 2004; Michibayashi et
al., 2006a; for the M index, see Skemer et al., 2006).

All of the analysed samples show a distinct alignment of [001] axes parallel to
the lineation (X), [010] axes normal to the foliation (Z), and [100] axes normal to the
lineation and within the plane of the foliation (Y): i.e., a [001] (010) CPO pattern (Fig. 3).
The fabric strength varies from $J=2.59$ to 5.33 ($M=0.037$ to 0.190) within the
porphyroclastic textures (Fig. 3A-D). For sample N08H-1, we separately analysed the
CPOs of porphyroclasts and neoblasts. The two sets of grains show similar CPO patterns,
although with different degrees of fabric intensity ($C1$ and $C2$ in Fig. 3; porphyroclasts,
$J=9.16$ ($M=0.239$); neoblasts, $J=5.39$ ($M=0.184$)). For two samples with fine-grained
equigranular texture, one shows an intense [001] (010) pattern (Fig. 3E) and the other
shows girdles of [100] and [001] about the foliation (XY plane) and an intense alignment
of [010] normal to the foliation (Z) (Fig. 3F). The fabric strengths of the fine-grained
texture are relatively high: $J=6.07$ to 7.12 ($M=0.140$ to 0.191).

The fabric intensities determined for all samples are listed in Supplementary
Table 1. The J-index values range from 2.59 to 7.12, less than those determined in similar
rocks elsewhere such as the Oman ophiolite (Michibayashi and Mainprice, 2004;
Michibayashi et al., 2006a) and peridotite xenoliths from northeast Japan (Michibayashi
et al., 2006b). The trends of the pole figure index pfJ generally follow the trends of the
J-index, with [010] pfJ being typically the strongest, [001] pfJ intermediate, and [100] pfJ
the weakest among the three axes (Fig. 3; Supplementary Table 1).

5. Mineral chemistry

The chemical compositions of olivine and chromium spinel within the five
samples shown in Fig. 2 were analysed using a JEOL electron microprobe (JXA733)
housed at the Centre for Instrumental Analysis, Shizuoka University, Japan. Analytical conditions were 15 kV accelerating voltage and 12 nA probe current. Special care was taken in analysing the MnO and NiO contents of olivine, using a long count time of 30 s compared with 10 s for the other elements. Ferrous and ferric iron contents of chromian spinel were calculated assuming spinel stoichiometry. The Cr number was calculated as the Cr/(Cr + Al) atomic ratio of chromian spinel. The Mg number was calculated as the Mg/(Mg + total Fe) atomic ratio for silicates and Mg/(Mg + Fe$^{2+}$) atomic ratio for chromian spinel.

The analysed minerals were largely homogeneous in chemistry (representative analyses are listed in Supplementary Table 2). The peridotites plot within the olivine-spinel mantle array (OSMA; Fig. 4A), which represents a spinel peridotite restite trend for olivine and chromian spinel (Arai, 1987, 1994a). The olivine composition is Fo$_{90-92}$, and the Cr number of spinel ranges from 0.80 to 0.98 (Fig. 4A). NiO$_2$ concentration tends to decrease slightly with decreasing Mg number of olivine, similar to the fractional crystallization trend of Takahashi (1987; Fig. 4B). The TiO$_2$ content is remarkably constant within all different microstructures, being less than 0.2 wt% (Fig. 4C).

6. Rock seismic anisotropy

6.1. Rock seismic properties

The seismic properties of a rock mass can be computed by averaging the elastic constants of the individual grains in their orientation in the sample reference frame (X,Y,Z) for each mineral and weighting their contribution using the modal composition of the aggregate (Mainprice et al., 2000). Given that all of the samples in the present study are dunites, we calculated the seismic properties assuming a composition of 100% olivine (Fig. 5). The elastic constants of olivine used for the calculations are from Abramson et al. (1997), at ambient conditions, and we used the Voigt-Reuss-Hill averaging scheme (Mainprice et al., 2000). The P-wave anisotropy was calculated as a percentage using the formula $200(V_{p\text{max}} - V_{p\text{min}})/(V_{p\text{max}} + V_{p\text{min}})$, and the S-wave anisotropy (AVs) was calculated for a specific propagation direction using the formula $200(V_{s1} - V_{s2})/(V_{s1} + V_{s2})$, where V_{s1} and V_{s2} are the fast and slow wave velocities, respectively (e.g., Pera et al., 2003).

