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1 Introduction

The 1/N expansion [2] is a quite powerful technique in matrix models, and it makes us

possible to analyze the models in the non-perturbative regime. Not only that, in string

theories, this expansion may correspond to the perturbative expansion of the string cou-

pling [3–10], and it might play important role to reveal quantum gravity. Particularly, in

the last decade, the analysis of the large-N Chern-Simons (CS) matrix models has been

developed quite remarkably. (See [11, 12] for reviews.) The CS matrix models are ob-

tained via the localization of the three dimensional supersymmetric CS matter theories on

a sphere [13–17], which describe the low energy dynamics of the superstring theories and

M-theory, and, through these developments, various non-perturbative aspects of the string

theories have been revealed including the derivation of the N3/2 factor [18] of the free

energy in the N M2-brane theory [19–21]. These results provide us quite strong evidences

for the AdS/CFT correspondence [22–24].

In this article, we mainly investigate the U(N) pure CS matrix model [14, 25, 26]

among the various CS matrix models, since other models can be regarded as the variations

of this model and we can expect that the application to these other models might be

straightforward.
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The partition function of the pure CS matrix model is given by

Z(k,N) =
1

N !

∫ N∏
i=1

dui
2π

e−
N

4πiλ

∑
i u

2
i

N∏
i<j

[
2 sinh

ui − uj
2

]2

. (1.1)

Here k is the CS level and λ := N/k is the ’t Hooft coupling, and we will consider the

’t Hooft limit (N → ∞, λ: fixed) of this model. This partition function resembles the

Gaussian Hermitian matrix model. The difference appears only in the Vandermonde de-

terminant, but this simple difference provides quite rich structures in the CS matrix models.

It is known that we can compute this partition function exactly at arbitrary λ and

N [14, 27]. However, the ’t Hooft expansion of this model shows non-trivial properties

and it is still valuable to investigate them [28–32]. This is similar to the situations of the

Gaussian matrix model and the Gross-Witten-Wadia model [33, 34] which show non-trivial

behaviors at large-N [35–37], although we can calculate the partition functions exactly.

When we take the ’t Hooft limit, we can employ the saddle point approximation. The

saddle point equation of the partition function (1.1) with respect to ui is given by

ui =
2πiλ

N

N∑
j 6=i

coth
ui − uj

2
, (i = 1, · · · , N). (1.2)

The exact solution of this equation at finite λ which is characterized by a single cut of the

eigenvalue distribution is known [26, 28, 38]. This solution would be thermodynamically

stable, since the free energy agrees with that of the N → ∞ limit of the exact finite N

result [14, 27].

Then a question is whether this one-cut solution is unique or not. Surprisingly it turned

out that an infinite number of solutions are allowed in the saddle point equation (1.2),

which are characterized by the various multi-cuts [1, 39].1 See figure 1. These solutions

were first found by solving the saddle point equations numerically through the Newton

method [1, 39], which have been employed in [40–42]. Later analytic expressions for some

of the multi-cut solutions have been found by ref. [1].

The purpose of this article is to develop the studies of ref. [1], and provides ana-

lytic methods to treat all of these multi-cut solutions. We will show that an integral

formula (2.38) for the resolvent related to the method of Migdal [43] is quite useful. By

solving this integral formula either analytically or numerically, we will demonstrate that the

eigenvalue distributions of the multi-cut solutions obtained through the Newton method

shown in figure 1 can be reproduced. All types of the Newton method solutions as far

as we find may be explained by our formula, and we presume that our method might be

applicable to derive all possible solutions of the saddle point equation (1.2). (Hence the

formula (2.38) is the main result of this article.)

The obtained analytic results tell us curious properties of the multi-cut solutions. We

will see that there are two types of the multi-cuts in the pure CS matrix model. One is the

1One important question is whether these multi-cut solutions contribute to the path-integral. We do

not consider this issue in this article.
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Figure 1. Eigenvalue distributions of the pure CS matrix model. We numerically solve the saddle

point equation (1.2) via the Newton method.

cuts which are separated by a multiple of 2πi. We refer to such cuts as “stepwise multi-cuts”

in this article. (See figure 1.) Another type of the multi-cuts is the composition of the step-

wise multi-cut and one-cut (or another stepwise multi-cuts). We refer to them as “compos-

ite type”. We will show that, as the number of the composite type cuts increases, the genus

of the resolvent increases similar to the multi-cut solutions in the ordinary matrix models.

(Hence we need the higher genus generalizations of elliptic functions to describe the compos-

ite type multi-cuts.) On the other hand, the stepwise multi-cuts do not change the genus,2

while they cause additional logarithmic singularities at the end points of each step in the re-

solvent. These properties might capture the geometrical natures of the multi-cut solutions.

We also discuss that our methods will work in other CS matrix models, and we propose

a similar integral formula (3.15) for the resolvent of the ABJM matrix model as an example.

By using this formula, we will derive novel analytic solutions of the saddle point equation

of the ABJM matrix model.

Generally the various multi-cut solutions in a matrix model may describe the different

vacua of the system, and these vacua would affect the perturbative vacuum through the

instanton effects [44, 45]. Indeed the connection between the multi-cut solutions and the

D2-brane instantons in the ABJM matrix model [46, 47] was conjectured in ref. [1]. We will

2Although the resolvent of the stepwise multi-cut solution is not described by the higher genus general-

izations of elliptic functions, the free energy is suppressed by 1/N2 as usual [1].

– 3 –



J
H
E
P
0
8
(
2
0
1
8
)
1
6
8

develop this discussion and show a quantitative evidence for this connection. Besides we

comment on the relation to the membrane instanton in the pure CS matrix model [28, 29].

The organization of this article is as follows. In section 2, we show the derivation of

the multi-cut solutions in the pure CS matrix model. In section 3, we argue the multi-cut

solutions in the ABJM matrix model. We also consider the connection to the D2-brane

instantons. We conclude in section 4 with some future directions. In appendix A, we intro-

duce the derivation of the multi-cut solution via holomorphy in the pure CS matrix model.

This derivation is more powerful than the integral formula (2.38) in certain situations. In

appendix B, we discuss the issue of “negative steps”.

2 Multi-cut solutions in the pure CS matrix model

In this section, we will propose the integral formula (2.38) which provides us a method to

derive possible general solutions of the saddle point equation (1.2) including the various

multi-cut solutions shown in figure 1. Since the general solution will be characterized by

a bit complicated multi-cuts sketched in figure 8, we will first explain the derivations of

several simpler multi-cut solutions which will give us insights about the general solution.

In order to derive the multi-cut solutions, we will employ the resolvent. It is convenient

to introduce new variables Ui := exp (ui) and rewrite the saddle point equation (1.2) as3

logUi =
2πiλ

N

N∑
j 6=i

Ui + Uj
Ui − Uj

, (i = 1, · · · , N). (2.1)

Following [48, 49], we define the eigenvalue density ρ(Z) and resolvent v(Z)

ρ(Z) :=
1

N

N∑
i=1

δ(Z − Ui), v(Z) :=

∫
C
dWρ(W )

Z +W

Z −W , (2.2)

where C is the support of ρ(Z). Then the saddle point equation (2.1) becomes

V ′(Z) = lim
ε→0

[v(Z + iε) + v(Z − iε)] , (Z ∈ C), V ′(Z) :=
1

πiλ
logZ. (2.3)

Besides, the resolvent satisfies the boundary conditions

lim
Z→∞

v(Z) = 1, lim
Z→0

v(Z) = −1, (2.4)

through the definition (2.2). By using the resolvent, the eigenvalue density is described as

ρ(Z) = − 1

4πiZ
lim
ε→0

[v(Z + iε)− v(Z − iε)] , (Z ∈ C). (2.5)

In the following subsections, we will explore the solutions of the equation (2.3) which obey

the boundary conditions (2.4).

3If we use a new variable Ũi := Uie
−2πiλ, (2.1) becomes the saddle point equation of the Stieltjes-Wigert

matrix model [27]: 1

Ũi
log Ũi = 4πiλ

N

∑N
j 6=i

1

Ũi−Ũj
. The advantage of the Ui variable [48] is that it makes

equations symmetric under U → 1/U corresponding to the symmetry u→ −u in the original variable (1.1).

– 4 –
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2.1 One-cut solution

We review the derivation of the resolvent describing the one-cut solution shown in figure 1

(top-left) [26, 28, 38]. There are various derivations of this solution, and we employ the

integral method of Migdal [43] which is useful for finding the general solution later.

The potential V ′(Z) (2.3) has the unique extreme at Z = 1 (or z = 0 where z := logZ),

and the eigenvalues tend to be around there. Hence we assume that ρ(Z) has a single

support on the interval [A,B] near Z = 1, where A and B (|A| < |B|) will be fixed soon.

We apply the ansatz [43] for the solution of the saddle point equation (2.3) [38],

v(Z) =

∮
C1

dW

4πi

V ′(W )

Z −W

√
(Z −A)(Z −B)

(W −A)(W −B)
. (2.6)

Here the contour C1 encircles the support [A,B] counterclockwise.4 By performing this

integral,5 we obtain

v(Z) =
1

πiλ
log

(
f(Z)−

√
f2(Z)− 4Z

2

)
,

f(Z) = f0 + f1Z, f0 =
2
√
AB√

A+
√
B
, f1 =

2√
A+
√
B
. (2.7)

Then, through the boundary conditions (2.4), A and B are determined as

A = exp
(
−2 arccosh

(
eπiλ

))
, B = exp

(
2 arccosh

(
eπiλ

))
= 1/A. (2.8)

The eigenvalue density is obtained through (2.5),

ρ(Z) =
1

4π2λZ
log

(
Z +
√
AB − i

√
(Z −A)(Z −B)

Z +
√
AB + i

√
(Z −A)(Z −B)

)
, (Z ∈ [A,B]). (2.9)

We sketch the profile of this density in figure 2. In order to compare the obtained result

with the numerical result shown in figure 1, we rewrite our results by using the variable

z = logZ which corresponds to ui in (1.2). Correspondingly, A and B are mapped to

b = logB = 2 arccosh
(
eπiλ

)
, a = logA = −2 arccosh

(
eπiλ

)
, (2.10)

and they satisfy a = −b. (This is expected, since the system is symmetric under z → −z.)

See figure 2. This solution describes the numerically obtained one-cut solution shown

in figure 1.

Note that the resolvent in the z variable has the branch cuts on z ∈ [a+2πin, b+2πin],

(n ∈ Z), although the eigenvalues are distributed on z ∈ [a, b] only. These additional infinite

number of the cuts are related to the periodicity ui → ui+2πi of the right hand side of the

saddle point equation (1.2), and the equation of motion (2.3) is not satisfied there. In this

article, we refer to the solutions in which k mobs of the eigenvalues exist in the z plane as

“k-cut solution”, and do not count these additional cuts as “cuts”.

