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Abstract. 2-ultrametrics are a generalization of the ultrametrics and it
is known that there is a one-to-one correspondence between the set of
2-ultrametrics and the set of indexed 2-hierarchies (which are a gener-
alization of indexed hierarchies). Cycle-complete dissimilarities, recently
introduced by Trudeau, are a generalization of ultrametrics and form a
subset of the 2-ultrametrics; therefore the set of cycle-complete dissimi-
larities corresponds to a subset of the indexed 2-hierarchies. In this study,
we characterize this subset as the set of indexed acyclic 2-hierarchies,
which in turn allows us to characterize the cycle-complete dissimilarities.
In addition, we present an O(n2 logn) time algorithm that, given an ar-
bitrary cycle-complete dissimilarities of order n, finds the corresponding
indexed acyclic 2-hierarchy.

Keywords: Hierarchical classification ·Quasi-hierarchy ·Quasi-ultrametric
· Cluster analysis.

1 Introduction

Ultrametrics appear in a wide variety of research fields, including phylogenet-
ics [10], cluster analysis [9], and cooperative game theory [2]. They have, among
others, two important properties: there is a one-to-one correspondence between
the set of ultrametrics and the set of indexed hierarchies [6, 8, 3], and every
dissimilarity has a corresponding subdominant ultrametric [7].

2-ultrametrics [7] are a generalization of the ultrametrics and maintain their
important properties: there is a one-to-one correspondence between the set of the
2-ultrametrics and the set of indexed 2-hierarchies [7] (which are a generalization
of indexed hierarchies), and every dissimilarity has a corresponding subdominant
2-ultrametric [7].

Motivated by the work of Trudeau [11], Ando et al. [1] introduced the concept
of cycle-complete dissimilarities. These form a subset of the 2-ultrametrics, so
there is a corresponding subset of the indexed 2-hierarchies. In this study, we
characterize this subset as the set of indexed acyclic 2-hierarchies, which in
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turn allows us to characterize the cycle-complete dissimilarities. In addition, we
present an O(n2 log n) time algorithm that, given an arbitrary cycle-complete
dissimilarity of order n, finds the corresponding indexed acyclic 2-hierarchy.

The rest of this paper is organized as follows. In Section 2, we review 2-
ultrametrics and 2-hierarchies and the one-to-one correspondence between them.
In Section 3, we characterize the cycle-complete dissimilarities in terms of in-
dexed 2-hierarchies. In Section 4, we present an O(n2 log n) time algorithm for
finding the indexed 2-hierarchy corresponding to a given cycle-complete dissim-
ilarities. Finally, in Section 5, we conclude this paper.

2 2-ultrametrics and indexed 2-hierarchies

Let X be a finite set. A mapping d:X ×X → R+ is called a dissimilarity on X
if for all x, y ∈ X we have

d(x, y) = d(y, x) and d(x, x) = 0. (1)

A dissimilarity d on X is proper if d(x, y) = 0 implies x = y for all x, y ∈ X. In
addition, it is called a quasi-ultrametric [5] if for all x, y, z, t ∈ X we have

max{d(x, z), d(y, z)} ≤ d(x, y) =⇒ d(z, t) ≤ max{d(x, t), d(y, t), d(x, y)}. (2)

A family K of subsets of X is called a quasi-hierarchy on X if K satisfies the
following conditions.

(i) X ∈ K, ∅ 6∈ K,
(ii) {x} ∈ K for all x ∈ X,

(iii) ∀A,B ∈ K : A ∩B ∈ K ∪ {∅},
(iv) ∀A,B,C ∈ K : A ∩B ∩ C ∈ {A ∩B,B ∩ C,C ∩A}.

For any quasi-hierarchy K on X, a mapping f :K → R+ satisfying the following
two conditions is called an index of K and the pair (K, f) is called an indexed
quasi-hierarchy on X.

(1) ∀x ∈ X: f({x}) = 0,
(2) ∀A,B ∈ K:A ⊂ B =⇒ f(A) < f(B).

A quasi-hierarchy (X,K) is said to be a 2-hierarchy if it also satisfies

(v) ∀A,B ∈ K : A ∩B 6∈ {A,B} =⇒ |A ∩B| ≤ 1.

