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ABSTRACT
Amorphous materials of homogeneous structures usually suffer from nonuniform deformation under shear, which can develop
into shear localization and eventually destructive shear band. One approach to tackle this issue is to introduce an inhomogeneous
structure containing more than one phase, which can reduce the local nonuniform shear deformation and hinder its percola-
tion throughout the system. Using thermostated molecular dynamics (MD) simulations, we compare the deformation behavior
between a homogeneous amorphous mixture of bidisperse disc particles, interacting via an n − 6 Lennard-Jones potential of
tunable softness, with an inhomogeneous one containing an evenly-distributed ordered phase. We change the population ratio
of large to small particles to create a homogeneous or an inhomogeneous mixture, where the softness of a chosen phase can be
manually adjusted by specifying n of the interparticle potential. Results of applying extensive quasistatic shear on the prepared
mixtures reveal that the inhomogeneous amorphous mixture containing a soft ordered phase overall deforms more uniformly
than the homogeneous one, which indicates that both the structure inhomogeneity and the inter-phase softness variance play
important roles in enhancing the uniformity of the plastic deformation under shear.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5064499

I. INTRODUCTION

Homogeneous amorphous materials such as bulk metallic
glasses are known for exhibiting superior mechanical prop-
erties than their crystalline siblings. However, a significant
disadvantage of amorphous materials is their low ductility,
due to nonuniform shear deformation, which causes prema-
ture and unpredictable failure and greatly limits their indus-
trial applications.1,2 Recently, introducing an ordered phase
into an amorphous material to make the engineered structure
inhomogeneous have been shown to improve their mechanical

properties, for example, embedding an isolated and soft crys-
tal phase containing dendrites in a bulk metallic glass matrix
to enhance tensile ductility,3–8 and distributing polycrystalline
metallic alloys within amorphous shells to raise mechanical
strength and restrict shear localization.9

In this study, we propose a mesoscale model of mix-
ing 2D bidisperse disc particles to study the shear defor-
mation behavior of an amorphous configuration containing
an ordered phase using molecular dynamics (MD) simula-
tions. In our model of 2D amorphous materials, we prepare
a homogeneous or an inhomogeneous amorphous/ordered
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configuration by mixing 50 − 50 or 90 − 10 small and large
12 − 6 Lennard-Jones (LJ) disc particles, which allows the sys-
tem to form an amorphous or a partially amorphous struc-
ture under thermal equilibrium.10,11 We set the interparticle
interaction to be Lennard-Jones for the potential has long
been used to study amorphous materials including metal-
lic glasses.12–14 We then identify particles in the amorphous
phase or the ordered phase based on the values of their dis-
order parameter. We alter the strength of a chosen phase
by assigning the particles belonging to it proper interparti-
cle softness, using an n − 6 Lennard-Jones (LJ) potential.15 We
choose n = 8 to make particles in the ordered phase softer
than those in the amorphous phase. Finally, we apply qua-
sistatic shear on the prepared configurations and calculate the
uniformity of their deformation under extensive shear.

We investigated the difference in shear deformation
between a homogeneous and an inhomogeneous configu-
rations and demonstrate that an inhomogeneous configu-
ration favors more uniform shear deformation due to the
spatial and strength heterogeneity between the two phases.
Specifically, our model shows that introducing an ordered
phase into an amorphous phase helps the inhomogeneous
system deform more uniformly under shear than a homoge-
neous single-phased system when the applied shear strain
is small. For large shear strain, the difference in softness
between the two phases also plays an important role to
further enhance the uniform plastic deformation. Our MD
simulation results offer evidence supporting the improved
ductility in mesoscale reported in experiments of amorphous
materials.3–9

Below we elaborate on the 2D model of amorphous mate-
rials and the MD simulation methods in section II, followed
by quantitative results of comparing the deformation behav-
ior of homogeneous and inhomogeneous configurations under
quasistatic shear in section III. We conclude our study in
section IV.