4We employ the script C for the closed contours and C for the supports in this article.
5To perform this integral, we deform the contour C1 so that it encloses the pole at W = Z and the

branch cut W ∈ [−∞, 0] of logW [50].
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A B
Z

1

ρ(Z) Im

Re

a

b
z

0

Figure 2. Schematic plot of the eigenvalue density ρ(Z) of the one-cut solution (2.9) and the

eigenvalue distribution on the z-plane. A,B and a, b are given in (2.10).

2.2 Stepwise two-cut solution

We consider the derivation of the stepwise two-cut solution [1] plotted in figure 1

(top-right).

Since the potential V ′(Z) (2.3) has only the single extreme at Z = 1, it might be dif-

ficult to imagine that the saddle point equation (2.3) allows such a two-cut solution. The

key is the periodicity ui → ui+2πi of the right hand side of the saddle point equation (1.2).

Thanks to this periodicity, strong interactions between the eigenvalues arise if they are sep-

arated by 2πi, and these interactions make the various solutions shown in figure 1 possible.

Before considering the N = ∞ case, we study the N = 2 case as an example [1, 39].

In this case, the saddle point equation (1.2) become

u1

2πiλ
=

1

2
coth

u1 − u2

2
,

u2

2πiλ
= −1

2
coth

u1 − u2

2
. (2.11)

By summing these two equations, we find u1 = −u2, and the equations reduce to

u1

2πiλ
=

1

2
cothu1. (2.12)

This equation indeed allows infinite number of solutions. At weak coupling |λ| � 1, we

can perturbatively obtain the solutions,

u1 = ±
√
πiλ+ · · · , u1 = πin+

λ

n
+ · · · , (2.13)

where n is a non-zero integer. The first solution would correspond to the one-cut solu-

tion (2.9) at large-N , while the second one indicates the existence of a new class of the

solutions. Particularly the second solution satisfies u1 − u2 = 2πin + O(λ), and they

are separated by 2πin. Thus, the periodicity of the right hand side of the saddle point

equation (1.2) causes the various solutions as we expected.

Let us move on the N =∞ case. To find the two-cut solution corresponding to the nu-

merical result shown in figure 1, we assume the two branch cuts [ai, bi] where Re(ai)≤Re(bi)

– 6 –
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Im

Re2πin

a1
b1

b2
a2

N1

N2

z W

B1A1 C1

B2A2 C20

0

−∞

−∞

C−∞ 0

-sheet

-sheet

-sheet0

n0

(n+ n0)

Figure 3. (Left) Sketch of the stepwise two-cut solution in the pure CS matrix model. The red

lines describe the eigenvalue distributions. (Right) Integral contours in the integral of the resolvent.

The doted lines denote the branch cuts of the integrand. The blue lines are the integral contour C1

and C2 in (2.16). The green line denotes the contour C in (2.18).

and Im(ai) ≤ Im(bi) (i = 1, 2) on the z-plane (z = logZ) satisfying6

a2 = b1 + 2πin. (2.14)

Here n is a positive integer. (We will argue why we restrict n positive in appendix B.)

We also assume that the first cut and the second cut consist of N1 and N2(= N − N1)

eigenvalues, respectively. See figure 3. Since the branch cuts are always separated by the

fixed number 2πin, we call this solution “stepwise two-cut solution”.

On the Z-plane, these cuts are mapped to Ai = eai and Bi = ebi and they satisfy

A2 = e2πinB1, (2.15)

through (2.14). We assign a new symbol D1 := B1 for this point, since the properties of this

point are different from A1 and B2 as we will see soon. Note that, because of the branch

cut of logZ in V ′(Z) (2.3), A2 and B1 stand different points on the Riemann surface. See

the right sketch of figure 3.

By regarding the locations of these branch cuts, we propose the ansatz for the resolvent

of the stepwise two-cut solution

v(Z) =

∮
C1∪C2

dW

4πi

V ′(W )

Z −W

√
(Z −A1)(Z −B2)

(W −A1)(W −B2)
, V ′(Z) =

1

πiλ
logZ. (2.16)

Here the integral contour C1 and C2 encircle the branch cut [A1, B1] and [A2, B2] coun-

terclockwise, respectively, and they are on the different sheets as shown in figure 3. It is

6We assume the condition Re(ai) ≤ Re(bi) and Im(ai) ≤ Im(bi). This is because the potential

V ′(z) = 1
πiλ

z forces the eigenvalues to compose such a configuration when λ is real and positive. We

can see it from the results of the Newton method.

– 7 –
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not difficult to show that this ansatz satisfies the saddle point equation (2.3) on the cut

[A1, B1] and [A2, B2].7

Now we evaluate the integral in (2.16). Since the integrand involves logW in V ′(W ),

we need to take care of the branch cut. We assume that C1 is on the n0-th sheet.8 (It

implies C2 is on the n+ n0-th sheet through the ansatz (2.14).) Then we can evaluate the

integral (2.16) as

v(Z) =

∮
C

dW

4πi

1

πiλ

logW

Z−W

√
(Z−A1)(Z−B2)

(W−A1)(W−B2)
+

∮
C1

dW

4πi

2n0

λ

1

Z−W

√
(Z−A1)(Z−B2)

(W−A1)(W−B2)

+

∮
C2

dW

4πi

2(n+n0)

λ

1

Z−W

√
(Z−A1)(Z−B2)

(W−A1)(W−B2)
. (2.18)

Here the contour C encircles the branch cut [A1, B2] on the 0-th sheet. See figure 3. The

first integral is identical to (2.6) and the second and third integrals have been done in [1],

and we obtain9

v(Z) =
1

πiλ
log

(
f(Z)−

√
f2(Z)− 4Z

2

)
+

n

πiλ
log

(
q(Z) +

√
q2(Z)− 4

2

)
+
n0

λ
,

f(Z) = f0 + f1Z, f0 =
2
√
A1B2√

A1 +
√
B2
, f1 =

2√
A1 +

√
B2
,

q(Z) =
q1Z − q0D1

Z −D1
, q1 =

2(2D1 −A1 −B2)

B2 −A1
, q0 =

2(D1B2 +D1A1 − 2A1B2)

D1(B2 −A1)
.

(2.20)

This result agrees with that of ref. [1] which employs a different method.10 (In appendix A,

we show how the resolvent (2.20) satisfies the saddle point equation (2.3). There, we also

argue another derivation of this solution via holomorphy.) From (2.5), the eigenvalue

7Our ansatz (2.16) is similar to the ansatz for the m-cut solution of Hermitian matrix models [43]

w(z) =

m∑
i=1

∮
Ci

dw

4πi

V ′(w)

z − w

m∏
i=1

√
(z − ai)(z − bi)
(w − ai)(w − bi)

, (2.17)

where ai and bi denote the end points of the i-th branch cuts (i = 1, · · · ,m). The difference is that the end

point B1 and A2 do not appear in the inside of the square root in our ansatz (2.16). Since B1 and A2 are

the same point on the different sheets, even though they do not appear in the square root, v(Z) satisfies

the saddle point equation (2.3) on the cuts.
8If we sum up the saddle point equation (1.2), we obtain

∑N
i=1 ui = 0. This implies that the center-of-

mass of the eigenvalues is at the origin. Thus the first cut C1 may be on a negative sheet while the second

cut C2 may be on a positive sheet: n0 ≤ 0 and n+ n0 ≥ 0.
9The second term can be written as

log

(
q(Z) +

√
q2(Z)− 4

2

)
= 2i arctan

(√
Z −A1

Z −B2

√
B2 −D1

D1 −A1

)
. (2.19)

10Our result (2.20) differs from the resolvent (64) of our previous work [1] by a constant term. This is

because ref. [1] used a different variable Z which was defined on page 17 of [1].

– 8 –
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   


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
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Figure 4. (Left) Schematic plot of the eigenvalue density for the stepwise two-cut solution (2.22)

at a weak coupling. Here we have projected the cut [A2, B2] to the same sheet to [A1, B1]. A

logarithmic singularity appears at Z = D1(= B1). (Right) Comparison of the Newton method

(blue dots) and the result through (2.20). For the Newton method, we take N1 = 70, N2 = 30,

n = 1 and λ = 0.5. These two results agree very well.

density becomes

ρ(Z) =
1

4π2λZ
log

(
Z +
√
A1B2 − i

√
(Z −A1)(Z −B2)

Z +
√
A1B2 + i

√
(Z −A1)(Z −B2)

)
(2.21)

+
n

π2λZ


arctanh

(√
Z −A1

B2 − Z

√
B2 −D1

D1 −A1

)
, (Z ∈ [A1, B1]),

−arctanh

(√
B2 − Z
Z −A1

√
D1 −A1

B2 −D1

)
, (Z ∈ [A2, B2]).

(2.22)

The profile of this density at a small λ is shown in figure 4. Particularly a logarithmic

divergence at Z = D1 arises from the second term due to the pole of q(Z), although the

integral of ρ(Z) is finite [1]. The existence of the divergence is quite contrast to the one-cut

solution shown in figure 2.

Finally we have to fix the values of the undetermined constant A1, B1(= D1) and B2.

We impose the two boundary conditions at Z = 0 and Z = ∞ (2.4) and the additional

condition11

N1

N
=

∫ B1

A1

ρ(Z)dZ =
1

4πi

∮
C1

v(Z)

Z
dZ, (2.23)

which demands that the N1 eigenvalues are on the first cut [A1, B1]. Thus A1, B1 and

B2 should be determined as the solution of these three equations and they are given as

functions of the input parameters: λ, n and N1/N . (n0 is determined when A1 is fixed.)

However finding the solution for the general input parameters is difficult. Also it is

hard to answer whether the solution exists or not for the given parameters, and, even

if it exists, whether it is unique or not. In addition, even if we found a solution, if the

11If N1 = N2, the solution becomes symmetric under Z → 1/Z and it makes the calculation much

simpler. We obtain B2 = 1/A1 and A2 = 1/B1 = eπin, and we need to consider only one of the boundary

condition (2.4).
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eigenvalue density ρ(Z) is not positive, the solution is not allowed. For example, the one-cut

solution (2.7) is allowed only when −1 ≤ λ ≤ 1, if λ is real [39].

Some solvable cases were explored in [1]. For example, at weak coupling |λ| � 1, the

solution is uniquely given by

a1 = b1 −
2πλ

n
tan

(
π

2

N1

N

)
+O(λ2), b2 = a2 +

2πλ

n
tan

(
π

2

N2

N

)
+O(λ2),

b1 = d1 = a2 − 2πin = −2πinN2

N
+
λπ

2n

(
tan

(
π

2

N1

N

)
− tan

(
π

2

N2

N

))
+O(λ2). (2.24)

Here d1 := logD1. In this case, the cuts are parallel to the real axis if λ is real.

