Remarkable Influence of Structures around Rhenium (V) Centers Constructed in Polyoxotungstates for Methanol Dehydrogenation under Visible Light Irradiation

Kato Chika Nozaki, Nakayama Ryuta, Hattori Shota, Amano Hidekuni, Makino Yuki

Journal or Publication Title: British Journal of Applied Science and Technology

Volume: 4
Number: 16
Page Range: 2302-2319
Year: 2014-04-10

著者

<table>
<thead>
<tr>
<th>著者</th>
<th>Kato Chika Nozaki, Nakayama Ryuta, Hattori Shota, Amano Hidekuni, Makino Yuki</th>
</tr>
</thead>
</table>

出版者

<table>
<thead>
<tr>
<th>出版者</th>
<th>SCIENCEDOMAIN International</th>
</tr>
</thead>
</table>

権利

<table>
<thead>
<tr>
<th>権利</th>
<th>Copyright © 2010-2014, SCIENCEDOMAIN International. All rights reserved.</th>
</tr>
</thead>
</table>

** Islam et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |

URL

| URL | http://hdl.handle.net/10297/7778 |
Remarkable Influence of Structures around Rhenium(V) Centers Constructed in Polyoxotungstates for Methanol Dehydrogenation under Visible Light Irradiation

Chika Nozaki Kato1,2*, Ryuta Nakayama1, Shota Hattori1, Hidekuni Amano1 and Yuki Makino1

1Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
2Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya, Suruga-ku, Shizuoka 422-8529, Japan

ABSTRACT

The synthesis and characterization of \(\alpha_1 \)-Dawson-type mono-rhenium(V)-substituted polyoxotungstate, \([\alpha_1\text{-P}_2\text{W}_{17}\text{Re}^\text{V}\text{O}_{62}]^{7-}\) (1), are described. The dimethylammonium salt of 1, \[\text{Me}_2\text{NH}_2\text{]+}[\alpha_1\text{-P}_2\text{W}_{17}\text{Re}^\text{V}\text{O}_{62}]:9\text{H}_2\text{O} \ (\text{Me}_2\text{NH}_2\cdot 1)\), was obtained as analytically pure homogeneous black-blue crystals by reacting mono-lacunary \(\alpha_1 \)-Dawson polyoxotungstate with \([\text{Re}^\text{IV}\text{Cl}_6]^2-\) in \(\text{CH}_3\text{COOH}/\text{CH}_3\text{COOLi} \) buffer, followed by crystallization via a vapor diffusion from acetonitrile/ethanol. Characterization was also accomplished by X-ray crystallography, elemental analysis, TG/DTA, FTIR, UV-vis, and solution \(^{31}\text{P} \) NMR spectroscopy; these results showed that the polyoxoanion 1 was a monomeric \(\alpha \)-Dawson structure, in which the rhenium(V) ion was coordinated to the monovacant site of \([\alpha_1\text{-LiP}_2\text{W}_{17}\text{O}_{61}])^9-\), resulting in an overall \(C_1 \) symmetry. The polyoxoanion 1, \([\Omega(\text{Re}^\text{V}(\text{OH})(\alpha_2\text{-P}_2\text{W}_{17}\text{O}_{61}))^{12}](\text{2})\), and \([\alpha\text{-PW}_{11}\text{Re}^\text{V}\text{O}_{40}]^{4+} \ (3)\) showed the hydrogen evolution from methanol under visible light irradiation (\(\geq 400 \) nm) in the presence of titanium dioxide. The activities were remarkably depended on the rhenium(V) sites in 1–3; polyoxoanion 2 possessing the dirhenium(V)-oxido-bridged site showed the highest activities among these complexes.

Keywords: Rhenium(V); polyoxometalate; crystal structure; photocatalyst; methanol dehydrogenation

1. INTRODUCTION

Since the Honda–Fujishima effect, i.e., photoinduced water splitting by titanium dioxide (TiO\(_2\)) and platinum electrodes was first reported, various photocatalytic materials have been investigated, because the generated hydrogen (H\(_2\)) is a clean and renewable fuel source [1–6]. Although TiO\(_2\) is one of the most promising photocatalysts owing to its sufficient photostability, commercial availability, easy preparation, and its high activity for a wide range of photocatalytic reactions, it absorbs only ultraviolet (UV) light because of its wide band gap (varying from 3.0 to 3.2 eV, depending on the crystal structure); this limits the use of sunlight as an irradiation source in photocatalytic reactions [7,8]. One of the most powerful
approaches to developing visible-light-driven TiO₂ materials is surface modification. To date, numerous TiO₂ materials have been prepared by sensitizing transition metals [8–16], organic dyes [4, 7, 17–22], and organic moieties [23–29], and they show high activities in the presence of cocatalysts for various photoreactions. Although these are excellent studies, there is still room for improving TiO₂-based photocatalytic systems by including a sensitizer and a cocatalyst.