The seismic velocities (V_p, V_{s1}, V_{s2}) and seismic anisotropy determined for
each sample are listed in Supplementary Table 3. All of the calculated seismic velocities are similar among the samples, with little variability observed. Values of \(V_{p_{\text{max}}} \) range from 8.51 to 8.77 km/s (\(V_{p_{\text{mean}}} = 8.77 \) km/s), \(V_{s_{1\text{max}}} \) from 4.89 to 5.00 km/s (\(V_{s_{1\text{mean}}} = 4.93 \) km/s), and \(V_{s_{2\text{max}}} \) from 4.81 to 4.86 km/s (\(V_{s_{2\text{mean}}} = 4.85 \) km/s). Seismic anisotropy shows greater variation: \(A V_{p} \) ranges from 4.50 to 9.80% (\(A V_{p_{\text{mean}}} = 5.45 \)%) and \(AVs \) from 3.16 to 6.96% (\(AVs_{\text{mean}} = 4.00 \)%).

Figure 5 shows stereographic projections of \(V_{p} \) and \(AVs \) and the orientation of the polarization plane of the fastest \(V_{s} \) (\(V_{s1} \)). For all microstructure types, \(V_{p} \) is fastest normal to the lineation, within the plane of the foliation (Y) (Fig. 5). This orientation is directly related to the CPO maximum of olivine [100] (Fig. 3), the fastest direction within the olivine crystal. \(V_{p} \) is lowest normal to the foliation (Z), whereas the intermediate direction tends to be subparallel to the lineation (X) (Fig. 5). Only one sample deviates from this trend: in N08Ha, \(V_{p} \) is fastest parallel to the lineation and defines a girdle within the plane of the foliation (XY); the slowest direction is normal to the foliation (Z) (Fig. 5F).

The variation in polarization anisotropies (\(AVs \)) among the samples possibly reflects variations in orientation distributions and intensities (compare Figs. 3 and 5). The orientation of the polarization plane of \(V_{s1} \) marks the orientation of the great circle that contains the maximum concentration of [100]. Accordingly, because [100] tends to be aligned normal to the lineation and within the plane of the foliation (Y) (Fig. 3), the orientation of the polarization plane of \(V_{s1} \) parallel to the Z-axis is normal to the lineation (X) (Fig. 5).

6.2. Variation in seismic properties as a function of \(P \) and \(T \)

To test for any correlation between the petrophysical and geophysical data, we calculated the seismic properties over a large range of pressure (0.5–5 GPa) and temperature (600–1400 °C) according to the method described by Mainprice et al. (2000) and Mainprice (2007). We used a calculated average sample by summing all of the data in Fig. 3 (see Fig. 6A).

To calculate the elastic constants at various pressures and temperatures, the single-crystal elastic constants are given at the pressure and temperature of measurement using the following relationship:

\[
C_{ij}(PT) = C_{ij}(P_0T_0) + (dC_{ij}/dP)(P-P_0) + 1/2(d^2C_{ij}/dP^2)(P-P_0)^2 + (dC_{ij}/dT)(T-T_0)
\]
where \(C_{ij}(PT) \) is the elastic constant at pressure \(P \) and temperature \(T \), \(C_{ij}(P_0T_0) \) is the elastic constant at a reference pressure \(P_0 \) (e.g., 0.1 MPa) and temperature \(T_0 \) (e.g., 25 °C), \(dC_{ij}/dP \) is the first-order pressure derivative, \(dC_{ij}/dT \) is the first-order temperature derivative, and \(d^2C_{ij}/dP^2 \) is the second-order pressure derivative (see Mainprice, 2007).

The seismic velocities also depend on the density of the minerals at a given pressure and temperature; this can be calculated using an appropriate equation of state (Knittle, 1995). The Murnaghan equation of state, derived from finite strain, is sufficiently accurate at moderate compression (Knittle, 1995) of the upper mantle, yielding the following expression for density as a function of pressure:

\[
\rho(P) = \rho_0 \left\{ \frac{1}{1 + \left(\frac{K'}{K} \right) \left(P - P_0 \right)} \right\}^{1/K'}
\]

where \(K \) is the bulk modulus; \(K' = dK/dP \), the pressure derivative of \(K \); and \(\rho_0 \) is the density at reference pressure \(P_0 \) and temperature \(T_0 \). With changing temperature, the density varies as follows:

\[
\rho(T) = \rho_0 \left[1 - (\alpha_v(T)dT) \right] \approx \rho_0 \left[1 - \alpha_{av} (T - T_0) \right]
\]

where \(\alpha_v(T) = 1/V(\partial V/\partial T) \) is the volume thermal expansion coefficient as a function of temperature and \(\alpha_{av} \) is an average value of thermal expansion that is constant over the temperature range (Fei, 1995). For the temperatures and pressures of the mantle, the density is described in this paper as follows:

\[
\rho(P, T) = \rho_0 \left\{ (1 + \left(\frac{K'}{K} \right) \left(P - P_0 \right))^{1/K'} \right\}^{1 - \alpha_{av} (T - T_0)}
\]

We employed the elastic constants of Abramson et al. (1997) for olivine Fo\(_{90}\) and the first- and second-order pressure derivatives by the same authors, and first-order temperature derivatives of Issak (1992). The elastic constants of the resulting rocks are presented in Supplementary Table 4, and a set of seismic anisotropies calculated at 800°C and 2.8 GPa (using the Vöigt–Reuss–Hill average for the average sample shown in Fig. 6A) is shown in Fig. 6B.

