Determination and correlation of infinite dilution binary diffusion coefficients for aluminum acetylacetonate in supercritical and liquid fluids

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2018-07-26
	キーワード (Ja):
	キーワード (En):
	作成者: Kong, Chang Yi, Watanabe, Kou, Funazukuri,
	Toshitaka
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/00025585

Determination and correlation of infinite dilution binary diffusion 1 coefficients for aluminum acetylacetonate in supercritical and liquid $\mathbf{2}$ fluids 3 4 Chang Yi Kong^{1,2}*, Kou Watanabe¹, Toshitaka Funazukuri³ $\mathbf{5}$ 6 ¹ Department of Engineering, Graduate School of Integrated Science and Technology, 7 Shizuoka University, 3-5-1 Johoku Naka-ku, Hamamatsu 432-8561, Japan 8 ² Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku 9 10 Naka-ku, Hamamatsu 432-8561, Japan ³ Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University 11 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan 1213* Corresponding author. 14 *E-mail address:* kong.changyi@shizuoka.ac.jp (C.Y. Kong). 1516 Abstract 17The infinite dilution binary diffusion coefficients D_{12} for aluminum acetylacetonate in 18supercritical CO₂ were determined at 308.15 – 333.15 K and at 7.80 to 40.00 MPa by the 19chromatographic impulse response (CIR) method. And, the diffusion measurements in liquid 20ethanol were carried out at 300.15 - 333.15 K and at 0.10 and 30.00 MPa by the Taylor 21dispersion method. It was found that the D_{12} values measured in supercritical CO₂ show 22slowing down in the region of near critical point. The determined activation energies of 23diffusion were 23.0, 13.7, 12.0, 11.3 kJ/mol at 12.00, 20.00, 25.00, 35.00 MPa in supercritical 24CO₂ and 19.1 kJ/mol at 0.10 MPa in liquid ethanol, respectively. All determined 90 diffusion 25data in this study can be correlated with the equation of D_{12} [m²/s]=1.558×10⁻¹⁴ T [K] η [Pa 26s]^{-0.761} with average absolute relative deviation (AARD) of 5.6% over a wild fluid viscosity 27range from 2.462×10^{-5} to 1.258×10^{-3} Pa s. 28

29

Key words: Diffusion coefficient, supercritical carbon dioxide, liquid, aluminum
 acetylacetonate, chromatographic impulse response

33 **1. Introduction**

Supercritical fluids as green solvents are now being often used in chemical reaction, 34extraction, separation and analysis in both academia and industry thanks to unique properties 3536 like high diffusivity, low kinetic viscosity and easily adjustable solvent power. For rational 37 design and improvement of the process with supercritical fluids, it is important to fully know 38 basic property such as the diffusion of solutes in the supercritical system. Diffusion is a physical phenomenon commonly occurring in a variety of chemical, biological and 39 40environmental processes involving mass transfer. Therefore, the determination of diffusivities 41in fluids is of great significance for the estimation of mass transfer processes. A more efficient application using supercritical fluid technology often adds entrainer to the supercritical fluid. 42Hence the diffusion mechanisms in practical processes need to be understood not only in 43supercritical state but also in liquid state. Up to now, most measurements of diffusion 44coefficients relate only to liquid state or supercritical state. Furthermore, there is a lack of 4546 diffusion data for the same solute in both states. There are many methods [1-3] that may be used to obtain infinite dilution binary diffusion coefficients D_{12} . Among them, the Taylor 47dispersion method is suitable for determining the D_{12} data in liquid phase, and the 48chromatographic impulse response (CIR) method [4,5] can be used not only for measuring 4950diffusion but also for measuring partial molar volumes and solubilities in supercritical fluids 51[6,7].

Aluminum acetylacetonate (Al(acac)₃) as one of aluminum source can be soluble in supercritical CO₂. Through thermal decomposition in supercritical CO₂, Al(acac)₃ can be used as a precursor to produce template nanoporous alumina materials [8], thin films of aluminum oxide [9,10] and many important applications [11]. Diffusion data are still inconveniently few for metal complexes [12-17] in supercritical CO₂, and it is found that no diffusion data are available for system of Al(acac)₃ in supercritical CO₂ or in liquid ethanol. Therefore, this 58 study was intended to measure the D_{12} values for Al(acac)₃ in supercritical CO₂. In addition, 59 the D_{12} data were also determined in liquid ethanol. Then, the reliability of the correlation of 60 D_{12}/T vs fluid viscosity η was examined.

61

62 **2. Theory**

The detail theoretical backgrounds have been given by the authors [5] for the CIR method and Alizadeh et al. [18] for the Taylor dispersion method. The cross sectional average concentrations c(z,t) can be given by using Eq. (1) for the CIR method and Eq. (2) for the Taylor dispersion method, respectively.

