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Abstract 

 

Depth-sensing indentation tests were performed to obtain the loop energy (equivalent to the 

energy consumed to produce the indentation) and the residual depth of the indentation using a 

triangular pyramidal diamond indenter for the minerals in Mohs hardness scale except for 

diamond, as well as other minerals (apophyllite, forsterite, and tourmaline), at a maximum 

load ranging from 30 to 100 mN. A new graphic presentation is proposed that shows the 

hardness of minerals in log(penetration depth)log(loop energy) space. The data for each 

mineral under different loads give a straight regression line with a slope of 2.6–2.9 (except for 

talc, which yields a slope of 2.2), while the data for different minerals under a given load 

yield a straight regression line with a slope of 1.1–1.2. A theoretical analysis of ideal 

materials, in terms of log(penetration depth)log(loop energy) space, shows the existence of 

two series of parallel regression lines with slopes of 3 (data for each mineral at different 

loads) and 1 (data for different minerals under a given load). The results show a slight 

deviation between the measured and theoretical slopes, probably reflecting a progressive 

change in the mechanical properties of the minerals during the indentation tests.  
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1. Introduction 

 

Indentation testing has been employed for more than 100 years as a practical method 

for measuring the hardness of solids (e.g., Tabor, 1996; Walley, 2012). The method has two 

advantages: (1) sample preparation is simple compared with other mechanical tests, because 

only a small area of specimen is required; and (2) indentation testers are sufficiently compact 

to be used on a small table top and are easy to operate. A range of indices (e.g., the Vickers, 

Brinell, Knoop, Rockwell, Meyer and Martel hardnesses) have been proposed for various 

purposes (e.g., Knoop et al., 1939; Tabor, 1951; Mott, 1956; Westbrook & Conrad, 1973; 

Szymański & Szymański, 1989; Fischer-Cripps, 2004; Milman et al., 2014). The hardness of 

minerals has been measured by indentation tests under room conditions (e.g., Hodge & 

McKay, 1934; Winchell, 1945; Tabor, 1954; Brace, 1963, 1964; Ferguson et al., 1987; Karato 

et al., 1990; Li & Bradt, 1990, 1991; Dhar et al., 1997; Masuda et al., 2000; Golsby et al., 

2004; Broz et al., 2006; Whitney et al., 2007, and references therein) and at high temperatures 

(e.g., Westbrook, 1958; Evans &Goetze, 1979; Evans, 1984; Darot et al., 1985; Karato et al., 

1986; Dorner &Stöckhert, 2004). 

The widely used classical testers employ a dead-weight-type loading system. The 

user selects the weight of the pyramidal indenter before the test and can only measure the size 

of the produced indentation after the test. In the 1970s, technological innovations enabled the 

development of depth-sensing indentation testers, and these have become increasingly 

popular (e.g., Grigorovich, 1976; Pethica et al., 1983; Doerner & Nix, 1986; Oliver & Pharr, 

1992; Sakai et al., 1999; Fischer-Cripps, 2004; Broz et al., 2006; Whitney et al., 2007, and 

references therein). These testers enable the simultaneous measurement of load and 

displacement (penetration depth) with high precision during the indentation test, and have 

spurred further progress in measurements of fracture toughness, and the plasticity and 

elasticity of materials (e.g., Oliver & Pharr, 1992; Broz et al., 2006; Whitney et al., 2007, and 

references therein). The use of such testers enables the evaluation of physically meaningful 

parameters such as the energy required to create the indentation and creep data for earthquake 

mechanics (e.g., Sakai et al., 1993; Nowak & Sakai, 1994; Fischer-Cripps, 2004; Goldsby et 
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al., 2004). However, most of the recent hardness studies employing depth-sensing indentation 

testers continue to use classical hardness indices (e.g., Broz et al., 2006; Whitney et al., 2007), 

even though this approach does not take full advantage of the advanced technology of modern 

testers. In the present study, we aim to increase the utility of the energy required to make an 

indentation as a new indicator of the hardness of minerals, and propose a new graphic 

presentation that portrays the relation between the energy and the residual depth of the 

indentation for typical rock-forming minerals, including the minerals of Mohs hardness scale 

except for diamond. 

 

 

2. Theoretical analysis 

                                                                 

2.1. Basic equations 

In terms of theoretical analysis we are concerned with the load applied to the 

specimen ( y ) by the pyramidal shaped indenter and the penetration depth of the indenter 

from the flat surface of the test specimen (x ). Figure 1 shows a schematic of the power-law 

relation between load ( y ) and depth (x ) during loading, expressed by 

 

y = k
1
xm ,          (1) 

 

and the relation during unloading, expressed by 

 

y = k
2
x -D

r( )
m

,       (2) 

 

where k
1
 and k

2
 are constants related to the tested material, D

r
 is the depth of the 

indentation in the test specimen after complete unloading, and m is the loading and 

unloading exponent (e.g., Oliver & Pharr, 1992). The value of m is assumed to be the same 
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for the loading and unloading stages as a first approximation. Boundary conditions are given 

for both curves as follows: 

‘insert Fig. 1 here’ 

 

P
max

= k
1
D
max( )

m

        (3) 

 

and 

 

P
max

= k
2
D
max

-D
r( )
m

,       (4) 

 

where P
max

 and D
max

 are the maximum load and corresponding maximum depth, 

respectively. From equations (3) and (4), we respectively derive the following equations: 
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k
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and 

 

D
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r
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We introduce loop energy in this analysis. Loop energy was first proposed by Sakai 

(1993) as the energy consumed to produce indentations. The loop energy (U
r
) required to 

produce indentation U
r
 is equivalent to the area outlined by the loading and unloading 

curves (shaded area in Fig. 1), and is calculated by  
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Using equations (5) and (6), we can eliminate D
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 from equation (7) as follows: 
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To simplify these equations, a new parameter k
0
 is defined as follows: 
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Introducing k
0
, equation (8) becomes 
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r
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Eliminating D
max

 from equations (5) and (6) gives 
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Substituting k
0
 into equation (11) affords  