II. NUMERICAL SIMULATION METHOD
Our MD method includes two parts: 1) generating a homo-

geneous or inhomogeneous initial amorphous configuration
and 2) applying quasistatic shear on it. To create an initial
configuration, we first pick up an equilibrium configuration
in a liquid state where particles interacting via the 12 − 6
LJ potential and cool it down to a solid temperature. Here
temperature is defined as the total kinetic energy divided
by degrees of freedom of the system. Then we assign parti-
cles different softness according to their disorder parameter
and prepare boundary particles. Finally, we relax the config-
uration sandwiched by the boundary particles at the same
solid temperature. To test the deformation uniformity of the
prepared initial configuration, we apply quasistatic shear by
moving the boundary particles stepwise followed by ther-
mostated relaxation and calculate the average deviation of
uniform deformation of the sheared configuration. For each
system setup, we use at least ten independent initial con-
ditions to obtain the averaged results. The details are given
below.

A. Preparation of an initial configuration
1. System geometry

Our system is a mixture of total N = Ns + Nl circular
particles interacting via the finite-range, pairwise-additive LJ
potential. Specifically, it contains Ns small particles of diame-
ter ds and Nl large particles of diameter dl, with the diameter
ratio r = 1.4 to avoid artificial crystallization in 2D. We use
N = 1000 throughout this study. The masses of the small par-
ticles ms and the large particles ml are identical. The system
occupies a square simulation box of size L on the xy-plane,
where x is the horizontal axis and y is the vertical one. For a
given particle number N and particle diameters ds and dl, the
box size is determined from the condition that the configura-
tion has a fixed area packing fraction φ = 0.793 or soft-core
packing fraction of LJ potential φs = 1.0. where φ and φs are
defined as

φs = π


Ns

(
21/6ds

2

)2

+ Nl

(
21/6dl

2

)2

/
L2 = 21/3φ. (1)

The value 21/6ds or 21/6dl is where the 12 − 6 LJ potential
reaches its minimal, detailed below.

2. Interparticle Lennard-Jones potential
We choose the finite-range, pairwise additive LJ potential

to build our amorphous model for it has been widely used to
study amorphous systems.12–14 To create a softness difference
between the amorphous and ordered phases in an inhomoge-
neous amorphous configuration, we choose a tunable n − 6 LJ
potential15

Vn−6
LJ (rij) =


4ε*

,
λ(

dij
rij

)
n

− α(
dij
rij

)
6

+
-
− cij


Θ(

rcut
rij
− 1), (2)

where ε is the characteristic energy scale, λ = 3
2 [2(n/6)/(n − 6)],

α = n/[2(n − 6)], rij is the separation between particles i and
j, dij = 1

2 (di + dj) is their average diameter, cij = 4ε [λ(dij/rcut)n

− α(dij/rcut)6] is a constant that guarantees Vn−6
LJ (rij) → 0 as

rij → rcut, and Θ(x) is the Heaviside step function. We use rcut
= 3.2ds, where ds is the diameter of small particles and n = 8
for the soft V8−6

LJ LJ potential or n = 12 for the well-known stiff
V12−6
LJ LJ potential.

3. Tuning inhomogeneity and softness
The whole process of preparing a homogeneous or inho-

mogeneous initial configuration for our amorphous model can
be summarized as follows. We (a) create a randomly packed
initial configuration of circular particles without interparti-
cle overlap; (b) equilibrate the system at a liquid temperature
Tl to relax it; (c) pick up a relaxed liquid configuration
and equilibrate it again at a lower solid temperature Ts;
(d) attach boundary particles to the relaxed solid configu-
ration and reassign the interparticle interactions of all par-
ticles based on the value of their disorder parameters; (e)
equilibrate the sandwiched solid configuration one last time
at T = Ts.

The MD simulations in this study use the diameter ds and
mass ms of the small particles and the interparticle potential
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amplitude ε as the reference length, mass, and energy scales.
Mass ml of the large particles is the same as ms. As a result,
the unit of time t is ds

√
ms/ε . We control the temperature T of

this system using the Nóse-Hoover thermostat with a thermo-
stat moment of inertia Q.16,17 Here temperature T is defined
as the total kinetic energy