67
$$\begin{cases} c(z,t) = \left(\frac{m}{\pi R^2}\right) \left(\frac{u}{u_0}\right) \frac{1}{\sqrt{4\pi Kt}} \exp\left[-\frac{(z-ut)^2}{4Kt}\right] \\ K = \left[D_{12} + \frac{R^2}{48D_{12}} (6u^2 - 16u_0u + 11u_0^2)\right] \left(\frac{u}{u_0}\right) \end{cases}$$
(1)

68
$$\begin{cases} c(z,t) = \left(\frac{m}{\pi R^2}\right) \frac{1}{\sqrt{4\pi Kt}} \exp\left[-\frac{(z-u_0 t)^2}{4Kt}\right] \\ K = D_{12} + \frac{R^2}{48D_{12}} u_0^2 \end{cases}$$
(2)

69 where *z* is the axial distance, *t* is the time, *m* is the amount injected, *R* is the column radius, 70 *u* and u_0 are the solute and fluid velocities, respectively. The D_{12} was determined by curve 71 fit using the root mean square fitting error ε (Eq. (3)). It was found that the fit indicated 72 acceptably if $\varepsilon < 3\%$ and good if $\varepsilon < 1\%$ [5].

73
$$\varepsilon = \left(\frac{\int_{t_1}^{t_2} (c_{\text{meas}}(L,t) - c(L,t))^2 dt}{\int_{t_1}^{t_2} (c_{\text{meas}}(L,t))^2 dt}\right)^{1/2}$$
(3)

where *L* is the distance between injector and detector, t_1 and t_2 are the times at the frontal and latter 10% peak heights of measured curve $c_{\text{meas}}(L,t)$ at *z*=*L*, respectively.

76

77 **3. Experimental**

The measurement system basically consisted of a pump, a pressure gauge, an injector, a

diffusion column, a water bath, a thermometer, a UV-Vis multidetector and a back pressure 79regulator. The apparatus and procedure have been described elsewhere [15-17]. The 80 measurements in this study were carried out at higher pressures, therefore, a high degree of 81 82 accuracy in both temperature and pressure control was desirable. The pulseless syringe pump was used to supply compressed CO₂ in the CIR method, which can eliminate pressure and 83 density gradients in supercritical CO₂. Note that in this study the pressure and temperature 84 were controlled accurately to ± 0.01 K and ± 0.05 bar, respectively. Then, a pulse of Al(acac)₃ 85 86 dissolved in hexane or ethanol was loaded through the injector. When the solute was injected, 87 the injection mode must be carefully checked. If the sample rotor was left in the flowing fluid, the measured response curve with serious tailing was often gotten. But, after injected with a 88 very short time (e.g. less than 1 s), then the injection valve being immediately turned to allow 89 90 the fluid to flow directly to the column, it often got in a pulse like injection, the tailing may be avoided and the dispersion effect of the solute was minimally-eliminated. The 91 92chromatographic response curves were measured by the UV detector with 1 nm increments.

 CO_2 with purity of 99.95% was purchased from Air Gases Tokai Ltd., Japan, aluminum acetylacetonate (molecular formula: Al(C₅H₇O₂)₃, molecular weight: 324.3) with 99% was obtained from Sigma Aldrich, ethanol with 99.5% was from Wako, hexane with 98% was obtained from Tokyo Chemical Industry, and all materials used as received.

97

98 4. Results and discussion

We have examined the effects of the injected Al(acac)₃ concentration, the wavelength, the fluid velocity and the dissolving organic solvent on D_{12} of Al(acac)₃ as described elsewhere [17,19]. The Al(acac)₃ concentration of ethanol with 7.5×10^{-4} g/mL and the wavelength of 300 nm were used in all diffusion measurements. The fluid velocities were controlled at lower than 8×10^{-3} m/s, and all measurements were made at $DeSc^{1/2} < 8$, where De is the Dean 104 number and Sc is the Schmidt number. In this study at least three measurements at the given

105 condition were measured, and the average diffusion datum was determined to be the D_{12} value.

106 All determined D_{12} data are presented in Table 1, together with the values of fluid density ρ

107 and viscosity η .

108

Table 1

Infinite dilution binary diffusion coefficient D_{12} data of Al(acac)₃ measured in supercritical CO₂ at 308.15 to 333.15 K and in liquid ethanol at 300.15 to 333.15 K, together with the densities ρ and viscosities η of the fluids.