 

D
r
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P
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which is equivalent to 

 

P
max

= k
0
D
r( )
m

.  (13) 

 

Then, using equation (12), equation (10) can be rewritten as 

 

U
r

=
1

m+1
D
r
×P

max
.   (14) 

 

Similarly, substituting equation (13) into (14), we have 

 

U
r

=
1

m+1
k
0
D
r( )
m+1

.   (15) 

 

 

2.1. Ideal load–displacement curve 

Previous analyses of load and displacement data during depth-sensing indentation 

tests have demonstrated the quadratic relation between applied load and displacement 

(m = 2) (Sakai, 1993, 1999; Cook & Pharr, 1994; Sakai et al., 1999). Based on a dimensional 

analysis, Cheng & Cheng (1998a, b) also revealed that the relation between load and 

displacement for a conical indenter is quadratic. In this context, m = 2 appears ideal for a 

pyramidal indenter. 

 If we accept m = 2, then from equations (14) and (15) we have 

 

y = k
1
x 2       (18) 

 

and 
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y = k
2
x -D

r

*( )
2

.      (19) 

 

We similarly and consequently obtain the following two simple equations by substituting 

m = 2 into equations (14) and (15): 

 

U
r

* =
1

3
D
r

* ×P
max

           (20)
   

 

 

and 

 

U
r

* =
1

3
k
0
D
r

*( )
3

,           (21) 

 

 

respectively. In these equations, an asterisk (*) indicates the ideal quadratic relation in theory
 

(in fact, m ¹ 2 for minerals, as shown below).
 

 

2.3. Dual parallel regression lines in logD
r
logU

r
 space for ideal data 

Equations (20) and (21) provide the theoretical basis for dual parallel regression lines 

in logD
r
logU

r
 space. Equation (20) states that U

r

*
 is proportional to D

r

*
 if P

max
 is 

constant. This means that the iso-load lines for different imaginary minerals are expected to 

be straight, and the slope of the line in logD
r
logU

r
 space is 1. Equation (21) demonstrates 

that U
r

*
 is proportional to D

r

*( )
3

 if k
0
 is constant. The value of k

0
 is regarded as a 

material constant that is unique to each mineral. Thus, the data points of each imaginary 

mineral at different loads plotted in logD
r
logU

r
 space should lie on a single straight line 

with a slope of 3. 
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3. Depth-sensing indentation tests 

                                                                

3.1. Data of indentation tests 

Figure 2 shows the schematic loading–unloading cycle for a depth-sensing 

indentation test, consisting of loading, dwelling, and unloading curves, corresponding to the 

loading, dwelling and unloading stages of the test, respectively (e.g., Pethica et al., 1983; 

Doerner & Nix, 1986; Oliver & Pharr, 1992; Sakai et al., 1999; Fischer-Cripps, 2004, and 

references therein). The term P
max

 is the maximum load, D
1
 is the measured displacement 

at P
max

, and Dx  is the displacement during the dwelling time at P
max

, which is not 

considered in the theoretical analysis (Fig. 1). In a typical indentation test, Dx  cannot be 

zero due to instrumental reasons and is defined as D
2

-D
1
, where D

2
 is the maximum 

displacement during the test. The term D
3
 is the displacement after complete unloading, 

given by the intersection of the unloading curve with the displacement axis. The term U
3
 is 

the loop energy corresponding to the residual depth of D
3
. One can assign P

max
 and the 

loading, dwelling, and unloading times before the test starts. The measured displacement 

during the actual indentation test is not equal to the penetration depth of the indenter, as 

during loading and unloading the test system (i.e., the frame of the tester, the indenter shaft, 

and the specimen mounting) is elastically deformed (e.g., Fischer-Cripps, 2006). Thus, the 

tester reads the sum of the real penetration depth of the indenter into the specimen plus the 

elastic deformation of the test system. Unfortunately, we have not yet evaluated the 

deformation of the test system used in this study. However, despite the unknown elastic 

deformation of the tester, D
3
 and U

3
 are considered independent of the influence of 

elastic deformation of the tester during the indentation test, because the loading and unloading 

curves are equally affected by the elastic deformation. Note that Dx  in Fig. 2 is also 

unaffected by elastic deformation of the tester. 

‘insert Fig. 2 here’ 
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3.2. Derivation of D
r
 and U

r
 from measured data 

Although D
r
 and U

r
 are key data in the theoretical analysis, we are unable to 

directly obtain these values during the indentation test; however, they can be calculated from 

the measured data as follows: 

 

D
r

=D
3
- Dx .       (16) 

 

and 

 

U
r

=U
3
-P

max
×Dx .  (17) 

 

Figure 2 helps to understand equations (16) and (17). The values of D
r
 and U

r
 are not 

affected by elastic deformation of the tester because the measured data (D
3
, U

3
 and Dx ) 

are independent of any elastic deformation. 

 

3.3. Specimens 

The minerals in Mohs hardness scale, except for diamond (i.e., talc, gypsum, calcite, 

fluorite, apatite, orthoclase, quartz, topaz, and corundum), and three other minerals 

(tourmaline, forsterite, and apophyllite) were used for the indentation tests. The properties of 

the mineral specimens are listed in Table 1, and photographs of the specimens are provided in 

Fig. 3. The talc and apatite specimens are polycrystalline but the others are single crystals. 

The indented surfaces of the quartz and calcite specimens are both oriented perpendicular to 

the c-axis, but the crystallographic orientations of the other crystalline mineral specimens are 

unknown. The mineral specimens, purchased from gem dealers in Japan, Pakistan, and the 

USA, were cut with a low-speed saw (ISOMET, Buhler Co., Germany) and polished using an 

alumina suspension (60 nm) for 6 hours to obtain an extraordinarily flat surface for the 

indentation tests. 