We calculated variations in the seismic properties as a function of pressure and temperature for the structural plane XY for a horizontal shear (Fig. 7A), XZ for a lateral shear (Fig. 7B), YZ for a vertical shear (Fig. 7C), and a titled slab for a shear along the slab (Fig. 7D). We chose these orientations because they correspond to different orientations of corner flow in the mantle wedge (Fig. 7E). The amount of slab tilt in Fig. 7D was taken to be 30° for the northeast Japan arc (e.g., Hasegawa et al., 1978), because the Imono peridotites developed in the mantle wedge during the Cretaceous subduction of
oceanic lithosphere of the Pacific plate at the Eurasian continental margin. The tectonic setting for the Imono peridotites might have been similar to that of the northeast Japan arc rather than the southwest Japan arc, where young, hot oceanic lithosphere of the Philippine Sea plate is currently being subducted (e.g., Maruyama et al., 1997). We chose to consider the following typical propagation directions of seismic waves: vertical propagation for S-waves and propagation in the horizontal plane for P-waves (Fig. 7E).

Figure 8 shows variations in the average Vp and deviation of Vp as a function of pressure and temperature for the orientation of structural planes shown in Fig. 7, as well as the S-wave anisotropy for various propagation directions. The dotted triangles in Fig. 8 represent the possible PT conditions for B-type olivine fabrics of the Imono peridotite body, as discussed below. Among the three investigated seismic parameters, Vp is the most sensitive to variations in PT in all structural orientations: the deviation of Vp and the S-wave anisotropy show considerably less variation (Fig. 8).

7. Discussion

7.1. B-type olivine fabrics within various microstructures

The olivine CPO patterns presented in Fig. 3 show that B-type fabrics occurs throughout the Imono peridotite body, in association with both porphyroclastic and fine-grained equigranular textures (compare Figs. 2 and 3). In samples with porphyroclastic texture, the grain sizes of neoblasts are relatively similar to those in samples with fine-grained equigranular texture (i.e., ~0.05 mm), suggesting that the latter texture arose from the complete dynamic recrystallization of porphyroclastic texture. This interpretation is further supported by the fact that a thin layer of fine-grained equigranular texture (Fig. 2E) cuts across an area of porphyroclastic texture (Fig. 2C). We therefore conclude that the porphyroclastic textures observed within the Imono peridotite body resulted from various degrees of dynamic recrystallization, presumably of the primarily coarser granular texture. Furthermore, because the porphyroclastic texture can be divided into two domains, porphyroclasts and neoblasts, we confirmed that both domains have the same B-type olivine fabrics (e.g., Fig. 3C1 for porphyroclasts and 3C2 for neoblasts, respectively). We therefore interpret that the B-type olivine fabrics could have developed at an early stage associated with coarser granular texture within the Imono peridotite body and maintained their character, with increasing shearing, during grain size reduction by dynamic recrystallization.
Grain size is expected to change until recrystallized grains attain a steady-state size, as determined by the flow stress (Twiss, 1977; Michibayashi, 1993). If we assume that the mean grain size in the fine-grained equigranular texture represents a steady-state grain size, we can then use grain size as a paleopiezometer to infer flow stress (e.g., van der Wal et al., 1993; Jung and Karato, 2001b). The two samples with fine-grained equigranular texture have mean grain sizes of 33 and 95 µm (Supplementary Table 1). Therefore, the inferred flow stresses for the B-type fabrics would be 100 and 200 MPa for wet olivine or 40 and 100 MPa for dry olivine, respectively, based on the relationship between grain size and stress shown by Jung and Karato (2001b).