Polyoxometalates have attracted considerable attention because of their high versatility and unique range of properties; these include catalytic and biological activities and/or photochemical, electrochromic, and magnetic properties [30–32]. Photocatalytic systems constructed using TiO₂ and polyoxometalates, e.g., PW₁₂O₄₀⁶⁴⁻, PMo₁₂O₄₀⁴⁻, GeW₁₂O₄₀⁴⁻, SiW₁₂O₄₀⁵⁻, BW₁₂O₆₀⁵⁻, α-P₂W₁₈O₆₂⁵⁻, and α₂-P₂W₁₇O₆₁⁴⁻, also exhibit efficient photocatalytic activities under visible light irradiation; however, they required a pretreatment by UV irradiation to form “heteropoly bule” species, and large amounts of cocatalyst [33–38]. Recently, we demonstrated the catalytic activities of α₂-Dawson and Keggin rhenium(V)-coordinated polyoxotungstates, [O{Re⁴⁺(OH)₂(α₂-P₂W₁₇O₆₁)}]²⁻ and [α₂-PW₁₁Re⁴⁺O₄₀]⁶⁻, in Hz evolution from water vapor and an aqueous solution of EDTA-2Na (ethylenediamine tetraacetic acid disodium salt) in the presence of TiO₂ under visible light irradiation (>400 and ≥420 nm) [39, 40]. In this system, the pretreatment by UV irradiation was not necessary, and the rhenium compounds exhibited high photocatalytic activities without cocatalyst. Thus, the rhenium(V)-coordinated polyoxometalates were useful compounds for development of visible-light-driven TiO₂-based photocatalyst; however, the structure dependence of rhenium(V) sites constructed in polyoxometalate is still open to discussion because significant [α₂-PW₁₁Re⁴⁺O₄₀]⁶⁻ decomposition was observed in an EDTA-2Na aqueous solution during light irradiation.

In this study, we first synthesized α₁₁-Dawson-type mono-rhenium(V)-substituted polyoxotungstate [Me₂NH₂][α₁₁-P₂W₁₇Re⁴⁺O₄₀]·9H₂O (Me₂NH₂-1) and characterized it using X-ray crystallography, elemental analysis, thermogravimetric analysis/differential thermal analysis (TG/DTA), and Fourier-transform infrared (FTIR), UV-visible, and solution ³¹P nuclear magnetic resonance (NMR) spectroscopies. To investigate the structure dependence of rhenium(V) sites for the photocatalytic reactions, we focused on the methanol dehydrogenation catalyzed by Me₂NH₂-1, K₂[O{Re⁴⁺(OH)₂(α₂-P₂W₁₇O₆₁)}]₂·21H₂O (K-2), and [Me₂NH₂]₄[α₂-PW₁₁Re⁴⁺O₄₀]·3H₂O (Me₂NH₂-3) under visible light irradiation (>400 nm) in the presence of TiO₂. Here, we report full details of the synthesis and molecular structure of complex 1, and demonstrate the photocatalytic activities and stabilities of complexes 1−3.

2. EXPERIMENTAL DETAILS

2.1 Materials

K₁₂[O(Re⁴⁺(OH)₂(α₂-P₂W₁₇O₆₁))]₂·21H₂O (K-2) [40], [Me₂NH₂]₄[α₂-PW₁₁Re⁴⁺O₄₀] (Me₂NH₂-3) [40], K₂[α₁₁-Li₂P₂W₁₇O₆₁]·22H₂O [41], and K₁₀[α₂-P₂W₁₇O₆₁]·27H₂O [42] were synthesized as described in the literatures. The number of solvated water molecules was determined by TG/DTA analyses. K₂[Re⁴⁺Cl₆] was purified by the reprecipitation from water/ethanol. TiO₂ (anatase/rutile = 80/20; 99.9%; -5 μm) was obtained from Wako Pure Chemical Industries, Ltd. Other reagents and solvents were obtained and used as received from commercial sources.

2.2 Instrumentation/analytical procedures
The elemental analysis was carried out by using a Mikroanalytisches Labor Pascher instrument (Remagen, Germany). The samples were dried overnight at room temperature under $10^{-3} - 10^{-4}$ Torr vacuum before analysis. The infrared spectra were recorded on a Parkin Elmer Spectrum100 FT-IR spectrometer in KBr disks at room temperature. Thermogravimetric (TG) and differential thermal analyses (DTA) data were obtained using a Rigaku Thermo Plus 2 series TG/DTA TG 8120. The TG/DTA measurements were performed in air with a temperature increase of 4 °C per min between 20 and 500 °C. The 31P-1H (242.95 MHz) nuclear magnetic resonance (NMR) spectra in solutions were recorded in 5-mm outer diameter tubes on a JEOL ECA-600 NMR spectrometer (Shizuoka University). The 31P NMR spectra were measured in CH$_3$COOLi-D$_2$O and D$_2$O with reference to an external standard of 85% H$_3$PO$_4$ in a sealed capillary. Chemical shifts were reported as negative on the δ scale for resonance upfield of H$_3$PO$_4$ (δ 0). Solution UV-vis spectra were recorded on a Perkin-Elmer Spectrum Lambda 650 spectrophotometer. The positions of sharp bands were automatically determined by software of UV-visible spectrometer, and those of broad bands were picked up at the highest values in the ASCII files. Potentiometric titration was carried out with 0.841 mmol/L tetra-n-butylammonium hydroxide as a titrant under argon atmosphere [43]. The compound Me$_2$NH$_2$-1 (4.12 μmol) was dissolved in acetonitrile (20 mL) at 25 °C, and the solution was stirred for approximately 5 min. The titration data were obtained with a pH meter (Mettler Toledo). Data points were obtained in millivolt. A solution of tetra-n-butylammonium hydroxide (0.841 mmol/L) was syringed into the suspension in 0.2-equivalent intervals.