‘insert Fig. 3 and Table 1 here’             
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3.4. Indentation tester and test procedure 

The depth-sensing indentation tests were performed using a RIDER II device 

(Mitsutoyo Co., Japan) at Shizuoka University, Japan, equipped with a triangular pyramidal 

diamond indenter (face angle = 68°). The RIDER II simultaneously measures the applied load 

and displacement 10 times per second with a precision of 0.02 mN and 0.1 nm, respectively. 

The maximum load of the tests (P
max

) ranged from 30 to 100 mN, and the loading, 

dwelling, and unloading times were all set at 10 s. Multiple indentation tests (30–80) were 

performed at each load for each mineral. The distance between adjacent indentations in a 

given specimen was at least several times the size of the indentation, to prevent interaction 

between the different indentations. 

 

3.5. Load–displacement curves 

The load–displacement curve was obtained for each test (Fig. 4). The curves are 

similar to those reported previously for various ceramics (e.g., Oliver and Pharr, 1992). The 

term U
3
 was calculated by integrating the load–displacement data recorded 10 times per 

second during the indentation test. The Dx  data recorded during the dwell time (10 seconds) 

were 5% of D
3
 at maximum and were generally <3% of D

3
 (Table 2). 

‘insert Fig. 4 and Table 2 here’ 

 

3.6 Indentations 

Photomicrographs of the resulting indentations were taken with an optical 

microscope (Fig. 5). The indentations were only accompanied by fractures in the case of 

apatite at >60 mN, apophyllite at 100 mN, and gypsum at 30–100 mN. Fluorite and forsterite 

exhibit regular triangular indentations, while the indentation edges in the other minerals are 

convex toward the center of the indentations. 

‘insert Fig. 5’ 

3.7. Meyer hardness 
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 As the standard for nanoindentation tests, we present the Meyer hardness data of the 

minerals obtained in our tests. The Meyer hardness (H
M

) is calculated as follows: 

 

H
M

=
P
max

A
,        (18) 

 

where P
max

 is the maximum load and A  is the area of the residual indentation, calculated 

as follows: 

 

A =
3

4
a2 ,        (19) 

 

where a  is the apical length of the triangular residual indentation as measured on the 

specimen surface under a microscope. Nine measurements of a  were performed for each 

mineral. The results at P
max

=100  or 50 mN are listed in Table 1. These values are largely 

similar to published data (Broz et al., 2006).  

 

3.8. Empirical indentation–energy rule 

Table 2 summarises the measured data ( Dx , D
3
, and U

3
) and the values 

calculated using equations (16) and (17) (D
r
 and U

r
), while Fig. 6 shows the results in log

D
r
logU

r
 space. 

The logD
r
 and logU

r
 data of each mineral at various P

max
 (Fig. 6a) appear to 

define a straight regression line. The slope of the regression line for most of the minerals is 

between 2.5 and 2.9, although the slope for talc is 2.2. As the slopes are largely similar for the 

minerals except for talc, the regression lines appear to be almost parallel to each other. Larger 

values of P
max

 result in larger values of D
r
 and U

r
 on each line. The corundum line (the 

mineral with the highest Mohs hardness among the tested minerals) lies at the far left in Fig. 

6a, while the talc line (the mineral with the lowest Mohs hardness) lies at far right. Thus, 

roughly speaking, the trend lines for minerals with higher Mohs hardness are located to the 
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left in logD
r
logU

r
 space. However, the mineral lines are not always arranged 

systematically in accordance with Mohs hardness. For example, the fluorite line (Mohs 

hardness of 4) is to the right of the calcite line (Mohs hardness of 3), whereas the regression 

lines of four minerals with Mohs hardness values of 6.57.5 (orthoclase, forsterite, quartz, 

and tourmaline) are located close to each other. 

Data obtained using the same P
max

 for different minerals also yield straight 

regression lines (Fig. 6b). The slopes of these “iso-load” lines are 1.1–1.2 (Table 3); thus, 

they are sub-parallel to each other. Most of the data points plot on the iso-load lines, although 

those for quartz and orthoclase plot slightly below the corresponding lines. 

‘insert Fig. 6 and Table 3 here’ 

 

3.9. Loading and unloading exponent m of analysed minerals 

The loading and unloading exponent m cannot be deduced from the loading and 

unloading data obtained during the test, because these data include an unknown elastic 

deformation of the tester itself. Equation (15) indicates that the slope of the logD
r
logU

r
 

line for each mineral is equivalent to m+1. Thus, the value of m can be graphically 

determined from the slopes of the regression lines for the actual data points of each mineral, 

as shown in Fig. 5 and listed in Table 1. The m-values of most minerals range from 1.5 to 

1.9, although the value for talc is 1.2. Although the physical meaning of the m-value is not 

well understood, it may relate to the elastic–plastic properties of minerals. 

 

 

4. Discussion 

 

4.1. Avoiding complex manipulation during data acquisition 

Fischer-Cripps’ (2006) critical review of the analysis and interpretation of 

instrumented indentation test data indicates that data acquisition from indentation tests is 

more complex and difficult than generally conceived, as highlighted by the indentation size 

effect (where smaller indentations indicate greater hardness). Bull (2003) and Pharr et al. 
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(2010) reviewed the indentation size effect and its various mechanisms, and demonstrated that 

the problem has yet to be remedied. Our experiences in data acquisition indicate that the 

following two issues are most troublesome: (1) evaluation of the elastic deformation of the 

test system under the applied load, and (2) accurate measurement of the projected area of 

residual indentations in specimens. 

The first issue is related to the total compliance of the test system. Fischer-Cripps 

(2006), explaining the complexity (difficulty) that affects an exact evaluation of the 

compliance of the test system, emphasised the importance of compliance caused by the 

specimen mounting, as many researchers are unaware of this issue (p. 4160, Fischer-Cripps, 

2006). In fact, in the present study we used epoxy resin to glue the specimens of quartz and 

calcite to the slide glasses, and set them on the specimen stage of the tester for the tests. Thus, 

the displacement data of quartz and calcite additionally include the elastic deformation of the 

epoxy resin, which was not evaluated. The complexity identified in the second issue lies in 

the three-dimensional curvature of the edges of the residual pyramidal indentations. It is 

difficult for us to precisely judge the position of the edges when quantifying the size of the 

indentation to calculate its projected area under optical, laser, and even atomic force 

microscopes. 

