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ABSTRACT 

 Fungi including mushrooms have been proved to be an important biosource of 

numerous metabolites having a huge variety of chemical structures and diverse 

bioactivities. Metabolites of mushrooms are of remarkable importance as new lead 

compounds for medicine and agrochemicals. This review presents some of our studies 

on biologically functional molecules purified from mushroom-forming fungi; 1) 

endoplasmic reticulum stress suppressor, 2) osteoclast-forming suppressing compounds, 

3) plant growth regulators. 

   

Key words: ER stress suppressor; fungal metabolites; osteoclast-formation suppressor; 

plant growth regulator, natural products 

 

  



 

At present, estimates of the total number of fungal species on earth are about 1.5 million 

species, whereas the number of fungi described worldwide is just about 7% of the 

number.1, 2) There is a well-known axiom that “plants act as producers, animals as 

consumers, and fungi as restorers and decomposers”. In other words, the plants create 

organic compounds by means of photosynthesis and animals consume such plants. Then 

fungi, including mushrooms, play an important role in restoring the plants and animals 

back to the land. Fungi can be found in almost all types of habitats. To survive, fungi 

have developed a number of strategies for protection and communication using different 

types of secondary metabolites. There are some differences in the structures of 

metabolic products by mushroom-forming fungi compared to those by plants and 

animals. These differences sometimes indicate biological activities indigenous to 

mushroom-forming fungi. Fungi including mushrooms have been proved to be an 

important biosource of numerous metabolites having a huge variety of chemical 

structures and diverse bioactivities.3, 4) 

 Our group have been studying various bioactive compounds produced by some 

mushrooms. Bioactivity-guided fractionation of the extract of mushroom resulted in the 

isolation of active compounds and structure determination. This review presents some 

of our studies on biologically functional molecules isolated from mushroom-forming 

fungi. 

 

Endoplasmic reticulum (ER) stress suppressors 

Endoplasmic reticulum (ER) is an extensive membranous network that provides a 

unique environment for the synthesis, folding, and modification of secretory and cell 

surface proteins.5) Certain pathological stress conditions can disrupt homeostasis in the 

ER, causing loss of the ER intraluminal oxidative environment and depletion of 

intracellular calcium stores, and lead to accumulation of misfolded proteins in the ER.5) 

ER stress-dependent neurons death via amyloid-beta (A) peptides has been reported to 

cause diseases, such as Alzheimer, Parkinson, and Huntington diseases.6-9) ER stress has 



 

been reported to cause not only neurodegenerative diseases but also some other 

diseases, such as diabetes, atherosclerosis, heart and liver disease.10) Therefore, the 

protective activity against ER stress is an important target for the cure or prevention of 

these diseases and the demand for new protective substances prompted us to screen the 

protective activity of the extracts from edible mushrooms. The extracts of mushrooms 

were subjected to the protective activity assay against ER stress-dependent cell death 

caused by tunicamycin (TM) or thapsigargin (TG). ER stress was induced by the 

addition of TM or TG into the culture medium of Neuro2a cells in the presence or 

absence of samples. TM is an inhibitor of N-linked glycosylation and the formation of 

N-glycosidic protein-carbohydrate linkages.11) It specifically inhibits dolichol 

pyrophosphate-mediated glycosylation of asparaginyl residues of glycoproteins and 

induces the ER stress.12) TG, an inhibitor of the sarcoplasmic/ER Ca2+-ATPase, also 

induces ER stress by disrupting the homeostatic balance of the Ca2+ concentration in the 

ER.13)  

 Hericium erinaceus is a well-known edible and medicinal mushroom in Japan as 

known Yamabushitake, and in Europe and the United States as Lion’s Mane. It showed 

some important bioactivities in the reduction of ER stress induced by 

amyloidpeptide14-16) and anti-dementia such as the promotion of nerve growth factor 

(NGF) synthesis17-24). NGF, belongs to a family of neurotrophins that induce survival 

and proliferation of neurons, plays an important role in the repair, regeneration, and 

protection of neurons. A finding reported a woman with Alzheimer’s dementia 

improved her symptoms, such as enhancing mental ability, after the administration of 

NGF directly into her brain using catheter.23) It has been suggested by scientists that 