7.2. Petrological constraints on the origin of the Imono peridotite body

The Imono peridotite consists solely of dunite with accessory spinel, placing it in the spinel peridotite facies, which is stable in the low-pressure (<1.5 GPa) regions of the mantle. All of the samples collected from the Imono peridotite body contain spinel with high Cr numbers (0.98–0.80) and olivine with high Mg numbers (0.90–0.92) (Fig. 4A). These rocks are highly depleted compared with abyssal peridotites and fore-arc peridotites, which commonly contain spinels with lower Cr numbers (<0.6) (e.g., Arai, 1994a). Moreover, the relationship between NiO content and the Mg number of olivine shows a fractional crystallization trend (Fig. 4B). It is therefore likely that the dunites from the Imono peridotite body formed after a high degree of partial melting, presumably fluxed by a supply of water, to produce refractory melts that potentially precipitated spinels with high Cr numbers (Takahashi et al., 1987; Kelemen, 1990; Arai, 1992, 1994b). It is also important to note that the TiO₂ content of the spinel analysed in the present study is consistently less than 0.2 wt%. Spinel with a high Cr number and low Ti content is characteristic of arc magma such as high-Mg arc basalt or boninite (Fig. 4A and C; Arai, 1992). According to the experimental study of Umino and Kushi (1989), the pressure and temperature conditions required for the formation of boninitic melt are 0.3–0.8 GPa and >1250 °C, respectively.

7.3. Tectonic evolution of the Imono peridotite body within the mantle wedge

The Imono peridotite body is one of a number of ultramafic lithologies, along with the Higashi-Akaishi peridotite body, entrained in the subduction-type Sanbagawa metamorphic belt. B-type olivine fabrics have also been reported from the nearby
Higashi-Akaishi peridotite body (Mizukami et al., 2004; Fig. 1A); however, in contrast to
the olivine fabrics in the Imono peridotite body, B-type fabrics in the Higashi-Akaishi
body have only been found within olivine neoblasts: whereas olivine porphyroclasts
appear to have A-type fabrics (Mizukami et al., 2004). B-type olivine fabrics of the
Higashi-Akaishi peridotite body are thought to be part of the D2B deformation stage,
during which time strong planar and linear structures formed, subsequently developing
into an antigorite-defined schistosity (Mizukami and Wallis, 2005). Such an antigorite
schistosity is also found within the fine-grained texture of the Imono peridotite body (Fig.
2), raising the possibility that the exhumation history of the Imono peridotite body is
similar to that of the Higashi-Akaishi peridotite body.

The peak of metamorphic pressure recorded within the Sanbagawa belt is
0.6–1.1 GPa (Fig. 9; Enami et al., 1994; Aoya, 2001). The Higashi-Akaishi peridotite
body experienced pressures as high as 3 GPa during the D2, and after D3 it was
amalgamated with the Besshi unit at a pressure of around 1 GPa (Mizukami and Wallis,
2005). The D2 stage in the Higashi-Akaishi peridotite body is characterized by an
approximately isothermal burial path at temperatures of 750–800 °C, reaching UHP
conditions (above 2.8 GPa; D2A in Fig. 9); this path could be explained by the evolution of
the Higashi-Akaishi peridotite body in the Sanbagawa subduction zone (Mizukami and
Wallis, 2005). Furthermore, high water activity during D2 is indicated by
micro-inclusions in dusty olivine porphyroclasts (Mizukami et al., 2004). Prograde
metamorphic changes in the subducting slab are characterized by dehydration reactions
that could account for the introduction of water to the peridotite body during D2
(Mizukami and Wallis, 2005); therefore, the B-type olivine fabrics in the Higashi-Akaishi
peridotite body developed under high water activity during D2 (Fig. 9; Mizukami et al.,
2004).

The dunites within the Imono peridotite are highly depleted cumulates,
possibly derived from boninitic melt that formed at shallow depths (<0.8 GPa; i.e., ca.
<30 km) and high temperature (>1250 °C; Umino and Kushiro, 1989). This provides
strong thermal constraints on the formation of the Imono peridotite body, which requires
hot, hydrous, shallow mantle; in contrast, the Higashi-Akaishi peridotite body requires
cold, hydrous, deep mantle along the subducting slab (Fig. 9). Whereas petrological and
microstructural data from the Higashi-Akaishi peridotite body can be used to constraint
its P-T path prior to incorporation within the Sanbagawa metamorphic rocks, no such
constraints exist for the Imono peridotite body, except for its boninitic association.

For depleted dunites that formed at such high temperatures, their deformation fabrics would be A- or C-type, depending on the amount of available water (Katayama and Karato, 2006). Therefore, a B-type fabric should have formed as the rock mass cooled. Katayama and Karato (2006) presented an olivine fabric diagram in temperature–stress space at constant pressure (2.0 GPa) under water-saturated conditions. As discussed above, the inferred stress for the B-type fabrics analyzed in this study lies in the range 100–200 MPa for wet olivine. Based on the olivine fabric diagrams of Katayama and Karato (2006), these stress estimates indicate maximum temperatures for the B-type fabrics of approximately 880–1030 °C, depending on the flow stress estimated from the mean sizes of dynamically recrystallized grains (Fig. 9).