P (MPa)	$\rho(\text{kg/m}^3)$	$\eta (10^{-6} \operatorname{Pa s})$	$D_{12} (10^{-8} \text{ m}^2/\text{s})$
Measured by	the CIR meth	hod in supercritice	al CO ₂
308.15 (K)			
7.80	331.50	24.62	1.163
7.95	388.81	28.15	1.096
8.00	419.09	30.17	1.072
8.05	455.61	32.54	1.028
8.10	490.76	34.95	1.004
8.20	542.80	39.26	1.004
8.30	574.13	42.12	1.045
8.40	595.70	44.21	1.045
8.50	612.12	45.87	0.992
8.80	646.10	49.52	0.964
9.00	662.13	51.36	0.926
9.50	691.50	54.92	0.882
10.00	712.81	57.68	0.840
10.50	729.76	60.00	0.802
11.00	743.95	62.03	0.788
12.00	767.07	65.51	0.754
13.00	785.70	68.50	0.718
14.00	801.41	71.15	0.709
16.00	827.17	75.81	0.667
18.00	848.04	79.88	0.620
20.00	865.72	83.56	0.607
22.00	881.15	86.97	0.593

23.00	888.20	88.59	0.573
24.00	894.88	90.16	0.571
25.00	901.23	91.69	0.564
30.00	929.11	98.86	0.518
32.00	938.84	101.54	0.515
35.00	952.29	105.42	0.505
40.00	972.26	111.57	0.480

313.15 (K)

0.40	224 71	25.02	1 4 4 7
8.40	334.71	25.02	1.447
8.50	353.91	26.06	1.398
8.60	375.95	27.33	1.321
8.70	401.13	28.87	1.273
8.80	429.10	30.70	1.216
8.90	458.03	32.72	1.121
9.00	485.50	34.77	1.145
9.10	510.38	36.75	1.109
9.30	550.54	40.17	1.114
9.50	580.01	42.90	1.055
10.00	628.61	47.81	0.984
10.50	660.15	51.33	0.944
11.00	683.52	54.11	0.925
11.50	702.18	56.46	0.872
12.00	717.76	58.52	0.846
13.00	743.04	62.05	0.797
15.00	780.23	67.73	0.746
16.00	794.90	70.16	0.718
17.00	807.87	72.39	0.701
19.00	830.09	76.45	0.675
20.00	839.81	78.32	0.657
21.00	848.81	80.10	0.646
25.00	879.49	86.62	0.598
30.00	909.89	93.83	0.561
32.00	920.39	96.51	0.543
35.00	934.81	100.37	0.534
40.00	956.07	106.46	0.499

323.15 (K)

9.80	361.28	26.98	1.498
10.00	384.33	28.33	1.457
10.10	396.32	29.06	1.392
10.30	420.88	30.64	1.344
10.50	445.55	32.32	1.250
10.80	480.95	34.90	1.256
11.00	502.64	36.59	1.245
11.50	548.84	40.48	1.176
12.00	584.71	43.79	1.144
13.00	636.12	49.04	1.063
15.00	699.75	56.52	0.933
18.00	757.12	64.44	0.838
20.00	784.29	68.67	0.780
22.00	806.61	72.41	0.751
25.00	834.19	77.42	0.710
30.00	870.43	84.75	0.657
35.00	899.23	91.27	0.619

333.15 (K)

434.43	32.02	1.460
505.35	37.27	1.326
561.37	42.05	1.220
604.09	46.13	1.128
637.50	49.61	1.092
687.25	55.35	0.996
723.68	60.04	0.904
752.38	64.07	0.852
786.55	69.33	0.792
829.71	76.82	0.739
862.94	83.34	0.699
	434.43 505.35 561.37 604.09 637.50 687.25 723.68 752.38 786.55 829.71 862.94	434.4332.02505.3537.27561.3742.05604.0946.13637.5049.61687.2555.35723.6860.04752.3864.07786.5569.33829.7176.82862.9483.34

Measured by the Taylor dispersion method in liquid ethanol

300.15 (K)			
0.10	783.79	1071.12	0.073
30.00	807.52	1258.39	0.063
313.15 (K)			

0.10	772.56	844.89	0.106
30.00	797.97	1003.37	0.089
323.15 (K)			
0.10	763.62	711.01	0.126
333.15 (K)			
0.10	754.36	602.99	0.157

^a Standard uncertainties are 0.02 K for u(T), 0.01 MPa for u(P). The combined expanded uncertainty $U_c(D_{12})$ is 4×10^{-13} m²/s at 0.95 level of confidence with k=2.

111

112

113

Fig. 1. Pressure dependence on the (a) D_{12} and (b) ε of Al(acac)₃ measured at 308.15 K ($^{\circ}$), 313.15 K ($^{\triangle}$), 323.15 K ($^{\Box}$) and 333.15 K ($^{\bigtriangledown}$), and at 7.80 to 40.00 MPa in supercritical CO₂ by the CIR method, and together with the correlated line (with best AARD%) by Eq. (4).