∑N
i=1 miv

2
i /2 divided by degrees of

freedom of the system and measured in units of ε/kB, where
mi and vi are the mass and velocity of particle i, and kB is the
Boltzmann’s constant. Degrees of freedom of the system is 2N
− 2 or 2N − 1 for periodic boundary conditions in both x and
y directions or only in the x direction. To closely compare
our results with those in the literature,10,11,18,19 we set T = Tl
= 2.0 and T = Ts = 0.2 to study the system in a liquid state or a
solid state, respectively. The unit of Q is msd2

s . The Newtonian
equations of motion of a N particle system excluding bound-
ary particles if any are integrated using the velocity Verlet
algorithm.20

We perform a thermostated relaxation of the system
excluding boundary particles after generating a random
non-overlapped initial configuration and whenever making
changes in the simulation temperature, introducing boundary
particles or reassigning properties of particles for the pairwise
n − 6 LJ interparticle interactions. The relaxation of a ran-
dom initial configuration at T = Tl also erases any beginning
memory from the system. We terminate the relaxation pro-
cess when the temperature fluctuation decays to within ± 5%
of the required temperature.

It is known that by mixing bidisperse 2D particles with
the population ratio c = Nl/N increasing from 0 to 0.5, we can
create structure from a single-crystal, a partially-amorphous
(polycrystal) structure to an amorphous structure.10,11 To cre-
ate a inhomogeneous amorphous configuration containing an
ordered phase, we choose a partially-amorphous structure
using c = 0.1 and N = 1000.

After generating a random initial configuration (see the
Appendix for the implementing details), we equilibrate it at
T = Tl. We then bring the temperature down to Ts within a
time interval ∆t = 105 to equilibrium the system again with
periodic boundary conditions in both x and y directions and
Q = 40.0. Using the relaxed configuration at T = Ts, we calcu-
late the disorder parameter Dj of particle j defined as10,11,21–24

Dj = 2
Nb∑
k=1

[1 − cos 6(βj − βk)], (3)

where βj is a local crystalline angle introduced by e6iβj

=
∑Nb

k=1 e
6iθjk/

���
∑Nb

k=1 e
6iθjk ���, i is the imaginary unit

√
−1 and θ jk is

the angle between the separation vector ⇀
r j −

⇀
r k of particle

j and its bonded neighboring particle k and the horizontal x
axis. Particle k is considered bonded to particle j as long as
����
⇀
r j −

⇀
r k

���� ≤ 1.5djk.11 The summation runs over all Nb bonded

neighboring particles k of particle j. The value of Dj is zero if
particle j and its bonded neighbors form an ordered perfect
hexagonal structure and increases if the structure becomes
more disordered.

Fig. 1(a) shows an equilibrated fully-amorphous configu-
ration of c = 0.5 at T = Ts, where particles are colored from blue

FIG. 1. (a) A snapshot of an equilibrated configuration of N = 1000 and c = 0.5 at
T = Ts. Particles are colored in shades from blue to red with increasing value of
log10(Di). The color scale is divided evenly between the minimal and maximal dis-
order parameters, log10(Dmin

i ) ≈ −1.303 and log10(Dmax
i ) ≈ 1.364, specific

to the shown configuration. Boundary particles are in black. (b) Averaged value
of the disorder parameter of bonded neighbors of particle i of disorder parameter
value Di . The inset shows the probability density distribution of Di , with the same
horizontal axis and each curve equally normalized by N. The vertical dashed line
shows a threshold Dt = 0.5, separating ordered and disordered particles in this
study. The data are obtained using ten relaxed configurations, where the results of
small (S: purple) and large (L: green) particles are plotted separately. Notice the
total area below the two curves is one.

to red with increasing log10(Di). Fig. 1(b) shows a weak positive
correlation between Di of particle i and the average D̄bonded

i of
the same quantity of its bonded neighbors, obtained by aver-
aging ten relaxed initial conditions. We can see that particle
i can have ordered or disordered neighbors regardless of its
Di. The figure shows two curves of D̄bonded

i , for small or large
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particles, respectively. If we plot the probability density func-
tion P(Di) of particle i for small and large particles separately,
as shown in the inset of Fig. 1(b), we can see quantitatively that
almost all particles are very disordered with Di > 0.5, showing
the configuration is indeed amorphous.