We successfully avoided the above two issues by employing the loop energy (U
r
) of 

Sakai (1993) in our analysis. 

 

4.2. Advantages of the logD
r
logU

r
 diagram in hardness analysis 

As the hardness data of most of the minerals analysed in this study have been reported 

previously (e.g., Szymański & Szymański, 1989; Broz et al., 2006; Whitney et al., 2007), we 

do not need to supply additional hardness data, thereby avoiding the second of the issues 

mentioned above (i.e., measuring the projected areas of the residual indentations of the 

specimen). Instead, we present two advantages of the logD
r
logU

r
 diagram. 

The first advantage is estimation of m. We presented a method of reliably 

estimating the m value without evaluating the compliance of the test system. As the slope of 

the regression line on the logD
r
–logU

r
 diagram is equivalent to m+1, the m value of 
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each mineral can be reliably determined from the diagram once the logD
r
–logU

r
 data of 

instrumented indentation tests are plotted. Our m values for minerals lie within the range of 

values reported previously for various materials (1.2–1.9; e.g., Fischer-Cripps, 2006). The 

second advantage is predictability of D
r
 and U

r
. Figure 6 is a simple graphical 

presentation of the relation between D
r
 and U

r
 as a function of P

max
 for various 

minerals. If we can obtain one pair of D
r
U

r
 data for a mineral, then we can predict D

r
 

when P
max

 is given and we can predict the way in which U
r
 increases with increasing D

r
 

for the mineral. Even in the absence of D
r
U

r
 data, we can roughly deduce the D

r
U

r
 

relation if the Mohs hardness of the mineral is known. 

 

4.3. A new hardness index 

As the hardness of materials usually increases with decreasing indentation size, 

which is referred to as indentation size effect, it seems unsatisfactory to use a single hardness 

number to characterise the hardness of materials, especially for indentation depths of <1 m 

(e.g., Knoop et al., 1939; Mott, 1956; Upit & Varchenya, 1973; Nix & Gao, 1998; Pharr et al., 

2010; Milman et al., 2011). 

It appears necessary to present the hardness at a fixed depth when comparing the 

hardness of various materials (e.g., Milman et al., 2011). Milman et al. (2011) proposed 

depths of 0.1 m m for harder materials and 1 m m for softer materials, based on data of 21 

tested ceramics and metals such as BeO, Si3N4, Mo, and Al. The D
r
U

r
 diagram solves 

this problem by providing a new index for the hardness of minerals in terms of energy. Figure 

7 shows a schematic logD
r
–logU

r
 diagram for a mineral M. The U

r
 datum at D

r
=1 ( m

m), for instance, is designated U
M

 following Milman et al. (2011). The term U
M

 

represents the energy required to produce a 1 m m deep indentation. Table 1 provides 

tentative U
M

 data obtained at D
r
=1 m m for minerals with Mohs hardness of <4.5, and 

data obtained at D
r
=0.1 m m for minerals with Mohs hardness of >4.5. This energy-related 

hardness index may be useful for the energetic analysis of plastic–elastic properties (e.g., 

Sakai, 1999; Fischer-Cripps, 2004, p.58) and is only made possible by the development of 

load- and depth–sensing indentation technology. 
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‘insert Fig. 7 here’ 

 

4.4. What is U
r
? 

The term  may be misunderstood as the energy consumed only for plastic 

deformation of the test specimen. This is not true, because most minerals show evidence of 

more-or-less elastic deformation after complete unloading, such as sink-in and protrusion 

along the margins of indentations. Masuda et al. (2011) showed that a residual stress of ~2 

GPa remains around a triangular indentation in quartz after complete unloading at a load of 

500 mN; hence, the amount of elastic energy is not negligible. The loop energy U
r
 is 

considered the sum of energy consumed during plastic deformation plus the energy related to 

elastic deformation still stored in the crystalline lattice around the site of indentation, as 

proposed by Sakai (1999). The separation of plastic energy from elastic energy may be the 

next target in seeking to obtain a quantitative understanding of deformation during 

indentation tests. 

 

 

Acknowledgments 

 

The authors thank Mototsugu Sakai for encouraging this study, Nozomi Kimura for 

critical discussions, Hideki Mori for help with sample preparation, and Sayuri Miyagishima 

for operating RIDER II and logistical support. The authors also thank Yuli Milman for 

constructive suggestions and Ian Alsop for kind comments. This study was financially 

supported by the Japanese Society for the Promotion of Science (16340152 to TM). 

 

 

References 

 

Brace, W., 1963. Behavior of quartz during indentation. Journal of Geology 71, 585–595. 

 

U
r



 17 

Brace, W., 1964. Indentation hardness of minerals and rocks. Neues Jahrbuch für Mineralogie 

Monatshefte 9–11, 257–260. 

 

Broz, M. E., Cook, R. F., Whitney, D. L., 2006. Microhardness, toughness and modulus of 

Mohs scale minerals. American Mineralogist 91, 135–142. 

 

Bull, S. J., 2003. On the origins and mechanisms of the indentation size effect. Zeitschrift für 

Metallkunde 94, 787–792. 

 

Cheng, Y.-T., Cheng, C.-M., 1998a. Relationships between hardness, elastic modulus, and the 

work of indentation. Applied Physics Letters 73, 614–616. 

 

Cheng, Y.-T., Cheng, C.-M., 1998b. Scaling approach to conical indentation in elastic-plastic 

solids with work hardening. Journal of Applied Physics 84, 1284–1291. 

 

Cook, R. F., Pharr, W. C., 1994. Indentation loading-displacement behaviour during 

conventional hardness testing. Journal of Hard Materials 5, 179–190. 