Fig. 1 illustrates the pressure influence on the determined D_{12} and ε by the CIR method for Al(acac)₃ at 308.15, 313.15, 323.15 and 333.15 K, and pressures from 7.80 to 40.00 MPa in supercritical CO₂. Almost ε values were lower than 1% as seen in Fig. 1 (b). The greater pressure sensitivity of D_{12} at lower pressure indicates that the fluid density or viscosity is remarkable factor, because these properties change rapidly with pressure in this region. It was found that an empirical correlation (Eq. (4)) can represent the 84 D_{12} data for Al(acac)₃ determined in supercritical CO₂ with the average absolute relative deviation (AARD) of 3.9%.

125
$$D_{12} = c_0 + c_1 \frac{1}{P} + c_2 T + c_3 \frac{T}{P}$$
 (4)

126
$$AARD = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{D_{12, \text{meas}} - D_{12, \text{pred}}}{D_{12, \text{meas}}} \right|_{i} \times 100\%$$
 (5)

where D_{12} , c_0 , c_1 , c_2 , c_3 , T and P are in m²/s, m²/s, m² MPa/s, m²/(s K), m² MPa/(s K), K and MPa, respectively, N is the number of experimental data points, and $D_{12, \text{meas}}$ and $D_{12, \text{pred}}$ are the measured and predicted D_{12} data, respectively. The parameters of c_0 to c_3 determined individual fittings at 308.15, 313.15, 323.15 and 333.15 K and a global fitting are presented in Table 2 with the values of N and AARD. It was found [12,14,17,20] that the simple empirical correlation can well represent the D_{12} data determined in this study over the higher pressure region, as shown in Fig. 1 and Table 2.

Ta	bl	e	2
.		-	

Correlated results using Eq. (4) for the determined D	D_{12} values of Al(acac) ₃ in supercritical CC	\mathcal{D}_2 .
---	--	-------------------

Т	Rang of P	λ7	$c_0 \times 10^9$	$c_1 \! imes \! 10^7$	$c_2 \times 10^{11}$	$c_3 \times 10^9$	AARD
(K)	(MPa)	N	(m ² /s)	(m ² MPa/s)	(m ² /(s K))	(m ² MPa/(s K))	(%)
209.15	Entire	29	3.458	0.535	-	-	3.0
308.15	>8.4	22	3.563	0.497	-	-	2.0
212.15	Entire	27	3.184	0.700	-	-	5.3
313.15	>9.5	18	3.503	0.617	-	-	1.5
202.15	Entire	17	3.095	1.002	-	-	3.5
525.15	>12	9	3.768	0.834	-	-	1.6
222.15	Entire	11	2.593	1.333	-	-	2.6
333.15	>14	9	3.491	1.169	-	-	1.8
Common	Entire	84	7.957	-8.476	-1.502	2.929	3.9

Fig. 2. Arrhenius relationship for the diffusion coefficients of Al(acac)₃ in (a) supercritical CO₂ at 12.00 ($^{\circ}$), 20.00 ($^{\wedge}$), 25.00 ($^{\circ}$), 35.00 ($^{\circ}$) MPa and (b) liquid ethanol at 0.10 MPa ($^{\circ}$), together with those of Li(acac) in the literature [17] at 20.00 MPa ($^{\wedge}$) in supercritical CO₂ and at 0.10 MPa ($^{\circ}$) in liquid ethanol, respectively.

141

136

142

The effects of temperature on D_{12} values of Al(acac)₃ in supercritical CO₂ determined by 143the CIR method at 308.15 to 333.15 K and at 12.00, 20.00, 25.00, 35.00 MPa, and in ethanol 144determined by the Taylor dispersion method at 300.15 to 333.15 K and 0.10 MPa are plotted 145146in Fig. 2 along with the Li(acac) data [17] in supercritical CO₂ at 20.00 MPa and in ethanol at 0.10 MPa. A straight line was formed in all plots for each of the pressure investigated. The 147 D_{12} values can be described using the Arrhenius expression in Eq.(6), where D_0 is the 148preexponential factor, E_a is the activation energy, T is the absolute temperature and R the 149150universal gas constant.