Similarly, Fig. 2 shows an equilibrated partially-amorphous
configuration of c = 0.1 at T = Ts. We can observe in Fig. 2(a)
that a majority of large particles are disordered and form the
amorphous phase separating ordered islands made of small
particles. The most ordered small particles form the cores of
the ordered islands surrounded by less ordered particles. The
degree of disorder of particles increases monotonically as a
function of the distance measured from the ordered cores.

FIG. 2. (a) and (b) show the same quantities as (a) and (b) of Fig. 1, respectively,
except c = 0.10. The color scale in (a) has a lower minimal and a similar max-
imal disorder parameters, log10(Dmin

i ) ≈ −2.012 and log10(Dmax
i ) ≈ 1.411,

compared with those in Fig. 1(a).

Contrary to Fig. 1(b), Fig. 2(b) shows a strong positive cor-
relation between Di of particle i and its D̄bonded

i , also using
ten relaxed initial conditions. We can clearly see that very
ordered particles tend to have ordered neighbors, but highly
disordered particles tend to have equally disordered neigh-
bors, which gives the two curves positive slopes close to unity.
Moreover, in the inset of Fig. 2(b), we can see quantitatively
that almost all large particles are very disordered with Di > 0.5,
while only about half small particles are in a similar disordered
status.

The insets of Fig. 1 and Fig. 2 disclose the basic principle of
how to build an homogeneous or inhomogeneous amorphous
structure out of a mixture of small and large particles in this
study: in a fully-amorphous configuration, all most all particles
have their Di > Dt, where Dt = 0.5 is a threshold disorder value
used in this study. On the other hand, in a partially-amorphous
configuration, we can use Di < Dt to identify ordered parti-
cles, which form an ordered phase, and the rest particles form
an amorphous phase. Of the ten initial configurations used in
this study, the average number of ordered particles is 0.4406N.
The amorphous phases in homogeneous and inhomogeneous
configurations are similar in terms of their disorder parameter
distributions.

For an inhomogeneous amorphous configuration, we
assign the soft interparticle V8−6

LJ potential to the interaction
between two ordered particles of Di ≤ Dt. We assign the same
soft V8−6

LJ potential to the interaction between an ordered par-
ticle of Di ≤ Dt and a disordered particle of Di > Dt, hap-
pening at the interface between the ordered and amorphous
phases. Moreover, the stiff interparticle V12−6

LJ potential gov-
erns the interaction between two disordered particles of Di
> Dt. Finally, the interaction between an ordered or disor-
dered particle and a boundary particle is controlled by the
same stiff V12−6

LJ potential. The boundary particles are image
particles created using the periodic boundary condition in the
vertical y axis. We keep enough image particles so that the
top and bottom boundaries have thickness equals rcut = 3.2ds,
and the total number of top or bottom boundary particles is
about 3.2ds

√
N. Boundary particles are not thermostated, and

we relax the prepared system sandwiched by boundary par-
ticles at T = Ts again with periodic boundary condition in
the horizontal x direction and Q = 0.01 before using it for
the quasistatic shear tests. We observe only slight local posi-
tion variation but no large-scale rearrangement of particles in
the amorphous or ordered phase of the relaxed configuration.
Two equilibrated snapshots of exemplary inhomogeneous and
homogeneous amorphous configurations and the rules for
interparticle interactions are shown in Fig. 3, where parti-
cles in soft-ordered and stiff-amorphous phases are colored
in green and orange, respectively.

B. Quasistatic shear deformation
We apply quasistatic shear strain on the prepared homo-

geneous and inhomogeneous amorphous configurations to
test their plastic deformation behavior. To do this, at each
step of the quasistatic shear, we shift the x position of each
top and bottom boundary particle by a small amount of 0.01L

AIP Advances 9, 015329 (2019); doi: 10.1063/1.5064499 9, 015329-4

© Author(s) 2019

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 3. The n − 6 LJ interparticle potential used in the 2D model of amorphous
materials, shown in (a). The interaction between a soft ordered (green) particle
and another soft ordered or stiff disordered (orange) particle is the soft V8−6

LJ LJ
potential. The interaction between two stiff disordered particles or with a bound-
ary particle (black) is the stiff V12−6

LJ LJ potential. Exemplary snapshots of an
inhomogeneous and a homogeneous configurations are shown in (b1) and (b2),
respectively.