2.3 Synthesis of [Me$_2$NH$_2$][x1-P$_2$W$_{17}$ReO$_{62}$]-9H$_2$O (Me$_2$NH$_2$-1)

A solution of K$_2$[ReIVCl$_6$] (0.365 g; 0.765 mmol) dissolved in 10 mL of water was added to a solution of K$_3$[x$_1$-Li$_2$P$_2$W$_{17}$O$_{61}$]-2H$_2$O (1.865 g; 0.379 mmol) dissolved in 25 mL of CH$_3$COOH/CH$_3$COOLi buffer solution (pH = 4.5) at 25 °C. After stirring for 4 h at 25 °C in the dark, a solid [Me$_2$NH$_2$]Cl (3.114 g; 38.3 mmol) was added to the solution, followed by stirring overnight at 25 °C. A deep blue-colored precipitate was collected using a membrane filter (JG 0.2 μm). At this stage, a crude product was obtained in 1.74 g yield. For crystallization, the crude product (1.74 g) was dissolved in 350 mL of acetonitrile at 25 °C; the resulting solution was filtered through a folded filter paper (Whatman #5). Black block crystals were obtained via vapor diffusion from methanol at 25 °C. The yield was 0.464 g. The percent yield was calculated on the basis of [mol of Me$_2$NH$_2$-1]/[mol of K$_3$[x$_1$-Li$_2$P$_2$W$_{17}$O$_{61}$]-2H$_2$O] × 100 and was 25%. Elemental analysis results showed C, 3.57; H, 1.42; N, 2.05; P, 1.28; Re, 4.00; W, 66.0; K, 0.03; Li, <0.01%. Calculations for [(CH$_3$)$_2$NH$_2$][x$_1$-P$_2$W$_{17}$ReO$_{62}$]-xH$_2$O (x = 2) = H$_{62}$O$_{4}$N$_{61}$O$_{6}$P$_{2}$ReW$_{17}$/2C, 3.56; H, 1.28; N, 2.08; P, 1.31; Re, 3.94; W, 66.2%. A weight loss of 2.54% was observed during overnight drying at room temperature under $10^{-3} - 10^{-4}$ torr before analysis, suggesting seven water molecules (2.60%). TG/DTA under atmospheric conditions showed a weight loss of 12.2% below 500 °C with an exothermic point at 381.1 °C. A clear endothermic point was not observed; calculations showed 10.0% for the sum of seven dimethylammonium ions and nine water molecules. IR (KBr disk) results in the 1300 – 400 cm$^{-1}$ region (polyoxometalate region) showed: 1094m, 1077m, 1014w, 959s, 918m, 823m, 776m, and 733m cm$^{-1}$. 31P NMR (0.285 M CH$_3$COOLi-D$_2$O solution, 22.3 °C): δ -12.1, -12.4. UV-visible absorption (in H$_2$O, 1.0 × 10^{-3} and 1.0 × 10^{-4} M) showed: λ 263 nm (ε 4.4 × 104 M$^{-1}$cm$^{-1}$), λ 310 nm (ε 1.8 × 104 M$^{-1}$cm$^{-1}$), and λ 468 nm (ε 3.7 × 103 M$^{-1}$cm$^{-1}$).

2.4 X-ray crystallography

A black block crystal of Me$_2$NH$_2$-1 (0.180 × 0.050 × 0.040 mm3) was mounted in a loop. Data were collected by a Rigaku Marcury70 diffractometer using monochromated Mo Kα radiation (λ = 0.71070 Å) at 113 K. Data were collected and processed using CrystalClear
2.5 X-ray crystallography

C₁₄H₆₀N₇O₆₄P₂ReW₁₇; M = 4724.24, triclinic, space group P-1 (#2), a = 13.317(5) Å, b = 13.377(4) Å, c = 24.248(9) Å, α = 79.24(2)°, β = 79.78(2)°, γ = 68.28(2)°, V = 3914(3) Å³, Z = 2, Dc = 4.008 g/cm³, μ(Mo-Kα) = 265.749 cm⁻¹. Rf = 0.0678 (I > 2σ(I)), wR₂ = 0.1837 (for all data). CCDC reference number 968914 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223-336-033; E-mail: deposite@ccdc.cam.ac.uk.]