151
$$D_{12} = D_0 \cdot e^{-\frac{L_a}{RT}}$$
 (6)

152

154In Fig. 2(a), the slope behavior at 12.00 MPa in supercritical CO_2 was distinctly separated from those at 20.00, 25.00 and 35.00 MPa. The slopes of these lines, however, were different, 155156indicated different activation energies of diffusion at different pressures. At 20.00 MPa, the 157slopes in the plots for Al(acac)₃ and Li(acac) in supercritical CO_2 appeared to be no significant differences, however, there were considerable differences between the D_{12} values. 158159Similar behavior can be seen in liquid ethanol as shown in Fig. 2 (b). From the slopes of the 160 lines in Figs 2 (a) and (b), the activation energies of diffusion for $Al(acac)_3$ in supercritical 161 CO_2 and in liquid ethanol were determined. The achieved E_a values of Al(acac)₃ were listed in 162Table 3 as well as Li(acac) [17]. The results showed that the activation energies of the diffusion for Al(acac)₃ were 13.7 and 19.1 kJ/mol at 20.00 MPa in supercritical CO₂ and at 1630.10 MPa in liquid ethanol, respectively. These values were slightly higher than those for 164165Li(acac) under the same conditions [17]. And the determined activation energy values for $Al(acac)_3$ in supercritical CO_2 were higher at lower pressures, indicating that diffusion 166167behavior tended to be more temperature sensitive at lower pressures than it was at higher 168pressures.

169

170

Table 3.

The values of the activation energy E_a for diffusion in supercritical CO₂ and in liquid ethanol.

		E_a (kJ/mol)				
Fluid	Solute	0.10	12.00	20.00	25.00	35.00
		(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
Supercritical	$Al(acac)_3$		23.0	13.7	12.0	11.3
CO_2	Li(acac)			13.4 ^a		
Liquid	$Al(acac)_3$	19.1				
ethanol	Li(acac)	14.0 ^a	-			

^aReported E_a value of Li(acac) in the literature [17].

172

Fig. 3. Relationship between the D_{12} data at 313.2 K and 11.0 MPa in supercritical CO₂ and molecular weight *M* of Al(acac)₃ ($^{\circ}$, *M*=324.3 g/mol), together with the other metallic complexes such as Li(acac) ($^{\diamond}$, *M*=106.1 g/mol) [17], ferrocene ($^{\bigtriangledown}$, *M*=186.0 g/mol) [15], 1,1'-dimethylferrocene ($^{\circ}$, *M*=214.1 g/mol) [15], Pd(acac)₂ ($^{\bullet}$, *M*=304.6 g/mol) [14], Co(acac)₃ ($^{\circ}$, *M*=356.3 g/mol) [14], Pt(acac)₂ ($^{\diamond}$, *M*=393.3 g/mol) [16], and the organic compounds of nonmetallic elements ($^{\circ}$, *M*=32.0 – 1137.9 g/mol) [21].

179

180

Fig. 3 plots the D_{12} values measured in this study and reported in literature [14-17, 21] at 181182313.15 K and 11.00 MPa in supercritical CO_2 against the solute molecular weights M for various compounds. Overall, a strong dependence of the D_{12} on the solute molecular weight 183was found for molecules diffusing within supercritical CO₂. The D_{12} data of Al(acac)₃ 184185(M=324.3 g/mol) measured in this study and literature for other metallic complexes such as 186Li(acac) (M=106.1 g/mol) [17], ferrocene (M=186.0 g/mol) [15], 1,1'-dimethylferrocene (M=214.1 g/mol) [15], Pd(acac)₂ (M=304.6 g/mol) [14], Co(acac)₃ (M=356.3 g/mol) [14], 187Pt(acac)₂ (M=393.3 g/mol) [16] in supercritical CO₂ seemed to be inversely proportional to 188

189 their molecular weights at constant temperature and pressure with a slope of about -0.5. Similar behavior has been observed in the literature [21] for organic compounds of 190 nonmetallic elements. In addition, most of the D_{12} values of organic compounds of 191192nonmetallic elements (M=32.0 - 1137.9 g/mol) in the literature [21] were lower than those of 193 metallic complexes (M=106.1 - 393.3 g/mol) at the same molecular weights. This result suggested that the apparent radiuses of metallic complexes appeared to be smaller than those 194of organic compounds of nonmetallic elements in supercritical CO₂. Furthermore, it was also 195observed that the D_{12} value of Pt(acac)₂ ($D_{12}=9.350\times10^{-9} \text{ m}^2/\text{s}$) [16] with M of 393.3 g/mol 196had slightly larger value to Al(acac)₃ (D_{12} =9.250×10⁻⁹ m²/s) with M of 324.3 g/mol at 313.15 197 K and 11.00 MPa in supercritical CO₂. It may be considered that the apparent molecular size 198199 of Pt(acac)₂ with two acac ligands in supercritical CO₂ exhibited lower value than that of Al(acac)₃ with three, and in this case the D_{12} value depended not on solute molecular weight. 200

- 201
- 202

Fig. 4. Density dependence of D_{12} of Al(acac)₃ in supercritical CO₂ at 308.15 K ($^{\circ}$), 313.15 K ($^{\circ}$), 323.15 K ($^{\circ}$) and 333.15 K ($^{\bigtriangledown}$) masured by the CIR method in this study.