 

Darot, M., Gueguen, Y., Benchemam, Z., Gaboriaud, R., 1985. Ductile-brittle transition 

investigated by micro-indentation: results for quartz and olivine. Physics of the Earth and 

Planetary Interiors 40, 180–186. 

 

Dhar, P. R., Bamzai, K., Kotru, P. N., 1997. Deformation and microhardness studies on 

natural apophyllite crystal. Crystal Research and Technology 32, 537–544. 

 

Doerner, M. F., Nix, W. D., 1986. A method for interpreting the data from depth-sensing 

indentation instruments. Journal of Materials Research 1, 601–609. 

 



 18 

Dorner, D., Stöckhert, B., 2004. Plastic flow strength of jadeite and diopside investigated by 

microindentation hardness test. Tectonophysics 379, 227–238. 

 

Evans, B., 1984. The effect of temperature and impurity content on indentation hardness of 

quartz. Journal of Geophysical Research 89, 4213–4222. 

 

Evans, B., Goetze, C., 1979. Temperature variation of hardness of olivine and its implication 

for polycrystalline yield stress. Journal of Geophysical Research 84, 5505–5524. 

 

Ferguson, C.C., Lloyd, G.E., Knipe, R.J., 1987. Fracture mechanics and deformation 

processes in natural quartz: a combined Vickers indentation, SEM and TEM study. Canadian 

Journal of Earth Sciences 24, 544–555. 

 

Fischer-Cripps, A.C., 2004. Nanoindentation. Springer, Berlin. 

 

Fischer-Cripps, A.C., 2006. Critical review of analysis and interpretation of nanoindentation 

test data. Surface and Coatings Technology 200, 4153–4165. 

 

Golsby, D.L., Rar, A., Pharr, G.M., Tullis, T.E., 2004. Nanoindentation creep of quartz, with 

implications for rate- and state-variable friction laws relevant to earthquake mechanics. 

Journal of Materials Research 19, 357–365. 

 

Grigorovich, V. K., 1976. Hardness and Microhardness of Metals. Nauka, Moscow. (cited in 

Milman et al., 2914) 

 

Hodge, H.C., McKay, J.H., 1934. The “microhardness” of minerals comprising the Mohs 

scale. American Mineralogist 19, 161–168. 

 



 19 

Karato, S., Ito, E., Fujino, K., 1990. Plasticity of MgSiO3 perovskite: the results of 

microhardness tests on single crystals. Geophysical Research Letters 17, 13–16. 

 

Karato, S., Wang, Z.C., Liu, B., Fujino, K., 1986. Plastic deformation of garnets: Systematics 

and implications for the rheology of the mantle transition zone. Earth and Planetary Science 

Letters 130, 13–30. 

 

Knoop, F., Peters, C.G., Emerson, W.B., 1939. A sensitive pyramidal-diamond tool for 

indentation measurements. Journal of Research of the National Bureau of Standards 23, 39–

61. 

 

Li, H., Bradt, R.C., 1990. Knoop microhardness anisotropy of single-crystal rutile. Journal of 

American Ceramic Society 73, 1360–1364. 

 

Li, H., Bradt, R.C., 1991. Knoop microhardness anisotropy of single-crystal cassiterite (SnO2). 

Journal of American Ceramic Society 74, 1053–1060. 

 

Masuda, T., Hiraga, T., Ikei, H., Kanda, H., Kugimiya, Y., Akizuki, M., 2000. Plastic 

deformation of quartz at room temperature: a Vickers nano-indentation test. Geophysical 

Research Letters 27, 2773–2776. 

 

Masuda, T., Miyake, T., Enami, M., 2011. Ultra-high residual compressive stress (>2 GPa) in 

a very small volume (<1 m3) of indented quartz. American Mineralogist 96, 283–287. 

 

Milman, Yu.V., Golubenko, A.A., Dub, S.N., 2011. Indentation size effect in nanohardness. 

Acta Materialia 59, 7480–7487. 

 

Milman, Yu.V., Grinkevich, K.E., Mordel, L.V., 2014. Energy concept of hardness for 

instrumented indentation. Russian Metallurgy (Metally), 2014, 256–262. 



 20 

 

Mott, B.W., 1956. Micro-Indentation Hardness Testing. Butterworths Scientific Publications, 

London. 

 

Nix, W.D., Gao, H., 1998. Indentation size effects in crystalline materials: a law for strain 

gradient plasticity. Journal of the Mechanics and Physics of Solids 46, 411–425. 

 

Nowak, R., Sakai, M., 1994. The anisotropy of surface deformation of sapphire: continuous 

indentation of triangular indenter. Acta Metallurgica et Materialia 42, 2879–2891.  

 

Oliver, W.C., Pharr, G.M., 1992. An improved technique for determining hardness and elastic 

modulus using load and displacement sensing indentation experiments. Journal of Materials 

Research 7, 1564–1583. 

 

Pethica, J.B., Huchings, R., Oliver, W.C., 1983. Hardness measurement at depth as small as 

20 nm. Philosophical Magazine, Series A 48, 593–606. 

 

Pharr, G.M., Herbert, E.G., Gao, Y., 2010. The indentation size effect: a critical examination 

of experimental observations and mechanistic interpretations. Annual Review of Materials 

Research 40, 271–292. 

 

Sakai, M., 1993. Energy principle of the indentation-induced inelastic surface deformation 

and hardness of brittle materials. Acta Metallurgica et Materialia 41, 1751–1758. 

 

Sakai, M., 1999. The Meyer hardness: A measure for plasticity? Journal of Materials 

Research 14, 3630–3639. 

 

Sakai, M., Shimizu, S., Ishikawa, T., 1999. The indentation load-depth curve of ceramics. 

Journal of Materials Research 14, 1471–1484. 



 21 

 

Szymański, A., Szymański, J.M., 1989. Hardness Estimation of Minerals, Rocks and Ceramic 

Materials. Materials Science Monographs 49, Elsevier, Amsterdam. 