Likewise, a dissimilarity d on X is called a 2-ultrametric [7] if for all x, y, z, t ∈ X,
we have

d(x, y) ≤ max{d(x, z), d(y, z), d(x, t), d(y, t), d(z, t)}. (3)

Let d be a dissimilarity on X and σ be a positive real number. Then, the
undirected graph Gσd = (X,Eσd ) defined by

Eσd = {{x, y} | x, y ∈ X,x 6= y, d(x, y) ≤ σ} (4)
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is called the threshold graph of d at the threshold σ. We denote the set of all the
maximal cliques of threshold graphs of d’s by Kd, i.e.,

Kd =
⋃
σ≥0

{K | K is a maximal clique of Gσd}. (5)

In addition, for each K ∈ Kd we define diamd(K) as

diamd(K) = max{d(x, y) | x, y ∈ K} (6)

and call it the diameter of K with respect to d.
With these definitions in place, we can now present the following useful

lemma, followed by two propositions that clarify the relationships between quasi-
ultrametrics and indexed quasi-hierarchies and between 2-ultrametrics and in-
dexed 2-hierarchies.

Lemma 1. Let d be a dissimilarity on X. If K ∈ Kd, then K is a maximal
clique of Gσd for σ = diamd(K).

Proof. Let K ∈ Kd be arbitrary and σ = diamd(K). Since d(x, y) ≤ diamd(K) =
σ for all x, y ∈ K, K is a clique of Gσd . Also, K is not a clique of Gσ

′

d for any σ′

such that σ′ < σ since d(x, y) = σ for some x, y ∈ K. Therefore, K is a maximal
clique of Gσ

′′

d for some σ′′ such that σ ≤ σ′′. However, since for such a σ′′, every

clique of Gσd is a clique of Gσ
′′

d , it follows that K must be a maximal clique of
Gσd . ut

Proposition 1 (Diatta and Fichet [5]). A proper dissimilarity d on X is a
quasi-ultrametric if and only if (Kd,diamd) is an indexed quasi-hierarchy on X.

Proposition 2 (Jardin and Sibson [7]). A proper dissimilarity d on X is a
2-ultrametric if and only if (Kd,diamd) is an indexed 2-hierarchy on X.

3 Characterizing cycle-complete dissimilarities in terms
of their associated indexed 2-hierarchies

Let d be a dissimilarity on X. First, we introduce the complete weighted graph
KX , whose vertex set is X and whose edges {x, y} have weight d(x, y) = d(y, x).

We call a sequence
F : x0, x1, · · · , xl−1, xl (7)

of elements in X a cycle in KX if all the xi (i = 0, · · · , l − 1) are distinct and
x0 = xl. A dissimilarity d on X is called cycle-complete [1] if for each cycle (7)
in KX and each chord {xp, xq} of F , we have

d(xp, xq) ≤
l

max
i=1

d(xi−1, xi). (8)

Proposition 3. Let d be a dissimilarity on X. If d is cycle-complete, then it is
also a 2-ultrametric.
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Proof. Let x, y, z, t be arbitrary distinct elements of X. If d is cycle-complete,
then we have

d(x, y) ≤ max{d(x, z), d(z, y), d(y, t), d(t, x)} (9)

≤ max{d(x, z), d(z, y), d(x, t), d(y, t), d(z, t)}. (10)

ut

If a dissimilarity d on X is not cycle-complete, then there must exist a cycle
F : x0, x1, · · · , xl−1, xl(= x0) of KX and a chord {xp, xq} of F such that (8) does
not hold. We call such a cycle an invalid cycle in KX .

Lemma 2. Let d be a dissimilarity on X that is not cycle-complete and

F :x0, x1, · · · , xl(= x0) (11)

be an invalid cycle in KX of minimum length l. If l ≥ 5, then for all 0 ≤ p ≤ l−3
and 2 ≤ q ≤ l − 1 such that 2 ≤ q − p ≤ l − 2, we have

l
max
i=1

d(xi−1, xi) < d(xp, xq) = const. (12)

Proof. Let F be an invalid cycle (11) of minimum length l, where l ≥ 5. Let

δ = max{d(xp, xq) | {xp, xq} is a chord of F} (13)

and δ = d(xp, xq) for some chord {xp, xq} of F . We can assume without loss of
generality that 0 ≤ p and p+ 3 ≤ q ≤ l − 1. Let

Y = {p, p+ 1, · · · , q},
W = {q, q + 1, · · · , l − 1, 0, · · · , p}.