Fig. 4 shows the D_{12} vs CO₂ density ρ for Al(acac)₃ in supercritical CO₂. The plots 206pointed significant temperature dependence over the region of lower density, but those in the 207208higher density region slightly do. In addition, in the CO₂ density region higher than about 580 209 kg/m³, the D_{12} values can be linearly correlated with the density at each temperature, but the D_{12} values expressed slowing down in the region of lower density. This slowing down 210behavior was found clearly as the critical point of CO₂ (31.1 °C, 7.38 MPa) was approached. 211212The behavior of diffusion in the critical region is important to understanding transport phenomena in supercritical fluids. So far, many compounds such as acetone [22], alkane [22], 213214benzene [22, 23], 15-crown-5 [21], dimethylnaphthalene isomers [24], ferrocene [15], myristoleic acid methyl ester [25], naphthalene [24], phenylbutazone [20] and vitamin K₃ [26] 215have been observed the similar slowing down. But, Yang et al [27] reported that the D_{12} data 216of benzoic acid, biphenyl, 1,4-dichlorobenzene, phenanthrene and phenol in supercritical CO₂ 217diminished sharply near the critical point. According to Clifford and Coleby [28], the 218219diffusion coefficients for a solute in a supercritical fluid did not show any significant anomalous behavior in the critical region, if the solute concentration was sufficiently low. 220

The measured D_{12} data of Al(acac)₃ at 308.15, 313.15, 323.15 and 333.15 K in supercritical CO₂ and at 300.15, 313.15, 323.15 and 333.15 K in liquid ethanol as a function of T/η is shown in Fig. 5 with the solid line representing Eq. (7).

224
$$D_{12} = \frac{R}{6\pi r} \frac{T}{\eta}$$
 (7)

where *R* is the universal gas constant, *r* is the radius of the diffusing solute and η is fluid viscosity. In this study the diffusion data measured in supercritical CO₂ (with higher *T*/ η values) indicated one order of magnitude larger value than those determined in liquid ethanol (with lower *T*/ η values). The plot in liquid state showed a linear relationship with the slope of 1, obviously the well-known Stokes-Einstein equation held good under the liquid condition, but it did not hold well under the conditions including the supercritical state. This indicated that the apparent molecular diameter of the $Al(acac)_3$ was leaded to decrease with increasing viscosity. As a result, the Stokes-Einstein equation was inadequate to describe the diffusion in supercritical system.

234

235

Fig. 5. Plot of D_{12} vs. T/η for all the D_{12} values measured by the CIR method at 308.15 K (°), 313.15 K (△), 323.15 K (°) and 333.15 K (▽) in supervision CO₂, and measured by the Taylor dispersion method at 300.15 K (�), 313.15 K (△), 323.15 K (°) and 333.15 K (♥) in liquid ethanol. The solid line was obtained from the Eq. (7).

- 240
- 241

On the hydrodynamic approach for predicting D_{12} in fluids, we have demonstrated [2,4,5,13-17,20,21,23,25] the validity of the correlation among the properties of D_{12} , T and η , as shown in Eq. (8). Fig. 6 indicates D_{12}/T vs η for all the D_{12} data of Al(acac)₃ measured in this study, together with deviations between the $D_{12, \text{ meas}}$ and the $D_{12, \text{ pred}}$ values by Eq. (8).

$$246 \qquad \frac{D_{12}}{T} = \alpha \eta^{\beta} \tag{8}$$

Fig. 6. Plots of (a) D_{12}/T and (b) $(D_{12, \text{ meas}} - D_{12, \text{ pred}})/D_{12, \text{ meas}}$ vs. η for all the D_{12} values measured by the CIR method at 308.15, 313.15, 323.15 and 333.15 K in suprcritical CO₂, and measrued by the Taylor dispersion method at 300.15, 313.15, 323.15 and 333.15 K in liquid ethanol. The solid line in (a) was obtained with the parameters of α =1.558×10⁻¹⁴ and β =-0.761 using the Eq. (8). The key is the same as in Fig. 5.