NGF may be used to treat Alzheimer’s disease.25) However, there is a high risk in such 

treatment since NGF is a protein which cannot pass through the blood-brain barrier and 

it needs to be injected directly into the brain to be effective. If a compound can be taken 

by oral administration that can pass through the barrier and stimulates the NGF 

synthesis inside the brain, it may be applied saferly. Based on the above concept, 



 

Kawagishi et al. searched for natural stimulators of NGF synthesis and found 

hericenones C to H (1−6) from the fruiting bodies of H. ericaceus in 1991.17, 18) These 

compounds were the first NGF stimulators isolated. Later, erinacines A to I (7−15) from 

the mycelia of the fungus were obtained (Figure 1a).19-22, 24) Recently, the 

neuroprotective activity of erinacine A of the Hericium erinaceus mycelium in vitro and 

in vivo has been reported,26) which thus may be promising candidates for the treatment 

of neurodegenerative diseases such as Parkinson’s disease. 

  3-Hydroxyhericenone F (16) was isolated as an ER stress suppressor 

from the fruiting bodies of H. erinaceus.16) Ueda et al. also found active compounds 

(17−20) in an extract from the scrap cultivation bed of the mushroom (Figure 1b).15) 

The cultivation bed is usually discarded by the mushroom growers after harvesting the 

fruiting bodies. The scrap cultivation of the mushroom can be a useful resource of 

biological active compounds. 

 Leccinum extremiorientale, having a red brown areolate cap, belongs to the higher 

fungus of the genus Leccinum in the family Boletaceae and grows worldwide, especially 

in the northern temperate zone. L. extremiorientale is a very tasty mushroom. We 

succeeded in the isolation and structural determination of the active compound, 

leccinine A (21), and structure activity relationship by comparing the activity of 21 with 

those of its seven synthesized analogues (21a −g) (Figure 2a).27) These results indicated 

that the formamide group in 21 is indispensable for the protective activity.  

 The edible mushroom Mycoleptodonoides aitchisonii belongs to the 

Climacodontaceae family, is mainly found in the Kashmir region of India and in East 

Asia. This mushroom is popular in Korea (called “Champanul”) and in Japan (called 

“Bunaharitake”). We found the protective activity in the extract of the mushroom M. 

aitchisonii, whose enhancing effect on the synthesis of NGF and catecholamine 

metabolites in the rat brain had been reported.28, 29) The structures of 22−37 were 

determined by the interpretation of spectroscopic data including NMR and X-ray 

analysis (Figure 2b).30-32) Many -lactones and phenylpentanols were possessed of the 



 

protective activity against TM- or TG-toxicity. This mushroom has potential utility in 

preventing of ER stress. 

 Termitomyces titanicus with a cap diameter of up to 1 m is the largest edible 

mushroom in the world according to Guinness Book of Records. The genus 

Termitomyces live in an obligate mutualistic symbiosis with termites of the subfamily 

Macrotermitinae.33-35) Termites cultivate the mycelia in their nest and fruiting bodies 

can be seen rising on or near the mounds.36) We reported the isolation of ER stress 

protective compounds, termitomycamides A to E (38−42), from the fruiting bodies of T. 

titanicus (Figure 3).37, 38) To investigate further the structure-activity relationship, their 

analogues (39a−c and 42a−c) that have different fatty acid parts (stearyl, oleyl and 

arachidonyl) were synthesized (Figure 3).38) The linoleyl moiety in 39 and 42 was 

indispensable for the activity of the substances. 

 

Osteoclast-formation suppressors 

Osteoporosis is a serious health problem that predominantly affects postmenopausal 

women and aged people, and leads to a high risk of fracture. Bone homeostasis during 

remodeling is maintained by osteoclastic bone resorption and osteoblastic bone 

formation.39) Exceeding calcium resorption in the bone gradually decreases 

bone mineral density. For this reason, osteoclast, the cell responsible for calcium 

resorption, is the major medicinal target to treat osteoporosis. Therefore, substances 

which can suppress the formation of osteoclasts are candidates for drugs or functional 

foods to prevent osteoporosis. The assay is based on the principle that osteoclast-like 

multinucleated cells can be formed in vitro from co-cultures of mouse bone marrow 

cells and osteoblastic cells by treatment with osteotropic factors, 1,25-

dihydroxyvitamin D3 and prostaglandin E2.40) By adding suppressive agents, the 

formation of osteoclast is inhibited during the differentiation. During our screening for 

the osteoclast-formation suppressive effects of extracts of mushrooms, Choi et al. found 



 

very strong activity in the extract of verious mushrooms Agrocybe chaxingu, Grifola 

gargal, and Leccinum extremiorientale. 