In the case of a finite λ, we can find the solution if N1 = N2 and n = 1, 2, 3 and 4. In

the case of n = 1, the solution is given by

B2 = 1/A1 = eπi
(
−i(eπiλ − 1) +

√
2eπiλ − e2πiλ

)2
, A2 = e2πiB1 = eπi. (2.25)

Also we can find the solutions by solving (2.4) and (2.23) numerically. For example,

when we take {λ, n,N1/N} = {0.5, 1, 0.7}, we obtain a solution as shown in figure 4.12 The

result agrees with the numerical result derived through the Newton method in which we

solve the saddle point equation (1.2) at finite N directly [40–42].13

2.3 Stepwise multi-cut solution

We develop the derivation of the stepwise two-cut solution in the previous section and

consider the stepwise multi-cut solution in figure 1 (bottom-left). For a stepwise l-cut

solution, there would be cuts [aj , bj ] on the z-plane which satisfy Re(aj) ≤ Re(bj) and

Im(aj) ≤ Im(bj), (j = 1, · · · , l). We assume that the j-th cut consists of Nj eigenvalues

(
∑l

j=1Nj = N). Similar to the stepwise two-cut solution, we impose that the end points

of these cuts satisfy

aj+1 = bj + 2πinj , (j = 1, · · · , l − 1), (2.26)

where {nj} are positive integers. See figure 5. In terms of the Z variable, this assumption

implies the cut [Aj , Bj ] satisfying Aj+1 = e2πinjBj . Then, by generalizing (2.16) in the

stepwise two-cut solution, we use the following ansatz for the resolvent

v(Z) =

l∑
j=1

∮
Cj

dW

4πi

V ′(W )

Z −W

√
(Z −A1)(Z −Bl)

(W −A1)(W −Bl)
, V ′(Z) =

1

πiλ
logZ. (2.27)

Here the integral contour Cj encircle the branch cut [Aj , Bj ] counterclockwise. Again these

contours are on the different sheets of logZ, and we assume that the first contour C1 is on

the n0-th sheet.

12We use FindRoot in Mathematica in our numerical computation. Then we find various solutions

depending on the initial condition of FindRoot. We choose the solution which is consistent with the result

of the Newton method. It is unclear whether the other solutions are all meaningful, since the equations

involve several multivalued functions which may lead to wrong numerical results. Also some solutions might

correspond to the eigenvalue density involving negative values which are not allowed physically.
13Although we can derive the end points of the eigenvalue distribution, obtaining the distribution curve

on the complex plane is technically difficult unless the coupling λ is small as in (2.24).

– 10 –



J
H
E
P
0
8
(
2
0
1
8
)
1
6
8

Im

Re

a1 b1

a2 b2

N1

N2

2πin1

2πin2

a3 bl−1

blal
2πinl−1

Nlz

N1 N2 N3

ρ(Z)

A1 D1

Z
D2 B2

Figure 5. Sketch of the eigenvalue distribution and the eigenvalue density of the stepwise multi-cut

solution. In the eigenvalue density, we project the cuts on the different sheet to the same sheet and

consider a small λ.

We perform the integral in (2.27) through the similar calculations to the stepwise

two-cut solution (2.20) and obtain the resolvent of the stepwise l-cut solution

v(Z) =
1

πiλ
log

(
f(Z)−

√
f2(Z)−4Z

2

)
+

l−1∑
j=1

nj
πiλ

log

q(j)(Z)+
√(

q(j)(Z)
)2−4

2

+
n0

λ
,

f(Z) = f0+f1Z, f0 =
2
√
A1Bl√

A1+
√
Bl
, f1 =

2√
A1+

√
Bl
,

q(j)(Z) =
q

(j)
1 Z−q(j)

0 Dj

Z−Dj
, q

(j)
1 =

2(2Dj−A1−Bl)
Bl−A1

, q
(j)
0 =

2(DjBl+DjA1−2A1Bl)

Dj(Bl−A1)
.

(2.28)

Here we have defined Dj := Bj in order to emphasize the distinction between Bl and other

Bj ’s. Again q(j)(Z) has a pole at Z = Dj . This pole causes a logarithmic singularity and we

take the branch cut as sketched in figure 6 so that the equation (2.3) is satisfied correctly.

Then we obtain the eigenvalue density

ρ(Z) =
1

4π2λZ
log

(
Z +
√
A1Bl − i

√
(Z −A1)(Z −Bl)

Z +
√
A1Bl + i

√
(Z −A1)(Z −Bl)

)
+

l−1∑
j=1

ρ(j)
s (Z),

ρ(j)
s (Z) =

nj
π2λZ


arctanh

(√
Z −A1

Bl − Z

√
Bl −Dj

Dj −A1

)
,

(
Z ∈ [Ak, Bk]

(k=1,··· ,j)

)
,

−arctanh

(√
Bl − Z
Z −A1

√
Dj −A1

Bl −Dj

)
,

(
Z ∈ [Ak, Bk]
(k=j+1,··· ,l−1)

)
.

(2.29)

Again it shows the logarithmic divergence at each Dj , (j = 1, · · · , l − 1). We sketch the

profile in figure 5.

Lastly we have to fix the l + 1 constant A1, Bl and Dj (j = 1, · · · , l − 1). These are

determined through the two boundary conditions at Z = 0 and Z = ∞ (2.4) and l − 1

– 11 –



J
H
E
P
0
8
(
2
0
1
8
)
1
6
8

   

















2πi

2πi

a1 b1

a2 b2

a3 b3

N1 = 20

N2 = 20

N3 = 20

Figure 6. (Left) Branch cuts of the resolvent of the stepwise three-cut solution (2.28) on the

Z-plane. The solid lines denote the branch cuts of the square root: [A1, B1], [A2, B2] and [A3, B3].

The broken lines are the branch cuts of log which lie on the second sheet of the square root.

The logarithmic branch cut starting from B1(= D1) on the first sheet immediately goes to the

second sheet and terminates at B1 on the second sheet. (Right) Eigenvalue distributions through

the Newton method (blue dots) and our method (red dots) for the stepwise three-cut solution at

N1/N = N2/N = N3/N = 1, n1 = n2 = 1, λ = 0.3. We take N = 60 in the Newton method.

normalization condition

Ni

N
=

∫ Bi

Ai

ρ(Z)dZ =
1

4πi

∮
Ci

v(Z)

Z
dZ, (i = 1, · · · , l). (2.30)

(One of the normalization condition is not independent of the other conditions.) We can

solve these equations numerically. The result for {λ,n1,n2,N1/N,N2/N}={0.3,1,1, 1/3, 1/3}
is shown in figure 6. (In this case, the solution has a symmetry z → −z which fixes b3 =−a1,

b2 =−a2, b1 =−a3.) This agrees with the result obtained from the Newton method.

2.4 Composition of the stepwise multi-cut solutions

We explore the analytic solution for the last plot in figure 1 (bottom-right). There, three

cuts appear, and two of them are separated by 2πi. Thus they may be regarded as a

composition of the one-cut solution (2.7) and the stepwise two-cut solution (2.20). Hence

we assume the three cuts as [A(1), B(1)], [A
(2)
1 , B

(2)
1 ] and [A

(2)
2 , B

(2)
2 ]. Here [A(1), B(1)] cor-

responds to the one-cut around the z = 0 and [A
(2)
i , B

(2)
i ] (i = 1, 2) describe the stepwise

two-cuts. Hence we impose

A
(2)
2 = e2πinB

(2)
1 , (2.31)

where n is a positive integer. We also assume that the numbers of the eigenvalues on each

cuts are N (1) and N
(2)
i (i = 1, 2), respectively. Then the resolvent may be given as

v(Z) =

∮
C(1)∪C(2)

1 ∪C
(2)
2

dW

4πi

V ′(W )

Z−W

√√√√ (Z−A(1))(Z−B(1))(Z−A(2)
1 )(Z−B(2)

2 )

(W−A(1))(W−B(1))(W−A(2)
1 )(W−B(2)

2 )
, (2.32)
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A(1) B(1)

B
(2)
2A

(2)
2

B
(2)
1A

(2)
1

-sheet
(n+ n0)

-sheetn0

C(2)

C
(2)
1

C
(2)
2

2πi

N
(2)
1 = 40

b(1)

b
(2)
2

N (1) = 40

 

















−b(1)

−b
(2)
2

πi

−πi

N
(2)
1 = 40

Figure 7. (Left) Integral contours of the resolvent for the composite solution (one-cut + stepwise

two-cut) in (2.32). (Right) Eigenvalue distributions through the Newton method (blue dots) and

our method (red dots) for the composite solution. We take N (1)/N = N
(2)
1 /N = N

(2)
2 /N = 1/3,

n = 1, λ = 0.2. N = 120 is taken in the Newton method.

where the contour C(1) encircles the cut [A(1), B(1)] and C
(2)
i encircles the cut [A

(2)
i , B

(2)
i ]

(i = 1, 2). See figure 7. Note that we have the 5 constants: A(1), B(1), A
(2)
1 , B

(2)
1 and

B
(2)
2 , and these constants can be fixed by the 3 normalization conditions similar to (2.30)

and the 3 boundary conditions (2.4).14 (There are 6 conditions but only 5 of them are

independent). Therefore the consistent solution would exist.

Symmetric solution. Performing the integral of the resolvent (2.32) is generally diffi-

cult. However, if the solution is symmetric under z → −z (Z → 1/Z), we can compute it

as follows. This symmetry requires the following conditions on the ansatz,

A(1) = 1/B(1), A
(2)
1 = 1/B

(2)
2 , A

(2)
2 = 1/B

(2)
1 = eπin, N

(2)
1 = N

(2)
2 . (2.33)

Besides, the cut [1/B(1), B(1)] should pass Z = 1, and it demands n to be odd so that the

other two cuts do not hit this cut. In this case, the cut [eπin, B
(2)
2 ] and [1/B

(2)
2 , e−πin] are

on the (n + 1)/2-th sheet and −(n + 1)/2-th sheet,15 respectively, and the integral (2.32)

can be written as

v(Z) =

∮
C(1)∪C(2)

dW

4πi

1

πiλ

logW

Z−W

√√√√ (Z−1/B(1))(Z−B(1))(Z−1/B
(2)
2 )(Z−B(2)

2 )

(W−1/B(1))(W−B(1))(W−1/B
(2)
2 )(W−B(2)

2 )

+

∮
C

(2)
1

dW

4πi

−(n+1)

λ

1

Z−W

√√√√ (Z−1/B(1))(Z−B(1))(Z−1/B
(2)
2 )(Z−B(2)

2 )

(W−1/B(1))(W−B(1))(W−1/B
(2)
2 )(W−B(2)

2 )

+

∮
C

(2)
2

dW

4πi

n+1

λ

1

Z−W

√√√√ (Z−1/B(1))(Z−B(1))(Z−1/B
(2)
2 )(Z−B(2)

2 )

(W−1/B(1))(W−B(1))(W−1/B
(2)
2 )(W−B(2)

2 )
. (2.34)

14The resolvent (2.32) behaves as v(Z)→ c1Z+ c0 +O(1/Z), (Z →∞) and the boundary condition (2.4)

requires the two conditions: c1 = 0 and c0 = 1.
15This is because the cuts would tilt as we can see from the numerical result. See footnote 6 also.
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We can compute this integral by using the technique developed in ref. [51] and obtain

v(Z) =
1

2πiλ
log

(
f(Z)−

√
f2(Z)− 4Z2

2

)
− n

2πiλ
log

(
q(Z) +

√
q2(Z)− 4

2

)
,

f(Z) = f0 + f1Z + f0Z
2, q(Z) =

q0 + q1Z + q0Z
2

(Z + 1)2
, (2.35)

where the constants are given as

f0 =
4

c(1)−c(2)
, f1 =−2

c(1)+c(2)

c(1)−c(2)
, c(1) =B(1)+1/B(1), c(2) =B

(2)
2 +1/B

(2)
2 ,

q0 = 2
c(1)+c(2)+4

c(1)−c(2)
, q1 =−4

(
c(1)+c(2)

)
+4c(1)c(2)

c(1)−c(2)
. (2.36)

Remarkably, the first term of (2.35) is similar to the resolvent of the S3/Z2 Lens space

matrix model [26, 38] which is related to the ABJM matrix model (3.9). The second term

provides the logarithmic divergence at Z = e±πin akin to the previous solutions (2.20)

and (2.28). The appearance of the resolvent of the Lens space matrix model indicates

that some geometrical interpretations of our multi-cut solutions might be possible. We will

consider it in a future research.