254

248

255

where α and β are constants. As has been seen for many compounds, the D_{12}/T values 256257decrease simply with increasing fluid viscosities. It was found that the values of D_{12}/T for all D_{12} data of Al(acac)₃ measured in this study were also well correlated with the η values of 258fluids, which viscosities were varied over a wide range of values from 2.462×10^{-5} to 259 1.258×10^{-3} Pa s. And most of the deviation values of $(D_{12, \text{ meas}} - D_{12, \text{ pred}})/D_{12, \text{ meas}}$ were less 260 than ± 0.2 as seen in Fig. 6 (b). The proposed correlation of D_{12} [m²/s]=1.558×10⁻¹⁴ T [K] η 261[Pa s]^{-0.761} can represent the measured 90 D_{12} data in this work with 5.6% AARD values for 262the two studied systems of Al(acac)₃ in supercritical CO_2 and Al(acac)₃ in liquid ethanol. 263

264

266 **5. Conclusions**

The infinite dilution binary diffusion coefficients D_{12} for aluminum acetylacetonate were 267268determined by the CIR method in supercritical CO₂ at 308.15, 313.15, 323.15 and 333.15 K 269 and 7.80 to 40.00 MPa. Furthermore, the D_{12} data in liquid ethanol at 300.15, 313.15, 323.15 270and 333.15 K and at 0.10 and 30.00 MPa were obtained by the Taylor dispersion method. It was found that the D_{12} values measured in supercritical CO₂ show slowing down in the near 271critical region. The determined activation energies of diffusion were 23.0, 13.7, 12.0, 11.3 272kJ/mol at 12.00, 20.00, 25.00, 35.00 MPa in the temperature range of 308.15 - 333.15 K in 273274supercritical CO₂ and 19.1 kJ/mol at 0.10 MPa in the temperature range of 300.15 - 333.15 K in liquid ethanol, respectively. All D_{12} data for aluminum acetylacetonate determined in 275276supercritical CO₂ and in liquid ethanol were correlated with the equation of D_{12} $[m^2/s]=1.558\times 10^{-14} T$ [K] η [Pa s]^{-0.761} over a wild fluid viscosity range from 2.462×10⁻⁵ to 277 1.258×10^{-3} Pa s and the average absolute relative deviation of the correlation for 90 data 278279points is 5.6%.

281 References

- 282 [1] K.K. Liong, P.A. Wells, N.R. Foster, J. Supercrit. Fluids 4 (1991) 91-108.
- 283 [2] T. Funazukuri, C.Y. Kong, S. Kagei, J. Chromatogr. A 1037 (2004) 411-429.
- [3] C.Y. Kong, J. Chromatograph. Separat. Techniq. 5 (2014) e127-2.
- [4] T. Funazukuri, C.Y. Kong, N. Murooka, S. Kagei, Ind. Eng. Chem. Res. 39 (2000)
 4462-4469.
- 287 [5] C.Y. Kong, T. Funazukuri, S. Kagei, J. Chromatogr. A 1035 (2004) 177-193.
- [6] C.Y. Kong, K. Sone, T. Sako, T. Funazukuri, S. Kagei, Fluid Phase Equilib. 302 (2011)
 347-353.
- [7] C.Y. Kong, T. Funazukuri, S. Kagei, G. Wang, F. Lu, J. Chromatogr. A 1250 (2012)
 141-156.
- [8] H. Wakayama, H. Itahara, N. Tatsuda, S. Inagaki, Y. Fukushima, Chem. Mater. 13 (2001)
 2392-2396.
- 294 [9] D. Barua, T. Gougousi, E.D. Young, G.N. Parsons, Appl. Phys. Lett. 88 (2006) 092904-3.
- 295 [10] Q. Peng, D. Hojo, K.J. Park, G.N. Parsons, Thin Solid Films 516 (2008) 4997-5003.
- 296 [11] A.I. Cooper, Adv. Mater. 15 (2003) 1049-1059.
- 297 [12] X. Yang, M.A. Matthews, J. Chem. Eng. Data 46 (2001) 588–595.
- [13] M. Toriumi, R. Katooka, K. Yui, T. Funazukuri, C.Y. Kong, S. Kagei, Fluid Phase Equilib.
 299 297 (2010) 62-66.
- [14] C.Y. Kong, Y. Y. Gu, M. Nakamura, T. Funazukuri, S. Kagei, Fluid Phase Equilib. 297
 (2010) 162-167. Pd(acac)2, Co(acac)3
- 302 [15] C.Y. Kong, M. Nakamura, K. Sone, T. Funazukuri, S. Kagei, J. Chem. Eng. Data 55
 303 (2010) 3095-3100. Ferrocene
- 304 [16] C.Y. Kong, T. Siratori, G. Wang, T. Sako, T. Funazukuri, J. Chem. Eng. Data 58 (2013)
- 305 2919-2924. Pt(acac)2