and −0.01L, respectively. The system heats up due to the
work from an increment of shear strain γ of the system by
0.02 in the quasistatic shear deformation, which is about two-
third of the shear strain of shifting a single boundary parti-
cle by its own size. Using a dimensionless MD time step dt
= 0.001 and the periodic boundary condition in the horizon-
tal x direction, we relax the system at temperature Ts with
the Nóse-Hoover thermostat of Q = 0.01 integrated by the
velocity Verlet algorithm until the standard deviation of tem-
perature T, periodically calculated within a time interval of 2,
500 MD steps, decays to smaller than 0.03, which corresponds
to a temperature fluctuation within ±5% of the assigned tem-
perature. Boundary particles are not thermostated and their
positions stay fixed during the relaxation process. The ther-
mostated system quickly dissipates the sudden temperature

FIG. 4. A sudden increase in temperature T and its fluctuation, as a function of
time t, corresponding to an increment of shear strain γ of the system by 0.02 in
the quasistatic shear deformation. The quasistatic shear is done by evenly shifting
the top and bottom boundary particles, within a thickness of rcut , to the opposite
directions, respectively. The perturbed temperature decays quickly to the desired
value Td = Ts within the observation time interval.

increase after each quasistatic shear deformation. We have
checked our simulation results carefully and made sure there
is no significant particle rearrangement that can change the
configurational structure of the system substantially per qua-
sistatic shear deformation. Fig. 4 demonstrates the decay of
temperature fluctuation while applying this process on an
exemplary inhomogeneous configuration. We repeat the two
steps of shifting boundary particles and relaxation of the
system at Ts until a prescribed value of shear strain γ is
reached.

III. ANALYSIS OF THE UNIFORMITY OF DEFORMATION
UNDER QUASISTATIC SHEAR

As mentioned in the Introduction, we expect that an inho-
mogeneous amorphous configuration allows the system to
shear more uniformly than a homogeneous one for the lat-
ter lack of the inhomogeneity of two phases with different
softness to deter the emergence of shear localization. To mea-
sure the uniformity of shear deformation quantitatively, we
calculate the deviation of uniform shear deformation Lσ that
measures how far a sheared configuration at a given strain γ
is away from its completely uniformly deformed counterpart,
defined as

Lσ (γ) =

√√√∑m
i=1 [x̄i(γ)���y∈[ yi(γ)−∆/2,yi(γ)+∆/2]

− xi(γ)]
2

m
, (4)

where xi and yi are calculated positions of the idealized uni-
form deformation profile, evenly divided into m equal-sized
stripes, ∆ is the width of each stripe, and x̄i is the averaged x
positions of particles whose y positions located within yi − ∆2
and yi + ∆2 of stripe i. To make sure that the choice of m has no
influence on our conclusion, we have tried m = 5, 10, 20, 30, 40
and 50 and found that the values of Lσ stay unchanged within
negligible fluctuations. We therefore use m = 10 throughout
our analysis and ten trials with different initial conditions
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to calculate an averaged L̄σ as a function of γ, as shown in
Fig. 5(a).

Our amorphous model with tunable inhomogeneity allows
us to compare the effects of introducing an inhomogeneous
configuration and creating a softness difference between the

FIG. 5. (a) The definition of the deviation of uniform deformation Lσ which mea-
sures the difference between the averaged x positions of m = 10 sliced sections
(connected green line), each with an identical thickness ∆, of a given configuration
and the x positions of its calculated counterpart from the idealized uniformly-
deformed profile (black line). (b) Averaged Lσ of homogeneous configurations
(red) and inhomogeneous configurations without softness inhomogeneity (black).
In the inset, particles that are more ordered of an inhomogeneous configuration are
semi-transparent. (c) Averaged Lσ of the same homogeneous configurations (red)
and the same inhomogeneous configurations except with softness inhomogeneity
(blue). In the insets, the stiff and soft phases are colored in orange and green,
respectively. For each case, the results are obtained using ten initial configurations.

two phases in the inhomogeneous configuration on the uni-
formity of shear deformation independently. We proceed
with our investigation by two stages. First, to test the effect
of introducing the inhomogeneous configuration, we com-
pare the shear deformation behavior between an amorphous
homogeneous configuration and a partially-amorphous inho-
mogeneous configuration, where the interparticle interac-
tions are V12−6

LJ LJ potential in both cases. The results of the
comparison is shown in Fig. 5(b). We can see clearly that intro-
ducing a configurational inhomogeneity effectively reduces
nonuniform deformation when strain γ is smaller than about
0.2. When sheared further, the inhomogeneous configuration
gradually loses to the homogeneous one.