By numerically solving B(1) and B
(2)
2 , we compare our solution with the one obtained

via the Newton method. We can see a good agreement as shown in figure 7. Note that we

attempt to solve the equations (2.4) and the normalization condition like (2.30) directly

by Mathematica and obtain a consistent result. (Here we use FindRoot and NIntegral

in (2.32).) This is a good news. Although it would be difficult to perform the integral such

as (2.32) and obtain analytic expressions in general, this result indicates that we do not

need the analytic expressions in order to evaluate the physical quantities.

2.5 Proposal for general solution in the pure CS matrix model

The generalization of the composite solution in the previous section is straightforward. We

can consider p-stepwise lq-cuts: [A
(q)
j , B

(q)
j ] (q = 1, · · · , p and j = 1, · · · , lq) satisfying

A
(q)
j = e2πin

(q)
j B

(q)
j+1, (2.37)

where n
(q)
j are positive integers. We also assign the numbers of the eigenvalues on the cut

[A
(q)
j , B

(q)
j ] as N

(q)
j . Then the resolvent may be given by

v(Z) =

p∑
r=1

lr∑
j=1

∮
C

(r)
j

dW

4πi

V ′(W )

Z −W

p∏
q=1

√√√√√ (Z −A(q)
1 )(Z −B(q)

lq
)

(W −A(q)
1 )(W −B(q)

lq
)
, (2.38)

where the contour C
(r)
j encircles the cut [A

(r)
j , B

(r)
j ] (r = 1, · · · , p and j = 1, · · · , lr). This

integral may be performed by using the genus p− 1 generalizations of elliptic functions. In

this expression, we have the p+
∑p

q=1 lq undetermined constant {A(q)
1 , B

(q)
1 , · · · , B(q)

lq
}, and
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Figure 8. Eigenvalue distribution of the general solution (2.38) in the pure CS matrix model on

the z-plane.

these will be fixed by the
∑p

q=1 lq normalization condition (2.30) and p boundary condition

at Z = ∞ and one boundary condition at Z = 0 (2.4). (Again one of these conditions is

not independent.) As an example, we derive the solution shown in figure 16 in appendix B

by using this ansatz.

In this way, our resolvent (2.38) may describe all the solutions in figure 1 obtained

through the Newton method. Then one important question is whether any other solutions

of the saddle point equation (1.2) exist or not. We explore the solutions through the Newton

method, and it seems that all the solutions might be explained by our resolvent (2.38).

Although it is hard to exclude the possibility of the existence of the other solutions, we

presume that our solution (2.38) may be the general solution of the saddle point equation

of the pure CS matrix model.

Our method would be applicable to other CS matrix models. As a demonstration, we

consider the ABJM matrix model in the next section.

3 Multi-cut solutions in the ABJM matrix model

We will apply the technique for finding the multi-cut solutions developed in the previous

section to the ABJM matrix model [14]. The partition function of this model is given by

Z(k,N) =
1

(N !)2

∫ N∏
i=1

dµi
2π

e−
N

4πiλ
µ2
i

N∏
j=1

dνj
2π

e
N

4πiλ
ν2
j

∏N
i<j

[
2sinh

µi−µj
2

]2∏N
i<j

[
2sinh

νi−νj
2

]2

∏N
i,j=1

[
2cosh

µi−νj
2

]2 .

(3.1)

Here k is the CS level and λ := N/k. The saddle point equations of this model are

µi =
2πiλ

N

 N∑
j 6=i

coth
µi − µj

2
−

N∑
j=1

tanh
µi − νj

2

 , (i = 1, · · · , N),

−νi =
2πiλ

N

 N∑
j 6=i

coth
νi − νj

2
−

N∑
j=1

tanh
νi − µj

2

 , (i = 1, · · · , N). (3.2)
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We explore the solutions of these equations in the ’t Hooft limit N → ∞ at finite λ.

Again the resolvent is a convenient tool for solving these equations. We define new variable

Mi := exp (µi) and Nj := exp (νj), and rewrite the saddle point equations (3.2) as

logMi =
2πiλ

N

 N∑
j 6=i

Mi +Mj

Mi −Mj
−

N∑
j=1

Mi −Nj

Mi +Nj

 , (i = 1, · · · , N),

− logNi =
2πiλ

N

 N∑
j 6=i

Ni +Nj

Ni −Nj
−

N∑
j=1

Ni −Mj

Ni +Mj

 , (i = 1, · · · , N). (3.3)

We introduce the eigenvalue densities of Mi and Nj and the resolvent as

ρM (Z) :=
1

N

N∑
i=1

δ(Z −Mi), ρN (Z) :=
1

N

N∑
i=1

δ(Z −Ni),

w(Z) :=

∫
CM

ρM (W )
Z +W

Z −W dW −
∫
CN
ρN (W )

Z −W
Z +W

dW, (3.4)

where CM and CN are the supports of ρM (Z) and ρN (Z), respectively. Then the saddle

point equations (3.3) become

1

πiλ
logZ = lim

ε→0
[w(Z + iε) + w(Z − iε)] , (Z ∈ CM ),

1

πiλ
logZ = lim

ε→0
[w(−Z + iε) + w(−Z − iε)] , (Z ∈ CN ), (3.5)

and the eigenvalue densities are described by

ρM (Z) = − 1

4πiZ
lim
ε→0

[w(Z + iε)− w(Z − iε)] , (Z ∈ CM ),

ρN (Z) = +
1

4πiZ
lim
ε→0

[w(−Z + iε)− w(−Z − iε)] , (Z ∈ CN ). (3.6)

Besides, the resolvent satisfies the boundary conditions

lim
Z→∞

w(Z) = 0, lim
Z→0

w(Z) = 0. (3.7)

Therefore what we should do is finding the resolvent which satisfies the saddle point equa-

tions (3.5) and the boundary conditions (3.7).

Before considering the analytic solution, we attempt the numerical computations via

the Newton method in order to gain some insight. Some of the obtained results are shown in

figure 9. The top-left panel corresponds to the well-known solution obtained by Drukker,

Marino and Putrov [18]. We call this solution “DMP” solution. The top-right panel

corresponds to the solution found in our previous study [1]. In addition, various multi-cut

solutions exist. These results indicate that the dynamics of the ABJM matrix model is

similar to the pure CS matrix model. While the eigenvalues tend to be around z = 0, the

strong interactions arise when the eigenvalues are separated by 2πi, and they may cause
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Figure 9. Eigenvalue distributions of the numerical solutions of the saddle point equation (3.2)

in the ABJM matrix model. We take N = 100 and λ = 10. The blue and red dots denote the

eigenvalues of µ and ν, respectively. The top-left plot corresponds to the DMP solution [18], and

other various multi-cut solutions exist in this model.

various solutions.16 Therefore the technique in the pure CS matrix model would be useful

in the ABJM matrix model too.

3.1 Derivation of the DMP solution

Before considering the multi-cut solutions, we first review the derivation of the DMP solu-

tion (figure 9 top-left) by using the technique in the previous section [51]. We assume the

cut [1/A,A] for Mi and [1/B,B] for Ni. (Here these cuts respect the symmetry Z → 1/Z.)

We also assume |A|, |B| ≥ 1. See figure 10. Then the resolvent which satisfies the saddle

point equations (3.5) is given as

w(Z) =

∮
C(M)

dW

4πi

V ′M (W )

Z −W

√
(Z −A)(Z − 1/A)(Z + 1/B)(Z +B)

(W −A)(W − 1/A)(W + 1/B)(W +B)

+

∮
C(N)

dW

4πi

V ′N (W )

Z −W

√
(Z −A)(Z − 1/A)(Z + 1/B)(Z +B)

(W −A)(W − 1/A)(W + 1/B)(W +B)
,

V ′M (Z) :=
1

πiλ
logZ, V ′N (Z) :=

1

πiλ
log
(
eπiZ

)
. (3.8)

16Note that strong interactions work between µi and νj too in the saddle point equations (3.2), if they

are separated by (2n+1)πi. However we could not find numerical solution in which µi and νj are separated

by (2n + 1)πi. Since the sign of interactions (3.2) between µi and νj in this case are opposite to those

between µi and µj , we presume that the forces cannot balance and the solution could not exist. (It would

be important to clarify this point rigorously.) For this reason, we do not consider the analytic solutions for

these configurations in this article.
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Figure 10. (Left) Sketch of the cuts of the DMP solution. Here α = logA and β = logB. (Right)

Integral contours of (3.8). The contour C(N) encircles [−B,−1/B] rather than [1/B,B].

Note that the cuts of this resolvent are on [1/A,A] and [−B,−1/B] rather than [1/B,B].

This is because the saddle point equations (3.3) are singular when Mi = −Nj . Correspond-

ingly the contour C(M) and C(N) encircle the cut [1/A,A] and [−B,−1/B], respectively.