As described above, the antigorite schistosity within the fine-grained texture in the Imono peridotite body is similar to that in the Higashi-Akaishi peridotite body. Therefore, after the formation of the Imono peridotite body at a relatively shallow depth (<0.8 GPa), the Imono peridotite body might have been entrained by the Sanbagawa belt at a pressure of around 1 GPa, following a similar high-pressure path to that of the Higashi-Akaishi peridotite body (Fig. 9). Alternatively, given that the initial pressure conditions experienced by the Imono body (<0.8 GPa) were markedly different from those of the Higashi-Akaishi peridotite body (~3 GPa), its P-T path may be different from that for the Higashi-Akaishi body. Thus, the Imono peridotite body may have been displaced slightly downward to attain pressures equivalent to those of the peak metamorphic pressure in the Sanbagawa belt during cooling (Fig. 9). Nonetheless, the Imono peridotite body is likely to have been located in the fore-arc mantle wedge along a subducting slab (i.e., an active subduction zone), along with the Higashi-Akaishi peridotite body (Mizukami and Wallis, 2005).

7.4. Implications for seismic anisotropy measurements

It is generally accepted that anisotropy in the back-arc area is likely to reflect olivine fabrics in the mantle. In contrast, several possible causes of anisotropy in the fore-arc side have been considered: deformation of water-rich olivine (i.e., B-type fabrics) in the mantle wedge (Jung and Karato, 2001a; Audoine et al., 2004; Katayama and Karato, 2004, 2006; Kneller et al., 2005, 2007, 2008; Jung et al., 2006), trench-parallel flow in the mantle wedge arising from along-strike variations in the dip of
the slab (e.g., Smith et al., 2001; Peyton et al., 2001; Conder and Wien, 2007, Kneller and van Keken, 2007; Behn et al., 2007), anisotropy in the crust and slab (e.g., Currie et al., 2001; Ishise and Oda, 2005), and the occurrence of highly anisotropic foliated antigorite serpentine (e.g., Kneller et al., 2008).

Although we are unable to determine which of these factors is dominant in the fore-arc side of the mantle wedge, we confirmed the presence of B-type olivine fabrics along a subducting slab. The Sanbagawa belt, within which the Imono peridotite body occurs, is thought to have formed during Cretaceous subduction at the Eurasian continental margin (e.g., Maruyama et al., 1997). The northeast Japan arc appears to be an ideal mantle wedge, as the cold Pacific plate subducts beneath the Eurasian plate at a rate of ~10 cm/year (e.g., Maruyama et al., 1997). The seismology of the northeast Japan arc has been intensively studied, including shear-wave polarization (Nakajima and Hasegawa, 2004) and P-wave anisotropy (Ishise and Oda, 2005). Fast S-wave directions in the back-arc side are oriented approximately E–W, whereas those in the fore-arc side are oriented approximately N–S, suggesting contrasting patterns of anisotropy in the back-arc and fore-arc areas (Nakajima and Hasegawa, 2004). Therefore, we now evaluate the influence of the B-type fabrics on seismic anisotropy according to the observed shear-wave polarization anisotropy in the northeast Japan.

Figure 8 showed variations in the average Vp and deviation of Vp as a function of pressure (P) and temperature (T) for structural planes of varying orientations in P–T space. Pera et al. (2003) presented similar diagrams for A-type olivine fabrics. With respect to the kinematic frameworks of horizontal, lateral, and vertical shear (Fig. 7), Vp shows no significant difference between A-type and B-type olivine fabrics (compare fig. 11 in Pera et al., 2003 and Fig. 8A–C of the present study). However, Vs anisotropy shows distinct spatial characteristics: the X direction is the weakest anisotropy for A-type fabrics (fig. 11 in Pera et al., 2003) and the strongest anisotropy for B-type (Fig. 8A–C). These results suggest that for the Imono peridotite body, Vs anisotropy would be similarly weak for any ray path unless the B-type fabrics occur in vertical shear. For the shear along a slab tilted at 30°, Vs anisotropy is sensitive to temperature rather than pressure, although this effect is relatively weak (Fig. 8D).

It might be easier to visualize the effect of the kinematic framework on Vs anisotropy by evaluating the thickness (Th) of an anisotropic layer, as given by
\[Th = (100 dt<Vs>) / AVs, \]
where \(dt \) is the delay time of S-waves, \(<Vs>\) is the average of the fast and slow velocities, and AVs is the anisotropy for a specific propagation direction expressed as a percentage (Pera et al., 2003; Michibayashi et al., 2006b). We used an average value of S-wave delay time of \(dt=0.1 \text{ s} \), as reported previously for the fore-arc of northeast Japan (Nakajima and Hasegawa, 2004), and employed the seismic properties of the average Imono olivine CPO shown in Fig. 6.