2.6 Catalytic reaction experiments

For methanol dehydrogenation, TiO₂ (anatase/rutile = 80/20) (200 mg) and rhenium compounds were suspended in 10 mL of methanol. The mixture was placed into a glass reaction vessel; this was connected to a Pyrex conventional closed gas circulation system (245.5 cm³). The compounds Me₂NH₂-1 (2.8 – 9.4 mg; 0.6 – 1.9 μmol of Re), K-2 (2.4 – 10 mg; 0.6 – 2.0 μmol of Re), and Me₂NH₂-3 (1.8 – 6.1 mg; 0.6 – 2.0 μmol of Re) were used for the photoreactions. The photoreaction was started by light irradiation with a 300 W Xe lamp equipped with a cut-off filter (λ ≥ 400 nm). H₂, O₂, CO, and CH₄ were analyzed by GC (TCD, Molecular Sieve 5A stainless columns); the samples were assigned after they were compared with authentic samples analyzed under the same conditions. Turnover number (TON) was calculated as [hydrogen evolved (mol)]/[Re atoms (mol)]. Formaldehyde was observed by the published method [46].

3. RESULTS AND DISCUSSION

3.1 Synthesis and molecular structure of [Me₂NH₂]₂[α₁-P₂W₁₅Re₁V₄O₇₂]-9H₂O (Me₂NH₂-1)

The dimethylammonium salt of 1, [Me₂NH₂]₂[α₁-P₂W₁₅Re₁V₄O₇₂]-9H₂O (Me₂NH₂-1), was synthesized by the direct reaction of 2 equiv of K₂Re⁶Cl₆ with mono-lacunary α₁-Dawson polyoxotungstate, [α₁-LiP₂W₁₇O₆₁]³⁺, in a CH₃COOH/CH₃COOLi aqueous buffer solution (pH = 4.5) under air, at 25 °C; this was followed by addition of excess Me₂NHCl, forming a dark blue precipitate. The formation of polyoxoanion 1 is represented by the ionic balance shown in Eq. 1, in which rhenium(IV) is oxidized to rhenium(V), as observed for compounds K-2 and Me₂NH₂-3 [39,40]. Notably, polyoxoanion 1 was gradually isomerized to the α₂-isomer during the reaction of K₂Re⁶Cl₆ with [α₁-LiP₂W₁₇O₆₁]³⁺ in aqueous solution; the CH₃COOH/CH₃COOLi aqueous buffer solution is therefore indispensable in inhibiting isomerization, as observed for [α₁-LiP₂W₁₇O₆₁]³⁺ [41]. In addition, the reaction temperature
should be kept at ca. 25 °C, even in a buffer solution, because heat treatment accelerated
the isomerization. An excess of K₂Re⁴Cl₆ was therefore required to complete (accelerate)
the coordination of rhenium ion to the mono-vacant site of [α₁-LiP₂W₁₇O₆₅]²⁺. For purification,
the unreacted K₂Re⁴Cl₆ was completely removed by crystallization via vapor diffusion from
acetonitrile/ethanol.

\[
[\alpha_1\text{-LiP}_2\text{W}_{17}\text{O}_{61}]^b + \text{Re}^4\text{Cl}_6^2- + \text{H}_2\text{O} \rightarrow [\alpha_1\text{-P}_2\text{W}_{17}\text{Re}^4\text{O}_{62}]^7- + 2\text{H}^+ + \text{Li}^+ + 6\text{Cl}^-(1)
\]

The sample was dried overnight at room temperature under a vacuum of 10⁻³ – 10⁻⁴ Torr for
elemental analysis. The elemental results for C, H, N, Re, P, and W were in good agreement
with the calculated values for the chemical formula of Me₂NH₂-1 with two hydrated water
molecules. The presence of seven dimethylammonium ions suggested that the oxidation
state of the rhenium site was 5+; this was also supported by the fact that no protonation was
observed in potentiometric titration with tetra-n-butylammonium hydroxide in acetonitrile.

The weight loss observed during drying before analysis was 2.54% for Me₂NH₂-1,
corresponding to seven weakly solvated or adsorbed water molecules. However, during
TG/DTA under atmospheric conditions, a weight loss of 12.2% was observed below 500 °C,
corresponding to seven dimethylammonium ions and nine water molecules.

The X-ray structural analysis of crystalline [Me₂NH₂][α₁-P₂W₁₇ReV⁴O₆₂]-2H₂O revealed that
the molecular structure of 1 was identical to that of a monomeric α-Dawson
polyoxotungstate, [α₂-P₂W₁₈O₆₂]⁶⁺, as shown in Figure 1. The bond lengths and bond angles
are shown in Appendix. As a result of the high-symmetry space group, 12 tungsten sites
[W(4) – W(15)] were disordered and a mono-rhenium-substituted site was not identified, as
observed for [W₆ReO₃Cl₂]⁵⁺ [47] and [α₂-P₆W₁₄O₆₅]⁶⁺ [48]. Some ethanol and acetonitrile
molecules were observed in a single crystal of Me₂NH₂-1; however, no acetonitrile and
ethanol solvent molecules were observed by elemental analysis and ¹H NMR spectroscopy.

The solvent molecules therefore evaporate gradually when the crystals are removed from
acetonitrile solution.