We can perform this integral and obtain [51]

w(Z) =
1

2πiλ
log

(
f(Z)−

√
f2(Z)−4Z2

2

)
, f(Z) = f0+f1Z+f0Z

2,

f0 =
4

A+1/A+B+1/B
, f1 =

2(−A−1/A+B+1/B)

A+1/A+B+1/B
. (3.9)

The parameter A and B are determined through the boundary conditions (3.7) and the

normalization condition

1 =

∫ A

1/A
ρM (Z)dZ =

1

4πi

∮
C(M)

v(Z)

Z
dZ. (3.10)

Then we obtain the relations [18]

A+
1

A
= 2 + iκ, B +

1

B
= 2− iκ. (3.11)

Here κ is related to the ’t Hooft coupling λ through

λ(κ) =
κ

8π
3F2

(
1

2
,

1

2
,

1

2
; 1,

3

2
;−κ

2

16

)
. (3.12)

Particularly, at the strong coupling |λ| � 1, we obtain

A = eα, α = π
√

2λ̂+
π

2
i− 2ie−π

√
2λ̂ + · · · ,

B = eβ , β = π
√

2λ̂− π

2
i+ 2ie−π

√
2λ̂ + · · · , (3.13)

where λ̂ := λ− 1
24 .
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3.2 Proposal for general solution in the ABJM matrix model

We will apply the technique developed in the pure CS matrix model to the ABJM matrix

model, and propose the general solution. As the numerical computations shown in figure 9

suggest, there are various multi-cut solutions in which the eigenvalues of the same matrix

are separated by 2πi. Thus each matrix can compose the stepwise multi-cuts. In addition,

a composition of these stepwise multi-cuts would be a solution too as in the pure CS matrix

model case. (Indeed we find these complicated solutions numerically, although we omit to

show them in this article.)

By regarding these numerical results, we consider the following ansatz. Suppose the

eigenvalue {Mi} compose p stepwise lr-cuts (r = 1, · · · , p) and the eigenvalue {Ni} compose

q stepwise mr-cuts (r = 1, · · · , q), and we define that the cut [A
(M,r)
j , B

(M,r)
j ] for {Mj} and

[A
(N,r)
j , B

(N,r)
j ] for {Nj}. We assume that these cuts satisfy

A
(M,r)
j = e2πin

(M,r)
j B

(M,r)
j+1 , (j = 1, · · · , lr, r = 1, · · · , p),

A
(N,r)
j = e−2πin

(N,r)
j B

(N,r)
j+1 , (j = 1, · · · ,mr, r = 1, · · · , q), (3.14)

where n
(M,r)
j and n

(N,r)
j are positive integers. We also assign the numbers of the eigenvalues

on the cut [A
(M,r)
j , B

(M,r)
j ] and [A

(N,r)
j , B

(N,r)
j ] as N

(M,r)
j and N

(N,r)
j , respectively. Then

the resolvent may be given as

w(Z) =

p∑
t=1

lt∑
j=1

∮
C

(M,t)
j

dW

4πi

V ′M (W )

Z−W

p∏
r=1

q∏
s=1

√
(Z−A(M,r)

1 )(Z−B(M,r)
lr

)(Z+A
(N,s)
1 )(Z+B

(N,s)
ms )

(W−A(M,r)
1 )(W−B(M,r)

lr
)(W+A

(N,s)
1 )(W+B

(N,s)
ms )

+

q∑
t=1

mt∑
j=1

∮
C

(N,t)
j

dW

4πi

V ′N (W )

Z−W

p∏
r=1

q∏
s=1

√
(Z−A(M,r)

1 )(Z−B(M,r)
lr

)(Z+A
(N,s)
1 )(Z+B

(N,s)
ms )

(W−A(M,r)
1 )(W−B(M,r)

lr
)(W+A

(N,s)
1 )(W+B

(N,s)
ms )

,

(3.15)

where the contour C
(M,r)
i and C

(N,s)
j encircle the cut [A

(M,r)
i , B

(M,r)
i ] (i = 1, · · · , lr and

r = 1, · · · , p) and [−B(N,s)
j ,−A(N,s)

j ] (j = 1, · · · ,ms and s = 1, · · · , q), respectively. The

end points of the cuts may be determined through the boundary conditions (3.7) and the

normalization conditions akin to (3.10).

3.3 Symmetric stepwise multi-cut solution

Although the general solution (3.15) looks very complicated, if p = q = 1 and the solution

is symmetric under Z → 1/Z, we will obtain a simple expression. To see it, we consider

a stepwise 2l + 1-cuts of µi and stepwise 2m + 1-cuts of νi configuration as sketched in

figure 11. As we will see soon, the result depends on whether the number of each cut is

odd or even, and we consider the both odd case first. We assume that {µi} are distributed

between [−b(M)
0 , b

(M)
0 ], [a

(M)
j , b

(M)
j ] and [−b(M)

j ,−a(M)
j ], (j = 1, · · · , l) and the number of

the eigenvalues on each interval is N
(M)
0 , N

(M)
j and N

(M)
j , respectively, so that the system

is symmetric under Z → 1/Z. Here N
(M)
0 + 2

∑l
j=1N

(M)
j = N is imposed. Similarly,

for {νi}, we take [−b(N)
0 , b

(N)
0 ], [a

(N)
j , b

(N)
j ] and [−b(N)

j ,−a(N)
j ], (j = 1, · · · ,m) and N

(N)
j
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Figure 11. Eigenvalue distribution of the symmetric stepwise ((2l + 1) + (2m + 1))-cut solu-

tion (3.17).

which satisfies N
(N)
0 + 2

∑m
j=1N

(N)
j = N . Through the stepwise assumption, we impose

the condition

a
(M)
j = b

(M)
j−1 + 2πin

(M)
j , (j = 1, · · · , l),

a
(N)
j = b

(N)
j−1 − 2πin

(N)
j , (j = 1, · · · ,m), (3.16)

where {n(M)
j } and {n(N)

j } are positive integers. On this set up, the resolvent (3.15) becomes

w(Z) =

2l+1∑
j=1

∮
C

(M)
j

dW

4πi

V ′M (W )

Z−W

√√√√ (Z−1/B
(M)
l )(Z−B(M)

l )(Z+1/B
(N)
m )(Z+B

(N)
m )

(W−1/B
(M)
l )(W−B(M)

l )(W+1/B
(N)
m )(W+B

(N)
m )

+

2m+1∑
j=1

∮
C

(N)
j

dW

4πi

V ′N (W )

Z−W

√√√√ (Z−1/B
(M)
l )(Z−B(M)

l )(Z+1/B
(N)
m )(Z+B

(N)
m )

(W−1/B
(M)
l )(W−B(M)

l )(W+1/B
(N)
m )(W+B

(N)
m )

,

(3.17)

where A
(M)
j = exp

(
a

(M)
j

)
, B

(M)
j = exp

(
b
(M)
j

)
, A

(N)
j = exp

(
a

(N)
j

)
and B

(N)
j = exp

(
b
(N)
j

)
,

and C
(M)
j and C

(N)
j are the contours which encircle the cuts as in (3.15). We will use

D
(M)
j := A

(M)
j and D

(N)
j := A

(N)
j when we emphasize the points of the steps. Through

calculations similar to section 2.2, we can perform this integral and obtain

w(Z) =
1

2πiλ
log

(
f(Z)−

√
f2(Z)−4Z2

2

)
+

l∑
i=1

n
(M)
i

πiλ
log

(
p(i)(Z)+

√
(p(i)(Z))

2−4

2

)
−

m∑
j=1

n
(N)
j

πiλ
log

(
q(j)(Z)+

√
(q(j)(Z))

2−4

2

)
.

(3.18)

Here f(Z), p(i)(Z) and q(j)(Z) are rational functions

f(Z) = f0+f1Z+f0Z
2, p(i)(Z) =

p0Z
2+p1Z+p0

(Z−D(M)
i )(Z−1/D

(M)
i )

, q(j)(Z) =
q0Z

2+q1Z+q0

(Z+D
(N)
j )(Z+1/D

(N)
j )

,
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where the coefficients are given by

f0 =
4

c(M)+c(N)
, f1 =

2
(
−c(M)+c(N)

)
c(M)+c(N)

,

p
(i)
0 =

4
(
D

(M)
i +1/D

(M)
i

)
+2c(M)−2c(N)

c(M)+c(N)
, p

(i)
1 =

2
(
D

(M)
i +1/D

(M)
i

)(
c(M)−c(N)

)
−4c(M)c(N)

c(M)+c(N)
,

q
(j)
0 =

−4
(
D

(N)
j +1/D

(N)
j

)
+2c(M)−2c(N)

c(M)+c(N)
, q

(j)
1 =

−2
(
D

(N)
j +1/D

(N)
j

)(
c(M)−c(N)

)
−4c(M)c(N)

c(M)+c(N)
,

c(M) =B
(M)
l +1/B

(M)
l , c(N) =B(N)

m +1/B(N)
m . (3.19)

In (3.18), the first term is identical to the DMP solution (3.9) and the rest of the terms

resemble the terms in the stepwise multi-cut solutions in the pure CS matrix model (2.28)

and (2.35). Particularly, the resolvent shows the logarithmic singularities at Z = D
(M)
i ,

1/D
(M)
i , −D(N)

j and −1/D
(N)
j (i = 1, · · · , l and j = 1, · · · ,m ).

If the number of the cuts is even, the result should be modified, since the cut at

the origin disappears. Suppose the number of the cuts of µi is even, we should remove

the cut [1/B
(M)
0 , B

(M)
0 ] and fix D

(M)
1 = exp

(
πinM1

)
. Similarly, if the number of the cuts

of νi is even, the cut [1/B
(N)
0 , B

(N)
0 ] is removed and D

(N)
1 = exp

(
−πinN1

)
. With these

modifications, the expression (3.18) works in these cases.

3.4 Connection to the large-N instantons

Once we obtain the multi-cut solutions, we may obtain the large-N instantons which are the

“tunneling” of the eigenvalues between two solutions [44, 45]. Particularly the instantons

in the DMP solution which corresponds to the AdS4×CP3 vacuum of the string theory

might be related to non-perturbative objects of strings. In this section, we argue that some

of the instantons may be related to the so-called D2-brane instantons [46, 47].

We consider the stepwise two+one-cut solution plotted in figure 9 (bottom-left). If we

take N
(M)
2 → 0 limit, this solution reduces to the DMP solution. Thus N

(M)
2 → 1 limit

of this solution may correspond to the instanton of the single eigenvalue tunneling in the

DMP solution. We can rudely estimate the instanton action of this instanton as follows [1].

We consider the effective potential for the N -th eigenvalue, say µN , in the DMP solution.