- 306 [17] C.Y. Kong, Y. Yakumaru, T. Funazukuri, J. Supercrit. Fluids 104 (2015) 265-271.
 307 Li(acac)
- 308 [18] A. Alizadeh, C.A. Nieto de Castro, W.A. Wakeham, Int. J. Thermophys. 1 (1980)
 309 243-284.
- 310 [19] T. Funazukuri, C.Y. Kong, S. Kagei, Chem. Eng. Sci. 59 (2004) 3029-3036.
- 311 [20] C.Y. Kong, K. Watanabe, T. Funazukuri, J. Chromatogr. A 1279 (2013) 92-97.
- 312 [21] C.Y. Kong, N. Takahashi, T. Funazukuri, S. Kagei, Fluid Phase Equilib. 257 (2007)
 313 223-227.
- 314 [22] S. Umezawa, A. Nagashima, J. Supercrit. Fluids 5 (1992) 242–250.
- 315 [23] T. Funazukuri, C.Y. Kong, S. Kagei, Int. J. Thermophys. 22 (2001) 1643-1660.
- [24] H. Higashi, Y. Iwai, Y. Nakamura, S. Yamamoto, Y. Arai, Fluid Phase Equilib. 166 (1999)
 101–110.
- 318 [25] C.Y. Kong, M. Mori, T. Funazukuri, S. Kagei, Anal. Sci. 22 (2006) 1431-1436.
- 319 [26] C.Y. Kong, T. Funazukuri, J. Supercrit. Fluids 44 (2008) 294-300.
- 320 [27] X.N. Yang, L.A.F. Coelho, M.A. Matthews, Ind. Eng. Chem. Res. 39 (2000) 3059–3068.
- 321 [28] A.A. Clifford, S.E. Coleby, Proc. R. Soc. Lond. A 433 (1991) 63–79.

323 Figure Captions

Fig. 1. Pressure dependence on the (a) D_{12} and (b) ε of Al(acac)₃ measured at 308.15 K ($^{\circ}$),

325 313.15 K ($^{\triangle}$), 323.15 K ($^{\Box}$) and 333.15 K ($^{\bigtriangledown}$), and at 7.80 to 40.00 MPa in 326 supercritical CO₂ by the CIR method, and together with the correlated line (with best 327 AARD%) by Eq. (4).

- Fig. 2. Arrhenius relationship for the diffusion coefficients of Al(acac)₃ in (a) supercritical CO₂ at 12.00 (°), 20.00 ($^{\circ}$), 25.00 (°), 35.00 (°) MPa and (b) liquid ethanol at 0.10 MPa (°), together with those of Li(acac) in the literature [17] at 20.00 MPa ($^{\circ}$) in supercritical CO₂ and at 0.10 MPa (°) in liquid ethanol, respectively.
- Fig. 3. Relationship between the D_{12} data at 313.2 K and 11.0 MPa in supercritical CO₂ and molecular weight *M* of Al(acac)₃ (*, *M*=324.3 g/mol), together with the other metallic complexes such as Li(acac) (*, *M*=106.1 g/mol) [17], ferrocene (\bigtriangledown , *M*=186.0 g/mol) [15], 1,1'-dimethylferrocene (\urcorner , *M*=214.1 g/mol) [15], Pd(acac)₂ (*, *M*=304.6 g/mol) [14], Co(acac)₃ (*, *M*=356.3 g/mol) [14], Pt(acac)₂ (*, *M*=393.3 g/mol) [16], and the organic compounds of nonmetallic elements (\degree , *M*=32.0 – 1137.9 g/mol) [21].
- Fig. 4. Density dependence of D_{12} of Al(acac)₃ in supercritical CO₂ at 308.15, 313.15, 323.15 and 333.15 K masured by the CIR method in this study. The key is the same as in Fig. 1.
- Fig. 5. Plot of D_{12} vs. T/η for all the D_{12} values measured by the CIR method at 308.15 K (°), 342 313.15 K ($^{\triangle}$), 323.15 K (°) and 333.15 K ($^{\bigtriangledown}$) in suprcritical CO₂, and measured by 343 the Taylor dispersion method at 300.15 K ($^{\diamond}$), 313.15 K ($^{\blacktriangle}$), 323.15 K ($^{\bullet}$) and 344 333.15 K($^{\checkmark}$) in liquid ethanol. The solid line was obtained from the Eq. (7).
- Fig. 6. Plots of (a) D_{12}/T and (b) $(D_{12, \text{ meas}} D_{12, \text{ pred}})/D_{12, \text{ meas}}$ vs. η for all the D_{12} values measured by the CIR method at 308.15, 313.15, 323.15 and 333.15 K in suprcritical CO₂, and measrued by the Taylor dispersion method at 300.15, 313.15, 323.15 and 333.15 K in liquid ethanol. The solid line in (a) was obtained with the parameters of $\alpha=1.558\times10^{-14}$ and $\beta=-0.761$ using the Eq. (8). The key is the same as in Fig. 5.

353 Graphical abstract