Figure 10 shows estimates of the thickness of the anisotropic layer in \(P-T \) space. The thickness of the B-type anisotropic layer is only required to be several tens of kilometres thick to satisfy the constraints of S-wave delay time (i.e., \(dt=0.1 \text{ s} \)), regardless of structural orientation in the mantle wedge (Fig. 10). In more detail, where the B-type fabrics occur in the horizontal flow (i.e., the horizontal shear in Fig. 10A or the lateral shear in Fig. 10B), the anisotropic layer would be around 20 km thick. Since the X direction contains the highest anisotropy (Fig. 8C), the anisotropic layer in the vertical shear is only around 10 km thick (Fig. 10C). In the case of shear along a slab tilted at 30°, the thickness of the anisotropic layer varies between 18 km at 800 °C and 16 km at 1000 °C.

Kneller et al. (2005) argued that for B-type fabrics, the thickness of the thermal boundary layer above the slab would be around 10–15 km, where temperature ranges from 700 to 1000 °C. This is largely consistent with our estimate of the thickness of the anisotropic layer (Fig. 10) and the temperature conditions for the B-type fabrics measured in the Imono peridotite body (Fig. 9). Consequently, if the small magnitude of S-wave splitting observed in the fore-arc side of the northeast Japan (Nakajima and Hasegawa, 2004) could be explained by the seismic properties of the B-type peridotites, its anisotropic layer would be approximately several tens of kilometers thick, oriented subparallel to the subducting slab.

In recent studies, the same seismic anisotropy in the Ryukyu arc has been analyzed based on two distinctively different assumptions: the B-type fabric hypothesis (Long et al., 2007; Kneller et al., 2008) and 3D flow caused by foundering of the lower crust (Behn et al., 2007). This debate represents the difficulties involved in interpreting the observed seismic anisotropy. In the present study, although we considered the S-wave anisotropy reported by Nakajima and Hasegawa (2004), the S-wave anisotropy resulted from integration of seismic anisotropy along a near vertical ray path. In contrast, the fast propagation axis of P-waves in the mantle wedge beneath the Tohoku region of northeast
Japan, as inferred from the tomographic inversion of P-waves from local events, is oriented E–W and approximately N–S in the crust and in the Pacific slab that is currently descending beneath the east side of northeast Japan (Ishise and Oda, 2005). The P-wave anisotropy of our B-type fabric would only be compatible with observed N-S anisotropy close to the Pacific slab with structural Y direction parallel to the trench axis and not in the main part of mantle wedge. Nonetheless, we propose that with the identification of B-type fabrics in nature (e.g., Mizukami et al., 2004; Skemer et al., 2006; this study), they should be taken into account when interpreting the present-day seismic anisotropy in the fore-arc side of the mantle wedge (e.g., Audoine et al., 2004), near the slab boundary.

8. Conclusions

B-type olivine fabrics occur pervasively within highly depleted dunites in the small-sized Imono peridotite body located in the subduction-type Sanbagawa metamorphic belt, southwest Japan arc. The dunites contain various microstructures, ranging from porphyroclastic to fine-grained equigranular texture. The Mg numbers of olivine within these dunites are around 0.9, as are the Cr numbers of chromian spinel, suggesting an evolution from highly depleted magma (boninite). Such an origin provides strong thermal constraints on the formation of the highly depleted dunites, which require hot, hydrous, shallow mantle (>1250 °C at <30 km depth) within the mantle wedge. Because the Sanbagawa metamorphic belt entrained these peridotites during progressive retrogression, the B-type olivine fabrics would have developed in the fore-arc side, above or along the subducting slab at maximum temperature conditions of 880–1030 °C depending on the flow stress. The small magnitude of S-wave splitting, orientation of fastest S-wave polarization can be explained by the seismic properties of B-type peridotites within an anisotropic layer of approximately several kilometers in thickness and oriented by flow subparallel to the subducting slab. The B-type layer might therefore represent one of the dominant sources of seismic anisotropy in the fore-arc region.

Acknowledgements

We would like to acknowledge T. Morishita, S. Umino, S. Arai, J. Kimura, and M. Toriumi for their assistance with petrological interpretations, Y. Takei, I. Katayama, T. Hiraga, J. Nakajima, and M. Ishise for their discussions during the course of this project, A. Okamoto for introducing us to the Imono peridotite, and A. Stallard for improving the
English of the manuscript. We also acknowledge S. Karato and two anonymous reviewers for their valuable comments and suggestions. MT acknowledges her colleagues, T. Miyake, Y. Omori and M. Muramoto of the Shizuoka University, and K. Kuwatani and W. Nishikanbara of the University of Tokyo for their help in the field and laboratory work and for daily discussions. This study was supported by research grants from the Japan Society for the Promotion of Science (no. 16340151 and 19340148) awarded to KM, the JSPS Invitation Fellowship Programs for Research in Japan (2006) awarded to KM, and the JSPS fellowship (2006) and CNRS/JSPS Exchange Scientist Program in France (2007) awarded to DM.