From (3.1), the effective potential for µN is given by

Veff(µN ) =
N

4πiλ
µ2
N + Vint(µN ),

Vint(µN ) := −
N−1∑
j=1

log

[
2 sinh

µN − µj
2

]2

+

N∑
j=1

log

[
2 cosh

µN − νj
2

]2

. (3.20)

Here we fix {µi} (i 6= N) and {νj} to be the DMP solution and we ignore the back-reaction

of µN to the other eigenvalues. (We will soon see that ignoring the back-reaction is too

rude.) If µN = α where α is the location of the right end point of the cut defined in (3.13), it

corresponds to the DMP solution. Then the instanton action is estimated as the difference

of the values of the effective potentials

Sinst(µ) = Veff(µ)− Veff(α). (3.21)
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By using this equation, we can estimate the instanton action of the N
(M)
2 → 1 limit of the

stepwise two-cut solution (figure 9) by taking µ = α+ 2πi,

Sinst(α+ 2πi) =
N

4πiλ
(α+ 2πi)2 + Vint(α+ 2πi)−

(
N

4πiλ
α2 + Vint(α)

)
=
Nα

λ
+ i

Nπ

λ

= Nπ
√

2/λ+ · · · , (|λ| � 1). (3.22)

Here we have used the periodicity of the interaction Vint(α + 2πin) = Vint(α), and equa-

tion (3.13). Remarkably, the obtained value at strong coupling (|λ| � 1) agrees with

the D2-brane instanton which was obtained through a sophisticated cycle integral of the

spectral curve [46, 47]

SD2
inst = πN

√
2/λ, (|λ| � 1). (3.23)

This quantitative agreement indicates that our multi-cut solutions might be interpreted as

the condensations of the D2-brane instantons.17

However our evaluation of the instanton action (3.22) is too rude, since µ = α + 2πi

does not satisfy the equation of motion 0 = V ′eff(µ) = Nµ/2πiλ + V ′int(µ). We can see

it as follows. Since we have assumed that µ = α is the DMP solution, it should satisfy

0 = Nα/2πiλ+ V ′int(α). However it immediately means that µ = α+ 2πi is not a solution

due to the periodicity V ′int(µ + 2πin) = V ′int(µ). It implies that the back-reaction to the

other eigenvalues is crucial to construct the instanton solution.18

In principle, we can evaluate the back-reaction by using the stepwise two+one-cut

solution (3.18). Starting from this solution, by taking N
(M)
2 → 1 in the free energy, we

would obtain the instanton action including the back-reaction. However the computation

of the free energy of the stepwise two+one-cut solution is technically difficult, and we

instead evaluate the instanton action numerically by employing the Newton method. The

result is summarized in figure 12. It indicates that somehow the contributions of the back-

reaction to the instanton action is suppressed and the rude estimation (3.22) works well.19

This result supports our conjecture that the stepwise multi-cut solutions are related to the

D2-brane instantons in the ABJM theory.

17Although the real part of the instanton action (3.22) at the leading order of the strong coupling agrees

with the result of [46, 47], the additional imaginary factor iNπ/λ = iπk in (3.22) does not appear in [46, 47].

This contributes to the phase factor of the instanton action. However, since we have merely considered the

value of the effective action, we cannot evaluate the additional phase factor coming from the deformation of

the contour of the path-integral. Hence we cannot ask the precise relation between our multi-cut solution

and the D2-brane instanton of [46, 47]. In order to evaluate this phase factor, we may need to consider the

path integral including the back-reaction, and it is a challenging problem.
18Indeed if we do not consider the back reaction, the classical equation of motion derived from the effective

action Veff(µ) is given by y = 0 where y is the spectral curve of the DMP solution [46]. We can easily see

that it allows only the trivial solutions µ = ±α.
19We can confirm that the imaginary part of the instanton action in the numerical calculation also agrees

with the estimation (3.22). We can also check that the results in the N
(M)
2 = 2 case are consistent with the

N
(M)
2 = 1 case. These results are omitted in this article.
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Figure 12. (Left) N and λ dependence of the real part of the instanton action through the

Newton method. We compute the classical action of the DMP solution and the instanton solution

and evaluate their differences ∆S at various N and λ (the red dots). Then we fit these data at each

fixed λ (solid lines) and extrapolate ∆S(λ)|N→∞. (Right) Plot of ∆S(λ)|N→∞/N (the red dots).

The solid line is analytic prediction of the D2-brane instanton action π

√
2/λ̂ (3.23). We can see a

good agreement between them.

Large-N instantons in the pure CS matrix model. We can apply the estimation

of the instanton action in the ABJM matrix model (3.22) to other CS matrix models if

the model allows the stepwise multi-cut solutions. For example, in the case of the pure CS

matrix model (1.1), we can estimate the instanton action as

Sinst(b+ 2πi) = Veff(b+ 2πi)− Veff(b)

=
N

4πiλ
(b+ 2πi)2 + Vint(b+ 2πi)−

(
N

4πiλ
b2 + Vint(b)

)
=
Nb

λ
+ i

Nπ

λ
= 2πiN + · · · , (|λ| � 1). (3.24)

Here b is the end point of the one-cut solution (2.10), and Veff and Vint are defined similar

to (3.20). Again we have ignored the back-reaction in this estimation without any justi-

fication. However, the obtained value of the instanton action agrees with the membrane

instanton of the pure CS matrix model argued in [28, 29],

membrane instanton: SM2
inst =

2πt

gs
= 2πiN, (|t| � 1), (3.25)

where t := igsN = 2πiλ. This agreement suggests that the stepwise multi-cut solutions

might be regarded as the condensations of the membrane instantons.

Other instantons? So far we have discussed the instanton limit of the stepwise multi-

cut solutions. As we have seen in section 2.5 and 3.2, the composite solutions also exist in

the CS matrix models. However, they are composed of at least three cuts, and we cannot

take the ordinary instanton limit, namely taking the configuration of the stable solution

plus single tunnelling eigenvalue. At least two tunnelling eigenvalues are required, and,

in this sense, the composite solution might provide a novel type of large-N instantons.
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(The interaction between the tunneling eigenvalues is crucial similar to the N = 2 analysis

in (2.11).) However, we have not found any simple estimation of the instanton action for

these solutions so far, and the quantitative comparison to D-branes and the known non-

perturbative effects in the CS matrix models [28–31, 46, 47] have not been done. We leave

this issue for future work.

4 Conclusions and discussions

In this article, we proposed the ansatz (2.38) and (3.15) for the general solutions of the

pure CS matrix model and ABJM matrix model, respectively. By solving these ansatz,

we obtained the multi-cut solutions which quantitatively agree with the Newton method.

Besides, these solutions exhibit the various curious properties: the two types of the multi-

cuts (the composite and stepwise), the logarithmic divergences of the eigenvalue densities

and the instanton limit. Since the multi-cut solutions may describe the various vacua

of the systems, these solutions may be crucial to reveal the non-perturbative structures

of the CS matrix models. Indeed we have found the quantitatively evidences that our

multi-cut solutions are related to the membrane instantons [28, 29] and the D2-brane

instantons [46, 47].

One important future direction is the analytic computations of the integral (2.38)

and (3.15) in the general situations. They might provide us further curious structures of

the CS matrix models. The holomorphy might also help us to find the general solutions as

discussed in appendix A.

Another interesting future direction is exploring the gravity duals of our multi-cut

solutions. Since we have considered the ’t Hooft limit of the CS gauge theories, the dual

gravity description in superstring theory may work. Particularly the existence of the in-

finite number of the solutions in the gauge theories reminds us the story of the bubbling

geometries [52]. If the corresponding infinite number of the gravity solutions were found,

it would be very important in the supergravities. The researches on the Lens space ma-

trix models [26, 38, 53–55] may give us some insight about the connection between the

geometries and the eigenvalue distributions of the CS matrix models.
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A Derivation of the stepwise multi-cut solution via holomorphy

We will show that the stepwise multi-cut solution can be derived by using holomorphy20

too which have been employed in the CS matrix models [18, 26, 38, 46].

A.1 One-cut solution

We review the derivation of the one-cut solution (2.7) via holomorphy [26, 38]. We assume

that the resolvent v(Z) has the branch cuts on C : [A,B]. On this cut, the resolvent should

satisfy the saddle point equation (2.3). Then we can define a holomorphic function

f(Z) = eπiλv(Z) + Ze−πiλv(Z). (A.1)

From the boundary conditions (2.4), f(Z) satisfies f(Z)→ e−πiλZ (Z →∞) and f(Z)→
e−πiλ (Z → 0). Then such a holomorphic function is uniquely determined as

f(Z) = f0 + f1Z, f0 = e−πiλ, f1 = e−πiλ. (A.2)

On the other hand, by solving (A.1) with respect to v(Z), we obtain

v(Z) =
1

πiλ
log

(
f(Z)−

√
f2(Z)− 4Z

2

)
. (A.3)

This result agrees with (2.7). One can confirm that this resolvent correctly satisfies the

saddle point equation (2.3)

lim
ε→0

[v(Z+iε)+v(Z−iε)] =
1

πiλ

[
log

(
f(Z)−i

√
4Z−f2(Z)

2

)
+log

(
f(Z)+i

√
4Z−f2(Z)

2

)]
=

1

πiλ
logZ, (Z ∈C) . (A.4)

Note that the end points of the cut A and B are determined through the relation√
f2(Z)− 4Z ∝

√
(Z −A)(Z −B), and they are given as the solution of

2f0f1 − 4

f2
1

= (A+B) ,
f2

0

f2
1

= AB. (A.5)

A.2 Stepwise two-cut solution

We consider the derivation of the stepwise two-cut solution (2.20) by developing the argu-

ment in the previous section. We assume that the resolvent v(Z) has the branch cuts on

C1: [A1, B1] and C2: [A2, B2] where A2 = e2πinB1 with a positive integer n as in (2.15).

On these cuts, the resolvent should satisfy the saddle point equation (2.3). As sketched in

figure 3, we assume that C1 locates on the n0-th sheet and C2 locates on the n0 +n-th sheet.

20The advantage of the derivation of the resolvent via holomorphy is that we do not need to perform the

integral of the ansatz (2.38) if we found a suitable holomorphic function. However, in the case of the CS

matrix models, we do not have a guidance principle to find such a holomorphic function and we have to do

it through trial and error. We mention related issues in footnote 23.
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We will see that the resolvent of the one-cut solution (A.3) plays a key role in this prob-

lem. As a trial, let us rotate Z → e2πin0Z around Z = 0 in the saddle point equation (A.4)

of the one-cut solution (A.3) and see what happens. On the left hand side of (A.4), since

v(Z) is non-singular at Z = 0, the rotation does not change the value.21 (We rotate Z so

that it avoids the branch cut of the square root of v(Z).) On the right hand side, since

logZ has the branch cut, the additional constant 2n0/λ appears. Thus, the resolvent of the

one-cut solution almost satisfies the saddle point equation (2.3) on C1 except the constant

term 2n0/λ. Similarly, on C2, 2(n0 + n)/λ arises.

Therefore, if we find a function v1(Z) which satisfies22

lim
ε→0

[v1(Z + iε) + v1(Z − iε)] =
2n0

λ
, (Z ∈ C1),

lim
ε→0

[v1(Z + iε) + v1(Z − iε)] =
2(n+ n0)

λ
, (Z ∈ C2), (A.6)

the resolvent of the stepwise two-cut solution may be given as

v(Z) = v0(Z) + v1(Z), (A.7)

where v0(Z) denotes the one-cut solution (A.3) which satisfies

lim
ε→0

[v0(Z + iε) + v0(Z − iε)] =
1

πiλ
logZ, (Z ∈ C). (A.8)

Here we have defined the cut C = C1 ∪ C2 on the 0-th sheet of the branch cut of logZ.