 Agrocybe chaxingu is an edible fungus belonging to the family Strophariaceae, 

grows in dry and died boles of broadleaf, such as grease tea plant and poplar, and exists 

only in mountainous areas in South China. By using the assay, Choi et al. found three 

known compounds (43− 45) and five new compounds named as chaxines A (46) to E 

(50) from this mushroom (Figure 4a) as biological active ingredients. The compounds 

suppressed the formation of osteoclast without cytotoxicity.41-44) In addition, chaxins 

A−C (46−48) as possible lead compounds, have been synthesized.43, 45) 

 Grifola gargal is an edible mushroom with a characteristic almond flavor, collected 

and eaten by native people of southern Argentina and Chile. The species has only been 

occured from the Nothofagus-dominated forests of the area. Nutraceutical properties 

and pharmacological potential of the mushroom have been studied; aqueous extracts of 

the mushroom showed the anti-oxidant and anti-inflammatory effects and the methanol 

extracts displayed a free radical scavenging activity.46) Wu and Choi et al. have reported 

the isolation of novel osteoclast-forming suppressing compounds, gargalols A to C 

(51−53) together with some known steroids (54−57) and sphingosine (58) from the 

mushroom (Figure 4b).47, 48) 

 Choi et al. also isolated two osteoclast-forming suppressing sterols from the 

mushroom L. extremiorientale.49) Ergosterol peroxide and cerevisterol exsist 

widespread in many mushrooms,27, 50-52) and exhibited no activity. However, slight (or 

deep) modification of common substances like 43−57 could give the active principles. 

In general, mushrooms contain various kinds of steroids at higher concentrations. Edible 

mushrooms are suitable for the sources of the suppressors, since they can be eaten daily 

without serious secondly effects. Therefore, mushrooms are suitable for daily intake, 

our group propose that the mushroom could be the promising functional food for 

postmenopausal women and aged people to improve and/or prevent osteoporosis.  

 



 

Plant growth regulators 

Microbes secrete diverse classes of molecules that directly or indirectly affect plant 

growth, development, productivity and overall health.53) Microbial secondary 

metabolites represent a kind of chemical communication between microbes and other 

microbes or nonmicrobial systems including higher plants, lower animals or mammalian 

(humans) systems, which reflects antagonistic, synergistic, regulatory or modulatory 

and any other biochemical or either biophysical interactions.54) Plants interact with 

fungal species in their natural growing environments. For example, it has been reported 

that strigolactones as a plant hormone induce hyphal branching in symbiotic arbuscular 

mycorrhizal fungi to roots of plants and promote plants growth by establishing 

mutualism with the fungi.55) In addition, gibberellins (GAs) are a large family of 

isoprenoid plant hormones, some of which are bioactive growth regulators, controlling 

seed germination, stem elongation, and flowering.56) The rice pathogen Gibberella 

fujikuroi is able to produce large amounts of GAs, especially the bioactive compounds 

gibberellic acid (GA3). The commercial source of the bioactive GAs, particularly GA3, 

is by fermentation of the fungus, G. fujikuroi, from which the GAs were originally 

discovered.57)  

Our group are interested in biological activity of components from mushroom 

towards plants and have reported isolation of some compounds that regulate lettuce 

growth.58-63) 

 The genus Armillaria (Honey Fungus in English, Naratake in Japenese), belonging 

to the family Physalacriaceae, is an edible mushroom throughout the world. This 

mushroom is delicious, and people also have utilized it for its medicinal properties. On 

the other hand, the genus has been known as a serious plant pathogen that causes root 

rot in various plant species, 64) and the phenomenon is called Armillaria root disease.65, 

66) Root rot is one of the most serious diseases of plants and occurs in many broadleaf 

trees including oak, fruit, and nut trees as well as several herbaceous plants.65-67) These 

facts indicate that Armillaria produces allelopathic substances. In addition, armillariols 

A−C (58−60) have been isolated from the culture broth of Armillaria sp. as plant 

growth regulators by our group68). The synthesis of (+)- and (−)-60 and their analogues 



 

using Suzuki−Miyaura cross-coupling and Sharpless asymmetric dihydroxylation on a 

gram-scale is described by Reddy et al69). In addition, two new compounds (61, 62) and 

seven known analogues (63−69) from the culture broth of same genus (Figure 5a). 