Let {xi, xj} be a chord of F such that {i, j} ⊆ Y . If d(xi, xj) < δ, then

F ′:x0, x1, · · · , xi−1, xi, xj , xj+1, · · · , xl−1, xl(= x0) (14)

is an invalid cycle with a length less than l, contradicting the initial choice of
F . Hence, we must have d(xi, xj) = δ. Similarly, for a chord {xi, xj} of F such
that {i, j} ⊆W , we have d(xi, xj) = δ.

Next, let {xi, xj} be a chord of F such that i ∈ Y −W and j ∈ W − Y .
If i = p + 1, then, since d(xp+1, xq) = δ, we have d(xp+1, xj) = δ by the same
argument as above. If i > p+ 1, then, since {xp, xp+2} is a chord of F such that
{p, p+ 2} ⊆ Y , we have d(p, p+ 2) = δ. Then, we again have that d(xi, xj) = δ
by the same argument as above. ut

For a family K of subsets of X, a sequence

C0, C1, · · · , Cl−1, Cl (15)

of subsets in K is called a cycle in K if we have



Characterizing Cycle-Complete Dissimilarities 5

(i) Ci−1 ∩ Ci 6∈ {Ci−1, Ci, ∅} for i = 1, · · · , l,
(ii) Ci ∩Cj = ∅ for 0 ≤ i ≤ l− 3 and 2 ≤ j ≤ l− 1 with 2 ≤ j − i ≤ l− 2, and

(iii) C0 = Cl,

where l ≥ 3. If K has no cycle, we call it acyclic .

Theorem 1. A proper dissimilarity d on X is cycle-complete if and only if
(Kd,diamd) is an indexed acyclic 2-hierarchy on X.

Proof. Here, we treat the “if” and “only if” parts separately.
(The “only if” part:) If we assume d is cycle-complete, that means it is a

2-ultrametric (Proposition 3), and hence, (Kd,dimd) is an indexed 2-hierarchy
(Proposition 2). Thus, it only remains to show that Kd is acyclic.

Suppose, to the contrary, that there is a cycle

K0,K1, · · · ,Kl−1,Kl(= K0) (16)

in Kd. Then, let
δ = max{diamd(Ki) | i = 0, · · · , l − 1} (17)

and i∗ = 0, · · · , l − 1 such that diamd(Ki∗) = δ. If

d(x, y) ≤ δ for all x, y ∈
l−1⋃
i=0

Ki, (18)

then ∪l−1i=0Ki would be a clique of Gδd. However, this is impossible since Ki∗ is a
maximal clique of Gδd (Lemma 1). Hence, there would have to exist x, y ∈ ∪l−1i=0Ki

such that d(x, y) > δ. Without loss of generality, suppose that x ∈ Ka and y ∈ Kb

for 0 ≤ a < b ≤ l − 1 and choose xi ∈ Ki ∩ Ki+1 for i = 0, · · · , l − 1. For the
sake of simplicity, we assume that x, y 6∈ Ki ∩Ki+1 for i = 0, · · · , l − 1. Then,
we could construct an invalid cycle F in KX via

F :x0, · · · , xa−1, x, xa, · · · , xb−1, y, xb, · · · , xl−1, xl(= x0), (19)

contradicting the cycle-completeness of d.
(The “if” part:) Here, we assume (Kd,diamd) is an indexed acyclic 2-hierarchy

on X and show that the mapping d is cycle-complete. By Proposition 2, d is a 2-
ultrametric. If d is not cycle-complete, then there would have to exist an invalid
cycle in KX . Let F : x0, x1, · · · , xl−1, xl(= x0) be such a cycle of minimum length
l.