References

Banno, S., Sakai, C., Higashino, T., 1986. Pressuretemperature trajectory of the
Sanbagawa metamorphism deduced from garnet zoning, Lithos, 19, 51-63.

Kunugiza, K., 1984. Metamorphism and origin of ultramafic bodies of the Sanbagawa

Michibayashi, K., Mainprice, D., 2004. The role of pre-existing mechanical anisotropy on shear zone development within oceanic mantle lithosphere: an example from the Oman ophiolite. J. Petrol. 45, 405–414.

Michibayashi, K., Abe, N., Okamoto, A., Satsukawa, T., Michikura, K., 2006b. Seismic

Figure captions

Fig. 1. (A) Geological map of the Besshi area (modified after Aoya, 2001). The Imono peridotite body is located 5 km east of Mt. Higashi-Akaishi (HA). IRT: Iratsu mafic body. (B) Enlargement of the Imono peridotite body, showing the location of the sampled outcrop (N08) on the eastern side of the body and the orientation of foliation and lineation.

Fig. 2. Photomicrographs of Imono peridotites, showing porphyroclastic textures (A–D) and fine-grained equigranular textures (E and F). Scale bars are all 1 mm. The proportion of neoblasts varies among the samples with porphyroclastic textures (A–D).

Fig. 3. Olivine CPO data. Equal area, lower hemisphere projections. Contours are multiples of uniform distribution. Foliation is horizontal and lineation is E–W. The labels correspond to those in Fig. 2; whereas C represents all olivine grains, C1 and C2 represent porphyroclasts and neoblasts within C, respectively. J, M and pfJ are the fabric intensities calculated after Mainprice et al. (2000), Michibayashi and Mainprice (2004) and Skemer et al. (2006).

Fig. 4. (A) Relationships between the Mg number of olivine and the Cr/(Cr+Al) atomic ratio (=Cr#) of chromian spinel in analysed samples. OSMA: olivine–spinel mantle array. (B) Relationships between the Mg number and Ni content of olivine in analysed samples. (C) Relationships between the Ti content and the Cr/(Cr+Al) atomic ratio (=Cr#) of chromian spinel in analysed samples.

Fig. 5. Seismic properties computed from the CPO of olivine within analyzed samples. Each panel corresponds to the same sample shown in the same panel in Fig. 2. Data are presented in an equal area lower hemisphere projection. Foliation is horizontal (XY plane; solid line) and lineation (X) is E-W within the plane of the foliation. Column 1 (Vp): 3D distribution of the P-wave velocity. Contours are multiples of the uniform density. Anisotropy is VpMax-VpMin/VpMean. Column 2 (AVs): 3D distribution of the polarization anisotropy of S-waves owing to S-wave splitting. Column 3 (Vs_1 plane): polarization plane of the fast split S-wave (S_{1}) as a function of the orientation of the
incoming wave relative to the structural frame (X, Y, Z) of the sample. Each small segment on the figure represents the trace of the polarization plane on the point at which S1 penetrates the hemisphere. Color shading for AVs is also shown on the figure.

Fig. 6. (A) Olivine CPO pattern and (B) seismic properties of the Imono average sample. Contours are multiples of uniform density. Foliation is horizontal (XY plane; solid line), and the lineation (X) is oriented E–W within the plane of the foliation. See Figure 5 caption.

Fig. 7. Different structural orientations of mantle peridotite. Shaded area: foliation plane; lines: lineation directions. (A) horizontal shear model; (B) lateral shear model; (C) vertical shear model; (D) a model of shear along a slab tilted 30 degree. (E) The relationships between the propagation directions of seismic waves and four shear models. The four shear models correspond to different parts of the corner flow in the mantle wedge.

Fig. 8. Variations in average Vp, deviation of Vp and S-wave anisotropy as a function of P and T for the Imono average sample with respect to the different structural orientations shown in Fig. 7. Seismic properties were calculated using the elastic constants of Abramson et al. (1997), pressure and temperature derivatives of Abramson et al. (1997) and Isaak (1992), respectively, and the Voigt-Reuss-Hill average. The PT conditions for the B-type olivine fabrics of the Imono peridotites are indicated by dotted triangles.