Second, we incorporate the softness difference between
the two phases of the inhomogeneous configuration, where
now ordered particles interacting with another ordered or
disordered particles via the soft V8−6

LJ LJ potential, and com-
pare it with the homogeneous one as in the first stage. The
results are shown in Fig. 5(c). Strikingly, the tuned inhomo-
geneous configuration deforms even more uniformly (smaller
averaged Lσ ) than the homogeneous one until the shear strain
γ reaches about 0.5.

FIG. 6. Averaged Lσ as in Fig. 5(b) and (c), except the results are obtained using
fifty initial configurations for both cases.
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Due to the large error bars in Fig. 5(b) and (c), we further
verify the results using five times more initial configurations
to verify the reliability of the observed trends. We confirm the
trends stay the same and therefore saturate the data, as shown
in Fig. 6.

To get a better insight into the deformation mechanism
under shear of the homogeneous and inhomogeneous con-
figurations, we calculate their per-particle von Mises stress,
which is the deviatoric part of the stress tensor, defined

as σVM
i =

√
(σxx

i )2 + (σyy
i )

2
− σxx

i σ
yy
i + 3(σxy

i )
2

in 2D, where σab
i

= −[miv
a
i v

b
i +

∑Np

j=1
1
2 r

a
ij f

b
ij] for particle i influenced by Np neigh-

bors within rcut via the n − 6 Lennard-Jones potential, fij is
the force acting on particle i from its neighbor j, and a, b
∈ [x, y].25 The results are shown in Fig. 7. We observe that in a
inhomogeneous configuration, particles subject to high σV M

shear stress mostly distribute within the amorphous phase,
and the isolated soft-ordered phase disperses them so that
they cannot coordinate to percolate through the whole system
easily.

FIG. 7. Snapshots of an equilibrated (a1) homogeneous and (b1) inhomogeneous
configurations of N = 1000 at T = Ts and γ = 0.02, colored by particle types
(soft ordered: green; stiff disordered: orange) defined in the initial conditions. c
= 0.1 for the inhomogeneous configuration. Particles are colored in shades from
blue to red with increasing value of the von Mises stress σV M in (a2) and (b2)
correspondingly. The color scale is relative to the minimal and maximal von Mises
stresses σVM

min and σVM
max in each system.

FIG. 8. Snapshots of sheared homogeneous (a1) and inhomogeneous (a2) con-
figurations at γ = 0.46, colored by particle types (soft ordered: green; stiff disor-
dered: orange). Particles of the homogeneous and inhomogeneous configurations
are colored by the disorder parameter Di in (b1) with log10(Dmin

i ) ≈ −1.544
and log10(Dmax

i ) ≈ 1.367, and in (b2) with log10(Dmin
i ) ≈ −2.179 and

log10(Dmax
i ) ≈ 1.369, respectively. The Dmin

i and Dmax
i are specific to the

corresponding configuration. (c1) and (c2) show particles colored by D2
min with a

sampling radius of 1.49ds and a reference configuration at γ = 0.04 after elimi-
nating homogeneous cell deformation. The color scale is evenly divided between
min(D2

min) = 0 and max(D2
min) = 15, and particles having D2

min ≥

max(D2
min) (homogeneous: 6.9%; inhomogeneous: 4.2%) are colored by the

darkest red. L̄σ of the homogeneous (dotted red) and inhomogeneous (dotted
blue) configurations within γ = [0.04, 0.46] is shown in (d), having the averaged
L̄σ in Fig. 5(c) for reference. The corresponding probability density distribution
P(log10(D2

min)), with max(D2
min) indicated by the dashed line, is shown in (e).
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Furthermore, we also calculate the local deviation from
affine deformation, D2