However v0(Z) is not exactly identical to (A.3). This is because, through the boundary

conditions (2.4), v0(Z) and v1(Z) should satisfy

lim
Z→∞

v0(Z) = s, lim
Z→∞

v1(Z) = 1− s,

lim
Z→0

v0(Z) = −s̃, lim
Z→0

v1(Z) = −(1− s̃), (A.9)

where s and s̃ are constants. (We have assumed that v0(Z) and v1(Z) are finite at Z = 0

and Z =∞.) Hence f(Z) is modified,

f(Z) = f0 + f1Z, f0 = e−πiλs̃, f1 = e−πiλs. (A.10)

Thus v0(Z) is given by (A.3) with this f(Z).

Next we consider v1(Z). Similar to the v0(Z), we define a function,

q(Z) = e−
n0πi
n e

πiλ
n
v1(Z) + e

n0πi
n e−

πiλ
n
v1(Z). (A.11)

21v(Z) has the logarithmic singularity at Z = 0 only on the second sheet of the square root.
22If the cut C1 or C2 crosses the branch cut of logZ, (A.6) should be modified. A simple way is rotating

the branch cut so that it avoids the cuts C1 and C2.
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We can see that q(Z) is smooth on the cut C1 and C2 through (A.6).23 (Note that we will

soon see that q(Z) has to have a pole.) By solving (A.11) with respect to v1(Z), we obtain

v1(Z) =
n

πiλ
log

(
q(Z) +

√
q2(Z)− 4

2

)
+
n0

λ
. (A.12)

Now we determine the function q(Z). Through the boundary conditions (A.9),

q(Z) satisfies

q1 := lim
Z→∞

q(Z) = e−
n0πi
n e

πiλ
n

(1−s) + e
n0πi
n e−

πiλ
n

(1−s),

q0 := lim
Z→0

q(Z) = e−
n0πi
n e−

πiλ
n

(1−s̃) + e
n0πi
n e

πiλ
n

(1−s̃). (A.13)

Besides, since v1(Z) should have the branch cut between A1 and B2, we demand√
q2(Z)− 4 ∝

√
(Z −A1)(Z −B2). (A.14)

However we can easily see that this condition and the boundary conditions (A.13) are

inconsistent if q(Z) is a holomorphic function on the entire complex plane. Hence we relax

holomorphy and allow q(Z) to have poles. A natural candidate of the location of the pole

is Z = D1 := B1 where the value of the right hand side of (A.6) changes. Then the

conditions (A.13) and (A.14) are satisfied, if

q(Z) =
q1Z − q0D1

Z −D1
, (A.15)

where q0 and q1 are related to A1, D1 and B2 via

2(4− q0q1)D1

q2
1 − 4

= − (A1 +B2) ,
(q2

0 − 4)D2
1

q2
1 − 4

= A1B2. (A.16)

It will be instructive to see how the resolvent v1(Z) (A.12) satisfies the equation (A.6).

On Z ∈ C1, (A.6) is satisfied because

lim
ε→0

[v1(Z + iε) + v1(Z − iε)]

=
2n0

λ
+

n

πiλ

[
log

(
q(Z)− i

√
4− q2(Z)

2

)
+ log

(
q(Z) + i

√
4− q2(Z)

2

)]
=

2n0

λ
, (Z ∈ C1). (A.17)

At Z = B1, the imaginary part of v1(Z) diverges logarithmically and the real part of

v1(Z) (A.12) changes by n/λ. Thus the right hand side of (A.17) becomes 2(n0 + n)/λ on

23qm(Z) = e
πiλm
n

(v1(Z)−n/λ) + e−
πiλm
n

(v1(Z)−n/λ) is also holomorphic on the cuts C1 and C2, if m is an

integer. However, the resolvent obtained through qm(Z) may involve constants which cannot be determined

through the boundary conditions unless m = ±1, and we do not consider these cases. Similar ambiguity

exists in f(Z) of (A.1) and other cases too. For the composite type multi-cut solutions, we may need general

m. For example, q(Z) with m = 2 appears in (2.35).
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C2, and it satisfies (A.6) correctly. The configuration of the branch cut corresponding to

this divergence can be seen in figure 6. Note that, although the cuts [A1, B2] exist on the

every sheet of logZ, v(Z) (A.7) satisfies the equation (2.3) only on C1 on the n0-th sheet

and on C2 on the n0 + n-th sheet.

By using the obtained v0(Z) and v1(Z), the stepwise two-cut solution is given by

v(Z) =
1

πiλ
log

(
f(Z)−

√
f2(Z)− 4Z

2

)
+

n

πiλ
log

(
q(Z) +

√
q2(Z)− 4

2

)
− n0

λ
,

f(Z) = f0 + f1Z, q(Z) =
q1Z − q0D1

Z −D1
. (A.18)

This expression involves five constants: f0, f1, q0, q1 and D1, and we can rewrite f0, f1,

q0 and q1 by A1, B2 and D1 through (A.5) and (A.16). Also we can fix A1, B2 and D1

by imposing the normalization condition (2.23) and the boundary conditions (A.9), (A.10)

and (A.13), and will obtain the solution consistently. This agrees with the stepwise two-cut

solution via the integral formula (2.20).

The generalization of such a derivation via holomorphy to the stepwise multi-cut so-

lution (2.28) is straightforward. However the generalization to the composite type solu-

tion (2.38) would be difficult. As we can see in (B.5), the holomorphic function f(Z) has

a pole at Z = −1, which is not the location of any step. Such additional poles may appear

in the composite solution generally and, we have not understood the correct rule for the

assumptions on f(Z) and q(Z) in these cases yet.

B Comments on the positivity of {ni}

When we considered the stepwise multi-cut solutions, we assumed that {ni} in (2.26) are

positive integers. In this appendix, we discuss why we imposed this assumption.

Actually we can find a numerical solution of the saddle point equation (1.2) plotted in

figure 13 (left) through the Newton method. This solution seems to have “a negative step”

against our assumption. (Here “a negative step” means a negative nj in (2.26).) However

we cannot distinguish a negative step and a small gap through the numerical calculation.

(Here “a gap” means aj+1 6= bj + 2πinj in (2.26).)

If it was a negative step, we would naively expect that this solution may be de-

scribed by our stepwise multi-cut solution (2.28) with a negative n. However, if we set

n negative, the eigenvalue density (2.29) near the negative step may become negative24 as

ρ(Z) ∼ n log(Z −D). Since negative eigenvalue densities are not allowed physically, our

stepwise multi-cut solution (2.28) may not be applied to the solution in figure 13. This is

one reason that we restrict {ni} to be positive.

In addition, we can indeed find a solution which has a gap rather than the negative

step by composing two stepwise two-cut solutions. See the sketch in figure 13 (right). In

24The argument of the appearance of the negative eigenvalue density is subtle, since it is generally difficult

to find how the eigenvalues are distributed between the end points A1 and {Bi} of the cuts. However for a

small real λ, the eigenvalues are distributed parallel to the real axis as we can read off from (2.24), and we

can indeed see that a negative n always causes negative eigenvalue density.
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2πi2πi
   













N1 = 10

N1 = 10
N2 = 40

N2 = 40

Symmetric four-cut solution

Im

Re

z
b+ πin

a− πin

−a+ πin

−b− πin

2πin 2πin

N1

N1

N2

N2

d+ πin

−d− πin

−d+ πin

d− πin

Composite (two+two)-cut solution

Figure 13. (Left) Symmetric four-cut solution through the Newton method (λ = 0.5, N = 100).

The question is whether the red arrow interval is “a negative step” or “a small gap”. (Right) Sketch

of the composite (two+two)-cut solution. This type of the solution may describe the symmetric

four-cut solution if a is sufficiently small.

the rest of this appendix, we will derive this solution and show another evidence that the

negative step solution may not be allowed. Besides we will see that this solution itself has

several interesting properties.

We assume that the solution is symmetric under z → −z and the four cuts locate on

[−b− πin,−d− πin], [−d+ πin,−a+ πin], [a− πin, d− πin] and [d+ πin, b+ πin] as in

figure 13 (right). We take n positive even for simplicity.25

Through the formula for the general multi-cut solution (2.38), we obtain the resolvent

v(Z) =

∮
C

(1)
1 ∪C

(1)
2 ∪C

(2)
1 ∪C

(2)
2

dW

4πi

1

πiλ

logW

Z−W

√
(Z−A)(Z−1/A)(Z−B)(Z−1/B)

(W−A)(W−1/A)(W−B)(W−1/B)
, (B.1)

where the contour C
(1)
1 , C

(1)
2 , C

(2)
1 and C

(2)
2 encircle [1/B, 1/D], [1/D, 1/A], [A,D] and

[D,B] respectively as shown in figure 14. By regarding the value of logW on the cuts, this

integral becomes

v(Z) = v0(Z) + v1(Z), (B.2)

v0(Z) =

∮
C(1)∪C(2)

dW

4πi

1

πiλ

logW

Z −W

√
(Z −A)(Z − 1/A)(Z −B)(Z − 1/B)

(W −A)(W − 1/A)(W −B)(W − 1/B)
, (B.3)

v1(Z) =

∮
C

(1)
1 ∪C

(2)
1

dW

4πi

−n/λ
Z −W

√
(Z −A)(Z − 1/A)(Z −B)(Z − 1/B)

(W −A)(W − 1/A)(W −B)(W − 1/B)
,

+

∮
C

(1)
2 ∪C

(2)
2

dW

4πi

+n/λ

Z −W

√
(Z −A)(Z − 1/A)(Z −B)(Z − 1/B)

(W −A)(W − 1/A)(W −B)(W − 1/B)
, (B.4)

where the contour C(1) and C(2) encircle the cut [1/B, 1/A] and [A,B] respectively as

shown in figure 14.

25In the case of an odd n, the branch cuts C
(j)
i may locate near the branch cut of the logZ in the saddle

point equation, and it makes the analysis a bit complicated.
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W

0

0

−∞

−∞

−∞ 0
B1/B 1/A A

C
(1)
1 C

(2)
1

C
(2)
2C

(1)
2

C(1) C(2)

-sheetn

2

−n

2
-sheet

0-sheet
D1/D

Figure 14. (Left) Sketch of the integral contours of the composite (two+two)-cut solution (B.1).

(Right) Branch cuts of the resolvent of the (two+two)-cut solution (B.5) plus (B.11) on the Z-plane.

The solid lines denote the branch cuts on the first sheet of the square root. The broken lines denote

the branch cuts on the second sheet of the square root.

First we evaluate v0(Z). Through a similar computation to (2.34) and (3.8), we obtain

v0(Z) =
1

πiλ
log

(
f(Z)−

√
f2(Z)−4Z

2

)
, f(Z) =

f0+f1Z+f0Z
2

Z+1
,

f0 =
2
√
AB(√

A+
√
B
)(

1+
√
AB
) , f1 =

2
(√

B(1+A)(B+1/B)−
√
A(1+B)(A+1/A)

)
√
AB(B+1/B−A−1/A)

.

(B.5)

Here we can show that
√
f2 − 4Z ∝

√
(Z −A)(Z − 1/A)(Z −B)(Z − 1/B). This term

resembles (2.35) and the DMP solution, while it shows a logarithmic divergence at Z = −1.