Fig. 9. Possible P-T conditions of the Imono peridotite body in comparison with the P-T-D path of the Higashi-Akaishi peridotite body, as proposed by Mizuoka and Wallis (2005), as well as the P-T path of the Sanbagawa metamorphic body. Two inferred maximum temperature conditions for the B-type fabrics are shown with respect to two flow stresses: 880 °C for 100 MPa and 1030 °C for 200 MPa, respectively. See text for discussion.

Fig. 10. Estimate of the thickness of the anisotropic layer. Based on the observed dt=0.1 s, we have an anisotropic layer with a thickness of several tens of kilometers, regardless of the structural orientation of B-type olivine fabrics within the Imono peridotite body.
Fig. 1. (A) Geological map of the Besshi area (modified after Aoya, 2001). The Imono peridotite body is located 5 km east of Mt. Higashi-Akaishi (HA). IRT: Iratsu mafic body. (B) Enlargement of the Imono peridotite body, showing the location of the sampled outcrop (N08) on the eastern side of the body and the orientation of foliation and lineation.
Fig. 2. Photomicrographs of Imono peridotites, showing porphyroclastic textures (A–D) and fine-grained equigranular textures (E and F). Scale bars are all 1 mm. The proportion of neoblasts varies among the samples with porphyroclastic textures (A–D).
Fig. 3. Olivine CPO data. Equal area, lower hemisphere projections. Contours are multiples of uniform distribution. Foliation is horizontal and lineation is E–W. The labels correspond to those in Fig. 2; whereas C represents all olivine grains, C1 and C2 represent porphyroclasts and neoblasts within C, respectively. J, M and pJ are the fabric intensities calculated after Mainprice et al. (2000), Michibayashi and Mainprice (2004) and Skemer et al. (2006).
Fig. 4. (A) Relationships between the Mg number of olivine and the Cr/(Cr+Al) atomic ratio (=Cr#) of chromian spinel. OSMA: olivine-spinel mantle array. (B) Relationships between the Mg number and Ni content of olivine. (C) Relationships between the Ti content and the Cr/(Cr+Al) atomic ratio (=Cr#) of chromian spinel,
Fig. 5. Seismic properties computed from the CPO of olivine within analyzed samples. Each panel corresponds to the same sample shown in the same panel in Fig. 2. Data are presented in an equal area lower hemisphere projection. Foliation is horizontal (XY plane; solid line) and lineation (X) is E-W within the plane of the foliation. Column 1 (Vp): 3D distribution of the P-wave velocity. Contours are multiples of the uniform density. Anisotropy is VpMax-VpMin/VpMean. Column 2 (AVs): 3D distribution of the polarization anisotropy of S-waves owing to S-wave splitting. Column 3 (Vs₁ plane): polarization plane of the fast split S-wave (S₁) as a function of the orientation of the incoming wave relative to the structural frame (X, Y, Z) of the sample. Each small segment on the figure represents the trace of the polarization plane on the point at which S₁ penetrates the hemisphere. Color shading for AVs is also shown on the figure.
Fig. 6. (A) Olivine CPO pattern and (B) seismic properties of the Imono average sample. Contours are multiples of uniform density. Foliation is horizontal (XY plane; solid line), and the lineation (X) is oriented E–W within the plane of the foliation. See Figure 5 caption.
Fig. 7. Different structural orientations of mantle peridotite. Shaded area: foliation plane; lines: lineation directions. (A) horizontal shear model; (B) lateral shear model; (C) vertical shear model; (D) a model of shear along a slab tilted 30 degree. (E) The relationships between the propagation directions of seismic waves and four shear models. The four shear models correspond to different parts of the corner flow in the mantle wedge.
Fig. 8. Variations in average Vp, deviation of Vp and S-wave anisotropy as a function of P and T for the Imono average sample with respect to the different structural orientations shown in Fig. 7. Seismic properties were calculated using the elastic constants of Abramson et al. (1997), pressure and temperature derivatives of Abramson et al. (1997) and Isaak (1992), respectively, and the Voigt-Reuss-Hill average. The PT conditions for the B-type olivine fabrics of the Imono peridotites are indicated by dotted triangles.
Fig. 9. Possible P-T conditions of the Imono peridotite body in comparison with the P-T-D path of the Higashi-Akaishi peridotite body, as proposed by Mizuoka and Wallis (2005), as well as the P-T path of the Sanbagawa metamorphic body. Two inferred maximum temperature conditions for the B-type fabrics are shown with respect to two flow stresses: 880 °C for 100 MPa and 1030 °C for 200 MPa, respectively. See text for discussion.
Fig. 10. Estimate of the thickness of the anisotropic layer. Based on the observed \(dt = 0.1 \) s, we have an anisotropic layer with a thickness of several tens of kilometers, regardless of the structural orientation of B-type olivine fabrics within the Imono peridotite body.