min, which identifies local irreversible
particle shuffling in unit of d2

s .26 We demonstrate a com-
parison of D2

min between exemplary homogeneous and inho-
mogeneous configurations during the quasistatic shear strain
interval γ = [0.04, 0.46], as shown in Fig. 8. Both systems
have similar probability density distribution P(log10(D2

min)) and
a similar amount of particles are subject to irreversible shear
deformations equal or greater than the same max(D2

min) at
γ = 0.46. In the figure, we can see clearly that particles with
large D2

min concentrate on one side in the homogeneous sys-
tem, responsible for the higher nonuniform deformation. On
the other hand, similar particles are mostly distributed evenly
within the amorphous phase, and the intermediate ordered
phase hinders their percolation, which enhances the uniform
deformation. Our calculations of σVM

i and D2
min offer clear

evidence that an inhomogeneous amorphous configuration
can effectively deter nonuniform shear deformation than a
homogeneous one.

IV. CONCLUSIONS
In this study, we propose a 2D mixture of bidisperse par-

ticles to study the deformation behavior of homogeneous and
inhomogeneous amorphous materials. A configuration mod-
eling homogeneous amorphous materials is made of 50 − 50
small and large particles. On the other hand, Our mesoscale
model of inhomogeneous amorphous materials distributes
large circular particles in a sea of small particles with a 1:9 pop-
ulation ratio. In the inhomogeneous model, about half (≈44%)
small particles form an isolated and ordered phase. On the
other hand, most large particles and the remaining half small
particles together form an amorphous phase filling the space
in between the ordered phase. To give the ordered or the
amorphous phase proper mechanical softness as proposed in
experiments on amorphous materials to improve their duc-
tility, we introduce a tunable n − 6 LJ potential. A particle
in the soft-ordered phase interacts with another particle via
the 8 − 6 LJ potential. Two disordered particles interact with
each other via the stiff 12 − 6 LJ potential. We apply qua-
sistatic shear on the homogeneous and inhomogeneous con-
figurations by repeatedly moving the boundary particles with
a stepwise shear strain of 0.02, followed by thermostated
relaxation.

Our simulation results show that when the applied shear
strain γ is small, the configurational inhomogeneity between
the two phases in an inhomogeneous structure alone works
well to improve uniform deformation. However, with increas-
ing the shear deformation further, the difference in softness
between the two phases plays an essential role to enhance
the uniform shear behavior. In general, the inhomogeneous
configurations deform more uniformly than the homogeneous
ones. Our simplified model offers clear numerical evidence
supporting the experimental results and could open a new
quantitative approach to systematically improving the duc-
tility of inhomogeneous amorphous materials including an
ordered phase. For the future work, we will examine a hard
ordered phase embedded in a soft disordered matrix and

explore the optimal ordered/disordered area ratio that gives
the best deformation uniformity, which will give a more com-
plete picture of this study.
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APPENDIX: GENERATING A RANDOMLY PACKED
CONFIGURATION OF PARTICLES

When conducting MD simulation in a liquid state, we
start with an initial configuration at φ = 0.793 without over-
lap between particles. Practically, it is very difficult to gen-
erate such random initial configuration using a completely
random process which places particles one by one. To avoid
this issue, we first generate a mechanically stable (MS) pack-
ing of frictionless particles interacting via the finite-range
pairwise-additive repulsive spring potential at area packing
fraction φ = 0.84 (φs = 1.06), close to random-close packing
density in 2D.

The MS packing of particles is generated using the proce-
dure detailed in Ref. 27. We start with a sparse initial configu-
ration, and the procedure increases the sizes of the particles
followed by energy minimization to remove overlap between
particles. Periodic boundary conditions are implemented in
both x and y directions. Occasionally, particles have to be
shrunk if the energy minimization procedure fails to remove
interparticle overlap. We repeat the two steps of particle
size perturbation and energy minimization until all particles
are force-balanced with their neighbors, and any attempt to
increase particle size will result in an increase of the total
energy of the system.

We then decrease φ from about 0.84 (φs = 1.06) to 0.793
(φs = 1.0) manually and run the thermostated MD simulation at
T = Tl. Since the system is in a liquid state, it will soon forget it
was from an MS state as long as it is fully relaxed.
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