The FTIR spectrum of compound Me₂NH₂-1, which was obtained using a KBr disk, is shown
in Figure 2. The positions of all the bands (1094, 1077, 1014, 959, 918, 823, 776, and 733
cm⁻¹) in the polyoxoanion region of this compound are characteristic of polyoxoanions;
however, they were different from those for [α₁-LiP₂W₁₇O₆₁]²⁺ (1122, 1092, 1011, 944, 908,
828, 783, and 744 cm⁻¹), K-2 (1091, 1018, 955, 910, and 788 cm⁻¹), and [α₂-P₂W₁₈O₆₅]⁶⁺
(1091, 1020, 958, 912, 777, and 528 cm⁻¹). This suggests coordination of a rhenium(V) ion
in the monovacant site of [α₁-LiP₂W₁₇O₆₁]²⁺.

The ³¹P NMR spectrum in CH₃COOLi-D₂O solution of Me₂NH₂-1 showed a clear two-line
spectrum, with signals at -12.1 ppm and -12.4 ppm, as shown in Figure 3(a). The signals
were shifted compared with those of [α₁-LiP₂W₁₇O₆₁]²⁺ (-8.7 ppm and -13.0 ppm) and [α₂-
P₂W₁₈O₆₅]⁶⁺ (-12.8 ppm), indicating complete coordination of rhenium atom to monovacant
site of [α₁-LiP₂W₁₇O₆₁]²⁺, as shown in Figure 1. No contamination of the sample by
polyoxoanion 2 (-11.9 ppm and -12.9 ppm in D₂O) was observed; however, polyoxoanion 1
gradually isomerized to polyoxoanion 2 in aqueous solution. The ¹³⁸W NMR spectrum of
Me₂NH₂-1 failed to obtain because of its low solubility in water and acetonitrile.

The UV-visible spectrum of Me₂NH₂-1 in water showed four absorption bands, at 263 (ε 4.4 ×
10⁴ M⁻¹cm⁻¹), 310 (ε 1.8 × 10⁴ M⁻¹cm⁻¹), 468 (ε 3.7 × 10³ M⁻¹cm⁻¹), and 613 nm (ε 5.2 × 10³ M⁻¹
1cm⁻¹), as shown in Figure 4. The bands at 263 nm and 310 nm were assigned to the
charge transfer (CT) band of W-O bonds. The two bands at 468 and 613 nm were assigned
to the Re⁴⁺→W⁹⁺ intervalence charge transfer (IVCT) band and the α-d band of the
rhenium(V) atom, respectively [39,40]. It was noted that the bands at 468 nm and 613 nm for Me$_2$NH$_2$-1 were significantly broader rather than those for K-2 and Me$_2$NH$_2$-3, and the positions were blue-shifted compared with those for K-2 (496 nm and 737 nm) and Me$_2$NH$_2$-3 (513 nm and 698 nm); this also suggested coordination of the rhenium(V) ion to the monovacant site in [α1-LiP$_2$W$_{17}$O$_{61}$]9.

![Fig. 1.](image1.png)

Fig. 1. (a) The molecular structure (ORTEP drawing) of polyoxoanion 1 with all atom numberings and (b) polyhedral representation of polyoxoanion 1. In (b), WO$_6$ and ReO$_6$ units are represented by the white and purple octahedra, respectively. The internal PO$_4$ units are represented by the red tetrahedra.

![Fig. 2.](image2.png)

Fig. 2. FTIR spectrum as a KBr disk of Me$_2$NH$_2$-1.
Fig. 3. 31P NMR spectra in 0.285 M CH$_3$COOLi-D$_2$O of (a) Me$_2$NH$_2$-1 and (b) after photoreaction. The spectrum was referenced to an external standard of 85% H$_3$PO$_4$ in a sealed capillary. In (b), Me$_2$NH$_2$-1 (50 mg) and TiO$_2$ (500 mg) were suspended in methanol (25 mL), and they were irradiated under the visible light (≥400 nm) for 6 h.

Fig. 4. UV-visible spectra in H$_2$O of Me$_2$NH$_2$-1 (1.0 × 10$^{-5}$ M) at 200 – 800 nm. Inset: 400 – 800 nm (1.0 × 10$^{-4}$ M).
3.2 Catalytic activities in methanol dehydrogenation catalyzed by rhenium(V)-coordinated polyoxotungstates in the presence of TiO$_2$ under visible-light irradiation (≥400 nm)