 

Tabor, D., 1951. The Hardness of Metals. Oxford University Press, Oxford. 

 

Tabor, D., 1954. Mohs’s hardness scale – A physical interpretation. Proceedings of the 

Physical Society, Section B 67, 249–257. 

 

Tabor, D., 1996. Indentation hardness: fifty years on. Philosophical Magazine, Series A, 74, 

1207–1212. 

 

Upit, G.P., Varchenya, S.S., 1973. The size effect in the hardness of single crystals. In: J.H. 

Westbrook, J.H., Conrad, H. (eds.), The Science of Hardness Testing and its Research 

Applications. American Society for Metals, Metals Park, Ohio, pp. 135–146. 

 

Walley, S.M., 2012. Historical origins of indentation hardness testing. Materials Science and 

Technology 28, 1028–1044. 

 

Westbrook, J.H., 1958. Temperature dependence of strength and brittleness of some quartz 

structures. Journal of the American Ceramic Society 41, 433–440. 

 

Westbrook, J.H., Conrad, H., 1973. The Science of Hardness Testing and its Research 

Applications. American Society for Metals, Metals Park, Ohio. 

 

Whitney, D.L., Broz, M., Cook, R.F., 2007. Hardness, toughness, and modulus of some 

common metamorphic minerals. American Mineralogist 92, 281–288. 

 



 22 

Winchell, H., 1945. The Knoop microhardness tester as a mineralogical tool. American 

Mineralogist 30, 583–595. 

  



 23 

Table and figure captions 

 

Table 1. Description of mineral samples and list of  values. 

 

Table 2. Data ( Dx ,
 
D
3
, U

3
, D

r
, and U

r
) obtained from the indentation tests. 

 

Table 3. Obtained slope at each  value in the log –log  diagram. 

 

 

Fig. 1. Schematic ideal relation between the load (x ) and penetration depth ( y ) of the 

indenter into the specimen. The shaded area is loop energy (U
r
), which represents the 

energy consumed to produce an indentation of depth D
r
. 

 

Fig. 2. Schematic load–displacement curve for actual indentation tests. Three displacement 

variables (D
1
, D

2
, and D

3
) are measured by the tester. Note that displacement is 

not equal to the penetration depth, because the loading and unloading curves are 

influenced by elastic deformation of the tester (dashed line), and this has yet to be 

evaluated in detail. The values of D
3
, Dx , and U

3
 are not influenced by elastic 

deformation of the tester. The length Dx  is exaggerated in the figure. 

 

Fig. 3. Photographs of the specimens. Dots and lines drawn on the surfaces of the specimens 

were used for focusing under the indentation tester. Scale bar = 1 cm. (a) Corundum, 

(b) topaz, (c) tourmaline, (d) quartz, (e) forsterite, (f) orthoclase, (g) apatite, (h) 

apophyllite, (i) fluorite, (j) gypsum, (k) calcite, and (l) talc. The apatite and talc 

specimens are polycrystalline; the others are single crystals. 

 

Fig. 4. Typical load–displacement curves of the tested minerals. The curves for talc and 

gypsum appear to be unstable. Such weak minerals (the Mohs hardness values of talc 

and gypsum are 1 and 2, respectively) always show such instabilities. We cannot 

m

P
max

D
r

U
r
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estimate the m values from these curves because measured displacement is not 

equivalent to the penetration depth. 

 

Fig. 5. Photomicrographs of indentations in (a) corundum (maximum load of 100 mN), (b) 

topaz (100 mN), (c) tourmaline (100 mN), (d) quartz (100 mN), (e) forsterite (100 

mN), (f) orthoclase (100 mN), (g) apatite (100 mN), (h) apophyllite (50 mN), (i) 

fluorite (50 mN), (j) calcite (50 mN), (k) gypsum (50 mN), and (l) talc (50 mN). The 

indentations in orthoclase are circled to aid viewing (f). Scale bar = 50 m m. 

 

Fig. 6. logD
r
logU

r
 diagrams for the analysed mineral specimens. Each data point 

represents the arithmetic mean of 30–80 tests, and the error bars are one standard 

deviation. (a) Data points of each mineral under various loads are arranged on each 

“mineral line” that yield correlation coefficients of >0.99 for the fitting. (b) Data 

points of various minerals for a given P
max

 are arranged on “iso-load lines” that yield 

correlation coefficients of >0.99. The top line shows data for P
max

 = 100 mN, while 

the bottom line shows data for P
max

 = 30 mN. The lines correspond to P
max

 values 

at intervals of 10 mN. The slopes of all the lines are between 1.1 and 1.2. In both 

diagrams, the data of forsterite are plotted but are concealed behind the data points of 

quartz, orthoclase, and tourmaline. The forsterite data can be viewed in Table 2. 

 

Fig. 7. Schematic diagram showing the index U
M

 for a given mineral M. As an example, 

U
M

 is designated as the value of U
r
 at D

r
= 1 m m. 

 

 



Mineral Mohs Where from?Single crystalline?Thickness m value          (nJ)       (nJ) Meyer hardness

hardness scale (mm) at      =0.1 mmat      =1 mm (GPa)

Talc 1 Austria Polycrystalline 7 1.2 0.096 14 0.5 ± 0.07   #2

Gypsum 2 Mexico Single crystalline 5 1.4 0.085 27 1.7 ± 0.25   #2

Calcite 3 USA Single crystalline 1* 1.9 0.068 51 2.2 ± 0.15   #2

Fluorite 4 Spain Single crystalline 6 1.5 0.035 37 2.1 ± 0.07   #2

Apophyllite 4.5 India Single crystalline 6 1.5 0.27 84 4.6 ± 0.36   #2

Apatite 5 Madagascar Polycrystalline 6 1.6 0.32 120 7.0 ± 0.49   #1

Orthoclase 6 China Single crystalline 3 1.9 0.42 330 9.3 ± 1.5   #1

Forsterite 6.5 Pakistan Single crystalline 5 1.8 0.47 300 15 ± 1.4   #1

Quartz 7 Brazil Single crystalline 1* 1.6 0.55 230 14 ± 0.84   #1

Tourmaline 7.5 ? Single crystalline 4 1.7 0.51 270 13 ± 0.72   #1

Topaz 8 Brazil Single crystalline 6 1.7 0.89 490 23 ± 1.6   #1

Corundum 9 ? Single crystalline 5 1.6 1.3 500 27 ± 3.5   #1

* Glued to slide grass with epoxy resin
#1: maximum load =100 mN, #2: maximum load = 50 mN