Compounds 63−69 were identified as 5’-O-methylmelledonal70), melleolide D71), 13-

hydroxydihydromelleolide72), melleolide73), armillarinin74), armillaridin75), and 

armillarikin76), respectively, which have been isolated from the mushroom genus 

Armillaria as antimicrobial compounds. The protoilludane skeleton itself is important 

for growth inhibitory activity against lettuce. The formyl group at C-1 and the absence 

of a hydroxy at C-13 in the molecule were important for the antifungal activities. 

 “Fairy rings” is a disease symptom in woodlands and grasslands; rapidly growing, 

lush green rings (or arcs bands) of grass and/or circles of mushrooms are observed, 

owing to the interaction between a fungus and a plant77, 78). It has been found that more 

than 60 of basidiomycete fungi produce fairy rings in grasslands79). Since the first 

scientific article about “fairy rings” in 1675 and subsequent studies reviewed in Nature 

in 188480), this phenomenon had been attributed to unknown “fairies” before our 

chemical disclosure77-81). Choi et al. found that 2-azahypoxanthine (AHX, 70) and 

imidazole-4-carboxamide (ICA, 71) are plant growth regulators produced by a fairy ring 

forming fungus, Lepista sordida (Figure 5b)82, 83). Furthermore, Choi et al. isolated a 

common metabolite of 70 in plants, 2-aza-8-oxohypoxanthine (AOH, 72)84) and futher 

metabolites (N-glucosides; 73−76) (Figure 5b)85). Kawagishi and Choi named the three 

compounds “fairy chemicals” (70−73; FCs) after the title of the article in Nature86).  

 FCs regulated the growth of all of the plants tested regardless of their species, and 

various examinations indicated that plants developed tolerance to various and 

continuous stress (low or high temperature, salt, or drought stress, etc.) from the 

environment by treatment with FCs, resulting in the growth promotion. Furthermore, 

FCs increased the yields of rice, wheat, and other varied crops in greenhouse and/or 

field experiments82-84, 86-88), suggesting that they might find practical application in 

agriculture. For practical use of 70−72, field experiments are necessary and large 



 

amounts of them are required for them. Compounds 70−72 are chemically synthesized 

readily89, 90). Choi et al. have also reported the endogenous presence of 70 and 72 in 

plants and the discovery of a new route in purine metabolic pathway in which 70 and 72 

are biosynthesized84, 91). Based on the above results, our group hypothesize that FCs 

(70−72) are a new family of hormones in plants.  

 

Conclusion 

Today fungi are one of the major parts of pharmaceutical industries, but still there is a 

need to continue to find new bioactive molecules from fungi. Fungi are easy to cultivate 

and scale up as compared to plant cells. There are more than 140,000 species of 

mushroom-forming fungi on the earth. However, only about 7% of the fungi have been 

given names. The nameless fungi also must be producing compounds with new 

functions and structures. Mushrooms are unexplored biological resources. Our group 

are presently trying to isolate the active compounds from various mushrooms.  
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Figure legends 

 

Figure 1. Simulators of nerve growth factor-synthesis (a) and ER stress protecting 

compounds (b) from Hericium erinaceus. 

 

Figure 2. Bioactive compound isolated from the edible mushroom Leccinum 

extremiorientale and its synthetic analogues (a) and comounds from Mycoleptodonoides 

aitchisonii (b). 

 

Figure 3. Bioactive compounds isolated from the edible mushroom Termitomyces 

titanicus and their synthetic analogues. 

 

Figure 4. Bioactive compounds isolated from the edible mushrooms Agrocybe chaxingu 

(a) and Grifola gargal (b). 

 

Figure 5. Bioactive compounds isolated from the culture broth of Armillaria sp. (a), and 

fairy chemicals and their metabolites in rice (b). 

 