Methanol dehydrogenation catalyzed by rhenium(V)-coordinated polyoxotungstates at 25 ºC in the presence of TiO$_2$ under light irradiation (≥400 nm) was investigated; the results are summarized in Table 1. Hydrogen was evolved from methanol catalyzed by Me$_2$NH$_2$-1, K-2, and Me$_2$NH$_2$-3. Formaldehyde was also observed; while, O$_2$, CO, and CH$_4$ were not observed. The three rhenium(V) compounds were hardly soluble in methanol. When a suspension of K-2 (50 mg) and TiO$_2$ (200 mg) in methanol (25 mL) was irradiated under visible light (≥400 nm) for 6 h, followed by filtration through a membrane filter (JG 0.2 μm), UV-vis spectrum of the filtrate showed a small band at around 220 nm due to a charge transfer band of WVI-O; however, this was significantly smaller than that in 30 mM EDTA·2Na aqueous solution (25 mL) under the same reaction conditions, as shown in Figure 5. Even when the cesium salts of 1 – 3 were used as catalysts, a slight leaching into methanol was observed. These results suggested that the rhenium(V) compounds were predominantly active in the solid state under the present reaction conditions. The initial dehydrogenation rates with Me$_2$NH$_2$-1 and Me$_2$NH$_2$-3 were slow; while, no induction period was observed for K-2, as shown in Figure 6. The colors of these materials changed from white-purple to blue during the reactions; however, the blue color disappeared and the photoreactions stopped when visible light irradiation stopped.

![Fig. 5. UV-visible spectra of K-2 at 200 – 800 nm.](image)

K-2 (50 mg) and TiO$_2$ (500 mg) were suspended in (a) 30 mM EDTA·2Na aqueous solution (25 mL) and (b) methanol (25 mL), and they were irradiated under the visible light (≥400 nm) for 6 h at 25 ºC. After a filtration through a membrane filter (JG 0.2 μm), UV-vis spectra of the filtrates were observed, respectively.

In control experiments, hydrogen was not detected when the reaction was catalyzed by TiO$_2$. The rhenium(V)-coordinated polyoxotungstates showed no reaction in the absence of TiO$_2$. K$_{10}$[α$_2$-P$_2$W$_{17}$O$_{49}$]·27H$_2$O also showed no reaction even in the presence of TiO$_2$. A combination of rhenium(V)-coordinated sites in the polyoxotungstates and TiO$_2$ was therefore necessary, as reported for photoreactions using an EDTA·2Na aqueous solution in
the presence of TiO$_2$ under light irradiation (≥400 nm) [39,40]. For the three rhenium compounds (1.0 µmol of Re), the evolved amounts of H$_2$ after 6 h were 17.7, 206, and 72.4 µmol [the turnover numbers (TONs) were 35, 412, and 145, respectively]; these results showed that K-2 had the highest activity among these samples under the present reaction conditions. Even for 0.6 and 2.0 µmol of Re, K-2 exhibited the highest activities; however, the TONs decreased with increasing concentration of rhenium(V) atoms. When the cesium salts of 2 and 3, Cs$_{14}$O(Re(OH)((α$_2$-P$_{2}$W$_{17}$O$_{61}$))$_2$ (Cs-2) [40] and Cs$_{3.5}$H$_{0.5}$[PW$_{11}$ReO$_{40}$] (Cs-3) [40], were used as catalysts, the activities decreased compared with those of K-2 and Me$_2$NH$_2$-3; however, the activities of Cs-2 were higher than those of Cs-3. These results suggested that the structure dependence was not influenced by the counter ion.

Table 1. Hydrogen evolution from methanol catalyzed by rhenium(V)-coordinated polyoxometalates under visible light irradiationa

<table>
<thead>
<tr>
<th>Catalyst (µmol of rhenium atom)</th>
<th>H$_2$ [µmol]</th>
<th>TONb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me$_2$NH$_2$-1/TiO$_2$ (0.6)</td>
<td>10.8</td>
<td>36</td>
</tr>
<tr>
<td>Me$_2$NH$_2$-1/TiO$_2$ (1.0)</td>
<td>17.7</td>
<td>35</td>
</tr>
<tr>
<td>Me$_2$NH$_2$-1/TiO$_2$ (1.9)</td>
<td>29.9</td>
<td>31</td>
</tr>
<tr>
<td>K-2/TiO$_2$ (0.6)</td>
<td>103</td>
<td>345</td>
</tr>
<tr>
<td>K-2/TiO$_2$ (1.0)</td>
<td>206</td>
<td>412</td>
</tr>
<tr>
<td>K-2/TiO$_2$ (2.0)</td>
<td>116</td>
<td>116</td>
</tr>
<tr>
<td>Me$_2$NH$_2$-3/TiO$_2$ (0.6)</td>
<td>42.4</td>
<td>141</td>
</tr>
<tr>
<td>Me$_2$NH$_2$-3/TiO$_2$ (1.0)</td>
<td>72.4</td>
<td>145</td>
</tr>
<tr>
<td>Me$_2$NH$_2$-3/TiO$_2$ (2.0)</td>
<td>34.0</td>
<td>34</td>
</tr>
</tbody>
</table>

a = Reaction conditions are as follows: methanol (10 mL), Me$_2$NH$_2$-1 (0.6 – 1.9 µmol of Re), K-2 (0.6 – 2.0 µmol of Re), and Me$_2$NH$_2$-3 (0.6 – 2.0 µmol of Re), titanium dioxide (anatase/rutile = 80/20) (200 mg), reaction time 6 h, light (≥400 nm), 25 ºC

b = Turnover number (TON) was calculated as 2[H$_2$ evolved (mol)] per [Re atoms (mol)]