U
M

D
r

U
M

D
r



Pmax

D x  (nm) 100 6 ± 1 5 ± 1 7 ± 2 1 ± 2 6 ± 2 3 ± 2 12 ± 2 23 ± 4 103 ± 2 63 ± 4 32 ± 18 110 ± 48

90 6 ± 2 5 ± 2 8 ± 2 2 ± 1 7 ± 1 8 ± 2 9 ± 2 21 ± 3 98 ± 2 57 ± 4 35 ± 16 94 ± 28

80 5 ± 1 6 ± 2 8 ± 1 5 ± 1 8 ± 2 9 ± 1 11 ± 1 19 ± 2 95 ± 2 55 ± 5 29 ± 10 103 ± 33

70 4 ± 2 1 ± 1 5 ± 1 5 ± 1 8 ± 1 8 ± 1 9 ± 2 14 ± 3 90 ± 1 53 ± 4 32 ± 18 88 ± 37

60 5 ± 1 4 ± 1 10 ± 2 0 ± 1 8 ± 2 5 ± 2 10 ± 2 15 ± 2 83 ± 1 47 ± 3 27 ± 10 84 ± 39

50 1 ± 1 1 ± 1 6 ± 1 3 ± 2 7 ± 1 5 ± 1 7 ± 2 14 ± 2 73 ± 2 44 ± 3 30 ± 17 62 ± 14

40 4 ± 2 5 ± 2 9 ± 2 5 ± 2 6 ± 1 5 ± 1 5 ± 1 10 ± 3 69 ± 1 39 ± 3 26 ± 17 64 ± 26

30 3 ± 2 3 ± 2 5 ± 1 3 ± 2 6 ± 1 4 ± 1 4 ± 1 13 ± 2 58 ± 1 34 ± 2 23 ± 13 47 ± 21

D 3  (nm) 100 188 ± 12 232 ± 17 306 ± 9 244 ± 9 304 ± 11 273 ± 22 466 ± 16 544 ± 42 1085 ± 26 960 ± 17 1288 ± 89 2870 ± 400

90 183 ± 12 215 ± 11 285 ± 13 238 ± 10 296 ± 24 266 ± 24 433 ± 30 536 ± 36 1022 ± 18 867 ± 17 1192 ± 49 2515 ± 413

80 161 ± 7 196 ± 11 274 ± 12 226 ± 8 278 ± 10 263 ± 22 417 ± 35 485 ± 38 964 ± 12 829 ± 23 1136 ± 95 2321 ± 416

70 149 ± 11 173 ± 12 249 ± 7 214 ± 5 254 ± 8 239 ± 17 377 ± 11 439 ± 37 909 ± 16 810 ± 14 1013 ± 67 2074 ± 295

60 136 ± 7 167 ± 10 233 ± 11 175 ± 6 232 ± 7 224 ± 15 352 ± 12 409 ± 42 837 ± 12 713 ± 21 969 ± 48 1974 ± 387

50 114 ± 10 141 ± 12 207 ± 6 164 ± 8 214 ± 8 203 ± 15 304 ± 23 376 ± 29 724 ± 17 661 ± 15 815 ± 59 1646 ± 210

40 108 ± 7 133 ± 8 185 ± 11 151 ± 7 187 ± 14 173 ± 11 268 ± 11 308 ± 34 644 ± 13 578 ± 13 749 ± 57 1346 ± 265

30 90 ± 7 114 ± 6 157 ± 6 125 ± 7 156 ± 6 145 ± 12 222 ± 10 265 ± 33 539 ± 13 503 ± 14 579 ± 40 1050 ± 229

U 3  (nJ) 100 6.59 ± 0.29 8.03 ± 0.27 10.9 ± 0.4 6.10 ± 0.24 10.8 ± 0.3 8.26 ± 0.92 17.7 ± 0.7 20.1 ± 1.5 47.3 ± 0.4 41.6 ± 0.6 50.60 ± 5.09 131.8 ± 22.3

90 6.01 ± 0.49 6.89 ± 0.36 9.24 ± 0.58 5.59 ± 0.16 9.47 ± 0.26 7.55 ± 0.66 14.9 ± 0.7 17.4 ± 1.0 40.1 ± 0.4 35.1 ± 0.5 40.70 ± 2.89 101.5 ± 18.8

80 4.57 ± 0.17 5.77 ± 0.32 7.75 ± 0.24 4.88 ± 0.15 8.09 ± 0.29 6.65 ± 0.59 12.4 ± 0.8 14.4 ± 1.1 33.9 ± 0.3 29.5 ± 0.7 36.30 ± 2.93 92.8 ± 14.0

70 3.49 ± 0.21 3.92 ± 0.19 5.97 ± 0.18 4.01 ± 0.08 6.55 ± 0.17 5.16 ± 0.43 9.89 ± 0.25 11.0 ± 0.9 28.0 ± 0.2 24.6 ± 0.4 28.60 ± 2.07 73.5 ± 11.2

60 2.91 ± 0.20 3.60 ± 0.16 5.48 ± 0.31 2.56 ± 0.13 5.00 ± 0.10 3.96 ± 0.49 7.96 ± 0.19 8.30 ± 0.82 22.1 ± 0.1 19.2 ± 0.4 22.8 ± 1.9 53.0 ± 12.0