The branch cut from Z = −1 may terminate at Z = −1 on the second sheet of the square

root. See figure 14.

Next we consider v1(Z). Since this integral is complicated, we employ holomorphy

discussed in appendix A to derive v1(Z). Similar to (A.6), v1(Z) satisfies

−n
λ

= lim
ε→0

[v1(Z + iε) + v1(Z − iε)] , (Z ∈ [1/B, 1/D], [A,D]),

+
n

λ
= lim

ε→0
[v1(Z + iε) + v1(Z − iε)] , (Z ∈ [1/D, 1/A], [D,B]). (B.6)

Besides v1(Z) is symmetric under

v1(1/Z) = −v1(Z), (B.7)

which can be seen from the definition of v1(Z) (B.4). We also assume that v1(Z) satisfies

the boundary conditions

lim
Z→∞

v1(Z) = s, lim
Z→0

v1(Z) = −s, (B.8)

where s is a constant and the symmetry (B.7) has been taken into account.
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From (B.6), we can find a function which is holomorphic on the cuts as

g(Z) = e
πiλ
n
v1(Z) − e−πiλn v1(Z). (B.9)

Besides, through the boundary conditions (B.8), g(Z) satisfies

g2 := lim
Z→∞

g(Z) = e
πiλ
n
s − e−πiλn s, lim

Z→0
g(Z) = e−

πiλ
n
s − eπiλn s = −g2. (B.10)

By solving (B.9), we obtain

v1(Z) =
n

πiλ
log

(
g(Z) +

√
g2(Z) + 4

2

)
. (B.11)

Here we impose the following relation√
g2(Z) + 4 ∝

√
(Z −A)(Z − 1/A)(Z −B)(Z − 1/B), (B.12)

so that v1(Z) has the suitable cuts. Similar to q(Z) in appendix A, g(Z) has to have some

singularities in order to satisfy both this relation and the boundary conditions (B.10). Since

the left hand side of the relations (B.6) is discontinuous at Z = D and 1/D, we assume

that g(Z) has poles there. Also g(Z) satisfies g(1/Z) = −g(Z) through (B.7) and (B.9).

Then we can find g(Z) which satisfies (B.10) and (B.12) as

g(Z) =
g2(Z2 − 1)

(Z −D)(Z − 1/D)
, (B.13)

where the following relations have been imposed on the constants

−8
D+1/D

g2
2 +4

=−
(
A+

1

A
+B+

1

B

)
,
−2g2

2 +4D2+4/D2+16

g2
2 +4

= 2+

(
A+

1

A

)(
B+

1

B

)
.

(B.14)

These relations can be written as

g2 = 2

√
2(D + 1/D)− (A+ 1/A+B + 1/B)

A+ 1/A+B + 1/B
, (B.15)

(D + 1/D)2 − 4κ (D + 1/D) + 4 = 0, κ :=
4 + (A+ 1/A)(B + 1/B)

2(A+ 1/A+B + 1/B)
, (B.16)

and the second equation leads to

D = exp
[
arccosh

(
κ+

√
κ2 − 1

)]
. (B.17)

In this way, g2 and D are determined by A and B.

We can confirm that the obtained v1(Z) is consistent with the integral formula (B.4)

by comparing them numerically.26 See figure 15.

26If we take Z →∞ in the integral formula (B.4), v1(Z) linearly grows as

lim
Z→∞

v1(Z) = Z

[∮
C

(1)
1 ∪C

(2)
1

dW

4πi

−n/λ√
(W −A)(W − 1/A)(W −B)(W − 1/B)

+

∮
C

(1)
2 ∪C

(2)
2

dW

4πi

+n/λ√
(W −A)(W − 1/A)(W −B)(W − 1/B)

]
+O(Z0), (B.18)

and the boundary condition (2.4) demands vanishing this term. We can numerically check that, if D is

given by (B.17) which has been derived via holomorphy, this term becomes 0. This coincidence supports

the consistency of the integral formula (B.4) and holomorphy.
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



Re (v1(Z))

Z

Real part of v1(Z)

   




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−Im (v1(Z))

Z

Imaginary part of v1(Z)

Figure 15. Plots of v1(Z) via holomorphy (B.11) (red curves) and the integral formula (B.4) (blue

curves). We take A = 1.1 and B = 1.5, and D is fixed via (B.17). (See footnote 26 about D

in (B.4).) This agreement indicates that holomorphy provides the answer of the integral (B.4).

Note that the plateaus in the real part correspond to the left hand side of (B.6). Besides, the

imaginary parts of v1(Z) may provide the eigenvalue densities.

Now we obtain the resolvent v = v0 + v1 via (B.5) and (B.11). It involves the unde-

termined constant A and B. They can be fixed by the boundary condition (2.4) and the

normalization condition

N1

N
=

∫ D

A
ρ(Z)dZ =

1

4πi

∮
C

(2)
1

w(Z)

Z
dZ. (B.19)

We can numerically solve these conditions for given n, λ,N1/N . See figure 16 for the result

at a weak coupling. It correctly reproduces the solution obtained through the Newton

method.

Lastly we discuss the properties of the solution. One question is whether it continues to

a negative step solution. To answer it, we regard A as the input parameter of the solution

instead of N1/N . As we take A → 1 (a → 0), if the solution continues to a negative step

solution, the cut [a, d] should remains finite. However the relation (B.17) tells us that

lim
a→0

d =

√
2a(B − 1)

B + 1
+O(a3/2). (B.20)

Thus the cut shrinks as a → 0, and the solution rather continues to the stepwise two-cut

solution with the cuts [−b, 0] and [0, b]. This result may indicate that the negative step

is dynamically not allowed, and the numerical result plotted in figure 13 is our composite

type solution.27

27By using the assumption about the four cuts and the change of the variables uj = ±πin+ xj where ±
depends on which cut uj belongs to, we can show that {xj} feel an effective potential

V (x) = n[−x− d+ 2(x+ d)θ(x+ d)− 2xθ(x) + 2(x− d)θ(x− d)] (B.21)

at a weak coupling (|λ| � 1) [1]. Then the non-existence of the negative step solution implies the non-

existence of “one-cut solution” in this potential. We presume that the potential at x = 0 is so sharp that

the one-cut solution is not allowed. See [56] for a related problem.

– 32 –
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







4πi4πi

N2 = 35

N1 = 15

N1 = 15

N2 = 35

a
b

d−d −a
−b

Figure 16. Composite (two+two)-cut solution via the Newton method (blue) and our result (B.11)

(red). We take n = 2, λ = 0.25, N1 = 15 and N2 = 35 in the Newton method. In our method,

we ignore v0 by regarding small λ, and consider the contribution of v1 only. We solve the condi-

tions (B.19) and (2.4) numerically, and find A and B. These two results agree very well.
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[arXiv:0907.4082] [INSPIRE].

[29] Y. Hatsuda and K. Okuyama, Resummations and Non-Perturbative Corrections, JHEP 09

(2015) 051 [arXiv:1505.07460] [INSPIRE].

– 34 –

https://doi.org/10.1093/ptep/ptv145
https://arxiv.org/abs/1507.01678
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.01678
https://doi.org/10.1088/1751-8121/aa5f69
https://doi.org/10.1088/1751-8121/aa5f69
https://arxiv.org/abs/1608.02959
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02959
https://doi.org/10.1007/s00220-012-1485-0
https://arxiv.org/abs/0712.2824
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2824
https://doi.org/10.1007/JHEP03(2010)089
https://arxiv.org/abs/0909.4559
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4559
https://doi.org/10.1007/JHEP10(2010)013
https://arxiv.org/abs/1003.5694
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.5694
https://doi.org/10.1007/JHEP05(2012)159
https://arxiv.org/abs/1012.3210
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3210
https://doi.org/10.1007/JHEP03(2011)127
https://doi.org/10.1007/JHEP03(2011)127
https://arxiv.org/abs/1012.3512
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3512
https://doi.org/10.1007/s00220-011-1253-6
https://arxiv.org/abs/1007.3837
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3837
https://doi.org/10.1016/0550-3213(96)00295-7
https://doi.org/10.1016/0550-3213(96)00295-7
https://arxiv.org/abs/hep-th/9604089
https://inspirehep.net/search?p=find+EPRINT+hep-th/9604089
https://doi.org/10.1007/JHEP07(2013)100
https://doi.org/10.1007/JHEP07(2013)100
https://arxiv.org/abs/1305.0789
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0789
https://doi.org/10.1007/JHEP07(2015)047
https://arxiv.org/abs/1412.3939
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3939
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
https://doi.org/10.1103/PhysRevD.58.046004
https://arxiv.org/abs/hep-th/9802042
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802042
https://doi.org/10.1088/1126-6708/2008/10/091
https://arxiv.org/abs/0806.1218
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1218
https://doi.org/10.1007/s00220-004-1194-4
https://arxiv.org/abs/hep-th/0207096
https://inspirehep.net/search?p=find+EPRINT+hep-th/0207096
https://doi.org/10.1088/1126-6708/2004/02/010
https://arxiv.org/abs/hep-th/0211098
https://inspirehep.net/search?p=find+EPRINT+hep-th/0211098
https://doi.org/10.1142/S0217732304014100
https://doi.org/10.1142/S0217732304014100
https://arxiv.org/abs/hep-th/0212128
https://inspirehep.net/search?p=find+EPRINT+hep-th/0212128
https://doi.org/10.1007/s00023-010-0044-5
https://arxiv.org/abs/0907.4082
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.4082
https://doi.org/10.1007/JHEP09(2015)051
https://doi.org/10.1007/JHEP09(2015)051
https://arxiv.org/abs/1505.07460
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.07460


J
H
E
P
0
8
(
2
0
1
8
)
1
6
8

[30] M. Honda, How to resum perturbative series in 3d N = 2 Chern-Simons matter theories,

Phys. Rev. D 94 (2016) 025039 [arXiv:1604.08653] [INSPIRE].

[31] M. Honda, Supersymmetric solutions and Borel singularities for N = 2 supersymmetric

Chern-Simons theories, Phys. Rev. Lett. 121 (2018) 021601 [arXiv:1710.05010] [INSPIRE].

[32] A. Chattopadhyay, P. Dutta and S. Dutta, Emergent Phase Space Description of Unitary

Matrix Model, JHEP 11 (2017) 186 [arXiv:1708.03298] [INSPIRE].

[33] D.J. Gross and E. Witten, Possible Third Order Phase Transition in the Large N Lattice

Gauge Theory, Phys. Rev. D 21 (1980) 446 [INSPIRE].

[34] S.R. Wadia, A Study of U(N) Lattice Gauge Theory in 2-dimensions, arXiv:1212.2906

[INSPIRE].

[35] P.V. Buividovich, G.V. Dunne and S.N. Valgushev, Complex Path Integrals and Saddles in

Two-Dimensional Gauge Theory, Phys. Rev. Lett. 116 (2016) 132001 [arXiv:1512.09021]

[INSPIRE].
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