The stabilities of polyoxoanions 1 – 3 during methanol dehydrogenation were determined by 31P NMR spectroscopy, as follows: TiO$_2$ (500 mg) and the rhenium compounds (50 mg) were suspended in 25 mL of methanol. After light irradiation for 6 h, the solids were collected using a membrane filter (JG 0.2 µm). The solids were suspended in 10 mL of water, and the filtrates, containing dissolved polyoxoanions 1 – 3, were evaporated to dryness at 40 ºC. As shown in Figures 3(b) and 7, the 31P NMR spectra in CH$_3$COOLi-D$_2$O of 1, and in D$_2$O of 2 and 3, were the same as those of the as-prepared samples. This showed that these compounds did not decompose or isomerize during methanol dehydrogenation under light irradiation. It was clear that the rhenium(V) sites in polyoxometalates significantly affected the photocatalytic activities, and the dirhenium(V)-oxido-bridged site in 2 exhibited the highest activity among these three samples under the present reaction conditions.
Fig. 6. Time course for methanol dehydrogenation catalyzed by (a) Me$_2$NH$_2$-1 (1.0 μmol of Re), (b) K-2 (1.0 μmol of Re), and (c) Me$_2$NH$_2$-3 (1.0 μmol of Re). In this system, the three polyoxotungstates and TiO$_2$ were suspended in methanol, and the visible light (≥400 nm) was irradiated for 6 h at 25 °C. Reaction conditions are shown in Table 1.
Fig. 7. 31P NMR spectra in D$_2$O of (a) K-2 and (b) Me$_2$NH$_2$-3 after photoreactions. The rhenium compounds (50 mg) and TiO$_2$ (500 mg) were suspended in methanol (25 mL), and they were irradiated under the visible light (≥400 nm) for 6 h.

4. CONCLUSION

A rhenium(V) complex composed of mono-lacunary α_1-Dawson polyoxotungstate was presented. We successfully obtained single crystals of dimethylammonium salt [Me$_2$NH$_2$]α_1-P$_2$W$_{17}$Re$_2$O$_{62}$·9H$_2$O (Me$_2$NH$_2$-1) by reacting hexachlororhenate with a mono-lacunary α_1-Dawson polyoxoanion in CH$_3$COOH/CH$_3$COOLi buffer, followed by crystallization via vapor diffusion from acetonitrile/ethanol. The characterization of compound Me$_2$NH$_2$-1 was accomplished by X-ray structure analysis, elemental analysis, TG/DTA, FTIR, UV-visible, and solution 31P NMR spectroscopy. For methanol dehydrogenation under visible light irradiation (≥400 nm) in the presence of TiO$_2$, the molecular structures of three rhenium(V) compounds were stable during the photoreactions, and the dirhenium(V)-oxido-bridged site in 2 exhibited the most effective activities compared with those of the mono-rhenium(V)-substituted sites in 1 and 3.
Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research C (No. 23550150) of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Competing interests

Authors have declared that no competing interests exist.

References

42. Lyon DK, Miller WK, Novet T, Domaille PJ, Evitt E, Johnson DC, Finke RG. Highly oxidation resistant inorganic porphyrin analogue polyoxometalate oxidation catalysts. the synthesis and characterization of aqueous-soluble potassium salts of \(\alpha_2-P_5W_17O_{61}(\text{M}^{n+},\text{OH}_2)^{(n-10)} \) and organic solvent soluble tetra-n-butylammonium salts of \(\alpha_2-P_5W_17O_{61}(\text{M}^{n+},\text{Br})^{(n-11)} \) (M = Mn$^{3+}$, Fe$^{3+}$, Co$^{2+}$, Ni$^{2+}$, Cu$^{2+}$). J Am Chem Soc. 1991; 113 7209-7221.

43. Weiner H, Aiken III JD, Finke RG. Polyoxometalate catalyst precursors. improved synthesis, H$^+$-titration procedure, and evidence for 31P NMR as a highly sensitive support-site indication for the prototype polyoxoanion-organometallic-support system [(n-C$_4$H$_9$)$_2$N]$_2$P$_2$W$_{15}$Nb$_3$O$_{62}$. Inorg Chem. 1996; 35 7905-7913.

47. Ortéga F, Pope MT, Evans, Jr HT. Tungsthorenate heteropolyanions. 2. Synthesis and characterization of enneatungstohorhenates(V), -(VI), and -(VII). Inorg Chem. 1997; 36 2166-2169.