50 1.87 ± 0.14 2.36 ± 0.12 3.64 ± 0.11 2.17 ± 0.15 3.80 ± 0.11 2.97 ± 0.35 5.78 ± 0.36 6.81 ± 0.53 16.4 ± 0.3 14.5 ± 0.2 16.9 ± 1.8 36.0 ± 5.8

40 1.54 ± 0.14 1.93 ± 0.07 3.00 ± 0.20 1.66 ± 0.05 2.66 ± 0.07 2.04 ± 0.22 4.00 ± 0.11 4.62 ± 0.53 12.1 ± 0.1 10.4 ± 0.2 11.8 ± 0.7 25.3 ± 3.9

30 0.94 ± 0.08 1.16 ± 0.09 1.67 ± 0.04 1.04 ± 0.07 1.69 ± 0.06 1.33 ± 0.15 2.51 ± 0.08 3.16 ± 0.31 7.72 ± 0.06 6.64 ± 0.17 7.33 ± 0.56 15.9 ± 3.6

D r  (nm) 100 182 ± 12 227 ± 16 299 ± 8 243 ± 8 298 ± 10 270 ± 21 454 ± 15 521 ± 41 981 ± 25 897 ± 16 1256 ± 86 2760 ± 386

90 177 ± 10 210 ± 10 276 ± 11 236 ± 9 286 ± 10 258 ± 23 428 ± 16 515 ± 35 924 ± 18 810 ± 16 1157 ± 51 2422 ± 392

80 156 ± 7 190 ± 11 265 ± 8 221 ± 8 270 ± 9 254 ± 21 411 ± 19 466 ± 37 869 ± 12 774 ± 20 1107 ± 96 2219 ± 401

70 145 ± 10 173 ± 11 244 ± 7 209 ± 6 247 ± 8 231 ± 16 373 ± 36 424 ± 36 819 ± 15 757 ± 13 975 ± 73 1986 ± 287

60 131 ± 6 162 ± 10 223 ± 10 175 ± 6 224 ± 7 220 ± 14 342 ± 11 394 ± 41 754 ± 12 665 ± 21 942 ± 45 1881 ± 373

50 113 ± 10 140 ± 11 201 ± 5 161 ± 7 207 ± 8 197 ± 15 297 ± 22 363 ± 28 651 ± 18 617 ± 14 785 ± 61 1584 ± 203

40 105 ± 7 130 ± 10 177 ± 10 146 ± 7 180 ± 8 168 ± 11 263 ± 11 297 ± 32 576 ± 13 540 ± 14 722 ± 57 1282 ± 257

30 87 ± 5 110 ± 5 152 ± 6 122 ± 7 151 ± 5 140 ± 11 218 ± 10 252 ± 32 480 ± 13 469 ± 13 556 ± 41 1002 ± 214

U r  (nJ) 100 6.00 ± 0.26 7.50 ± 0.20 10.2 ± 0.4 5.97 ± 0.14 10.2 ± 0.2 7.98 ± 0.78 16.5 ± 0.6 17.9 ± 1.3 36.9 ± 0.3 35.4 ± 0.5 47.42 ± 4.83 120.8 ± 20.2

90 5.44 ± 0.32 6.45 ± 0.25 8.51 ± 0.41 5.37 ± 0.15 8.84 ± 0.21 6.85 ± 0.56 14.0 ± 0.5 15.5 ± 0.9 31.3 ± 0.3 29.9 ± 0.5 37.74 ± 2.93 93.0 ± 17.4

80 4.18 ± 0.16 5.32 ± 0.22 7.12 ± 0.19 4.47 ± 0.11 7.49 ± 0.21 5.95 ± 0.51 11.7 ± 0.3 12.8 ± 1.0 26.4 ± 0.2 25.1 ± 0.6 34.11 ± 3.19 84.6 ± 12.7

70 3.24 ± 0.14 3.88 ± 0.14 5.64 ± 0.13 3.66 ± 0.09 6.03 ± 0.14 4.61 ± 0.38 9.24 ± 0.19 9.96 ± 0.79 21.7 ± 0.2 20.9 ± 0.4 26.4 ± 2.1 67.3 ± 10.7

60 2.64 ± 0.13 3.34 ± 0.13 4.89 ± 0.27 2.54 ± 0.13 4.54 ± 0.11 3.68 ± 0.40 7.39 ± 0.15 7.93 ± 0.76 17.1 ± 0.1 16.3 ± 0.4 21.3 ± 2.0 48.0 ± 10.8

50 1.82 ± 0.12 2.32 ± 0.09 3.36 ± 0.08 2.02 ± 0.09 3.44 ± 0.09 2.71 ± 0.31 5.44 ± 0.31 6.12 ± 0.48 12.8 ± 0.2 12.3 ± 0.2 15.5 ± 1.9 32.9 ± 5.3

40 1.39 ± 0.10 1.75 ± 0.05 2.65 ± 0.16 1.47 ± 0.09 2.41 ± 0.06 1.84 ± 0.19 3.81 ± 0.09 4.21 ± 0.46 9.32 ± 0.06 8.82 ± 0.22 10.8 ± 0.8 22.8 ± 3.3

30 0.85 ± 0.05 1.06 ± 0.05 1.54 ± 0.04 0.94 ± 0.07 1.52 ± 0.04 1.20 ± 0.13 2.38 ± 0.07 2.78 ± 0.28 5.97 ± 0.04 5.62 ± 0.14 6.64 ± 0.65 14.5 ± 3.2

Calcite GypsumCorundum TalcTopaz Tourmaline Quartz Forsterite Orthoclase Apatite Apophyllite Fluorite



Pmax  (mN) 30 40 50 60 70 80 90 100

slope 1.2 1.2 1.2 1.1 1.2 1.2 1.1 1.1



Fig. 1. Loop energy (parallelogram) 



Fig. 2. Loop energy (parallelogram) 



Fig. 3. Loop energy (parallelogram)
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Fig. 4. Loop energy (parallelogram)
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Fig. 5. Loop energy (parallelogram)



Fig. 6. Loop energy (Parallelogram)



Fig. 7. Loop energy (parallelogram)