APPENDIX

Bond lengths (Å) of Me$_2$NH$_x$: Re(1)(W(4))-O(8) 1.915(14); Re(1)(W(4))-O(14) 1.702(14); Re(1)(W(4))-O(19) 1.912(16); Re(1)(W(4))-O(20) 1.870(17); Re(1)(W(4))-O(26) 2.374(12); Re(1)(W(4))-O(57) 1.896(12); Re(2)(W(5))-O(9) 1.968(13); Re(2)(W(5))-O(15) 1.733(13); Re(2)(W(5))-O(20) 1.900(18); Re(2)(W(5))-O(21) 1.928(17); Re(2)(W(5))-O(27) 2.353(12); Re(2)(W(5))-O(58) 1.889(13); Re(3)(W(6))-O(10) 1.951(14); Re(3)(W(6))-O(16) 1.696(18); Re(3)(W(6))-O(21) 1.896(12); Re(3)(W(6))-O(22) 1.909(13); Re(3)(W(6))-O(27) 2.376(18); Re(3)(W(6))-O(59) 1.924(13); Re(4)(W(7))-O(11) 1.968(12); Re(4)(W(7))-O(17) 1.714(16); Re(4)(W(7))-O(22) 1.877(14); Re(4)(W(7))-O(23) 1.929(16); Re(4)(W(7))-O(28) 2.353(15);
Bond angles (°) of **Me₃NH₂**: O(8)-Re(1)(W(4))-O(14) 97.6(6); O(8)-Re(1)(W(4))-O(19)
89.9(7); O(8)-Re(1)(W(4))-O(20) 85.3(7); O(8)-Re(1)(W(4))-O(26) 81.4(5); O(8)-Re(1)(W(4))
O(57) 164.6(6); O(14)-Re(1)(W(4))-O(19) 99.4(7); O(14)-Re(1)(W(4))-O(20) 103.4(7); O(14)-
Re(1)(W(4))-O(26) 172.2(7); O(14)-Re(1)(W(4))-O(57) 97.7(6); O(19)-Re(1)(W(4))-O(20)
157.1(6); O(19)-Re(1)(W(4))-O(26) 72.9(6); O(19)-Re(1)(W(4))-O(57) 89.4(6); O(20)-
Re(1)(W(4))-O(26) 84.3(6); O(20)-Re(1)(W(4))-O(57) 89.5(6); O(26)-Re(1)(W(4))-O(57)
83.7(5); O(9)-Re(2)(W(5))-O(15) 97.4(6); O(9)-Re(2)(W(5))-O(20) 84.8(7); O(9)-Re(2)(W(5))
O(21) 88.1(6); O(9)-Re(2)(W(5))-O(27) 81.8(5); O(9)-Re(2)(W(5))-O(58) 163.9(6); O(15)-
Re(2)(W(5))-O(20) 102.0(7); O(15)-Re(2)(W(5))-O(21) 99.5(7); O(15)-Re(2)(W(5))-O(27)
173.0(8); O(15)-Re(2)(W(5))-O(58) 99.1(6); O(20)-Re(2)(W(5))-O(21) 158.1(6); O(20)-
Re(2)(W(5))-O(27) 84.9(6); O(20)-Re(2)(W(5))-O(58) 89.5(7); O(21)-Re(2)(W(5))-O(27)
73.5(6); O(21)-Re(2)(W(5))-O(58) 91.4(7); O(27)-Re(2)(W(5))-O(58) 82.1(5); O(10)-
Re(3)(W(6))-O(16) 98.5(7); O(10)-Re(3)(W(6))-O(21) 88.0(6); O(10)-Re(3)(W(6))-O(22)
86.8(6); O(10)-Re(3)(W(6))-O(27) 81.4(7); O(10)-Re(3)(W(6))-O(59) 163.6(8); O(16)-
Re(3)(W(6))-O(21) 100.1(7); O(16)-Re(3)(W(6))-O(22) 102.0(7); O(16)-Re(3)(W(6))-O(27)
173.7(5); O(16)-Re(3)(W(6))-O(59) 97.8(7); O(21)-Re(3)(W(6))-O(22) 157.7(8); O(21)-
Re(3)(W(6))-O(27) 73.5(6); O(21)-Re(3)(W(6))-O(59) 90.8(6); O(22)-Re(3)(W(6))-O(27)
84.3(7); O(22)-Re(3)(W(6))-O(59) 88.1(6); O(27)-Re(3)(W(6))-O(59) 82.6(6); O(11)-
Re(4)(W(7))-O(17) 96.9(6); O(11)-Re(4)(W(7))-O(22) 86.0(6); O(11)-Re(4)(W(7))-O(23)
87.8(6); O(11)-Re(4)(W(7))-O(28) 81.7(6); O(11)-Re(4)(W(7))-O(60) 163.4(6); O(17)-
Re(4)(W(7))-O(22) 102.7(8); O(17)-Re(4)(W(7))-O(23) 99.3(7); O(17)-Re(4)(W(7))-O(28)
172.2(6); O(17)-Re(4)(W(7))-O(60) 99.6(6); O(22)-Re(4)(W(7))-O(23) 157.7(6); O(22)-
Re(4)(W(7))-O(28) 84.9(6); O(22)-Re(4)(W(7))-O(60) 89.1(6); O(23)-Re(4)(W(7))-O(28)
Re(2)(W(5))-O(58)-Re(8)(W(11)) 165.3(11); Re(3)(W(6))-O(59)-Re(9)(W(12)) 162.0(8);
Re(4)(W(7))-O(60)-Re(10)(W(13)) 163.4(8); Re(5)(W(8))-O(61)-Re(11)(W(14)) 163.7(9);
Re(6)(W(9))-O(62)-Re(12)(W(15)) 162.0(9).