First, we consider the case where l ≥ 5. By Lemma 2, we have

d(xp, xq) >
l

max
i=1

d(xi−1, xi) for all chord {xp, xq} of F . (20)

For each i = 0, · · · , l − 1, let us choose a maximal clique Ki of Gσd such that
{xi, xi+1} ⊆ Ki, where σ = maxli=1 d(xi−1, xi). By (20), we would have

Ki ∩ {x0, x1, · · · , xl−1} = {xi, xi+1} (i = 0, · · · , l − 1). (21)
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In particular, all Ki (i = 0, · · · , l−1) would be pairwise distinct. Also, since each
Ki is a maximal clique of Gσd , we would have

Ki ∩Ki+1 6∈ {Ki,Ki+1, ∅} (i = 0, · · · , l − 1). (22)

Let i and j be such that 0 ≤ i, j ≤ l − 1 and 2 ≤ j − i ≤ l − 2. We now show
that Ki ∩Kj = ∅. To the contrary, suppose that x ∈ Ki ∩Kj . Then, we would
have

d(xi, x) ≤ σ and d(x, xj+1) ≤ σ. (23)

From this, it would follow that

F ′:x0, · · · , xi, x, xj+1, · · · , xl

is an invalid cycle of length less than l, contradicting the choice of F . Thus,
Ki ∩ Kj = ∅, so we would have shown that K0,K1, · · · ,Kl−1,Kl(= K0) is a
cycle in Kd, a contradiction.

Next, we consider the case where l = 4. Let

F :x0, x1, x2, x3, x4(= x0) (24)

be an invalid cycle in KX and σ = max{d(xi−1, xi) | i = 1, 2, 3, 4}. We assume,
without loss of generality, that d(x0, x2) > σ and show that d(x1, x3) > σ.
Suppose, to the contrary, that d(x1, x3) ≤ σ. Then, there would exist maximal
cliques K and K ′ of Gσd such that {x0, x1, x3} ⊆ K and {x1, x2, x3} ⊆ K ′,
and hence, {x1, x3} ⊆ K ∩ K ′. This contradicts the assumption that Kd is a
2-hierarchy since K 6= K ′ by d(x0, x2) > σ. Then, by defining Ki as a maximal
clique of Gσd such that {xi, xi+1} ⊆ Ki for i = 0, 1, 2, 3, we would have (21) and
(22), similar to the l ≥ 5 case.

Now, suppose that for some x ∈ X − {x0, x1, x2, x3} we have x ∈ K0 ∩K2.
Then, there would have to exist a maximal clique K of Gσd such that {x0, x, x3} ⊆
K. It would then follow that K ∩K0 ⊇ {x0, x} and K 6= K0, contradicting the
assumption that Kd is a 2-hierarchy. Therefore, we have that K0 ∩K2 = ∅ and
similarly that K1 ∩K3 = ∅. Then, K0,K1,K2,K3,K4(= K0) would be a cycle
in Kd, contradicting the assumption that Kd is acyclic. ut

Corollary 1. The mapping d 7→ (Kd,diamd) is a one-to-one correspondence be-
tween the set of proper cycle-complete dissimilarities on X and the set of indexed
acyclic 2-hierarchies on X.

4 Algorithm

A vertex v of a connected graph G is called a cut vertex if G−v is not connected.
A graph is called 2-connected if it is connected and has no cut vertex. Note that
a graph with only one vertex is 2-connected. A maximal 2-connected subgraph
of a graph G is called a 2-connected component of G.

Lemma 3. Let d be a cycle-complete dissimilarity on X. Then, for all σ ≥ 0,
the vertex set of a 2-connected component of Gσd is a clique of Gσd .
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Input : Proper cycle-complete dissimilarity d on X.
Output: Indexed acyclic 2-hierarchy (Kd, diamd).

1 Let
0 < σ1 < · · · < σl

be the distinct values of d(x, y) (x, y ∈ X,x 6= y);

2 K ← K(0) ← {{x} | x ∈ X};
3 f({x})← 0 (x ∈ X);
4 for p = 1 to l do

5 Let K(p) be the vertex sets of the 2-connected components of G
σp
d ;

6 L ← K(p) −K(p−1);
7 diamd(K)← σp (K ∈ L);
8 K ← K ∪ L;

9 end
10 return (K, f);

Algorithm 1: Outline of the algorithm for computing (Kd,diamd).

Proof. Let Q ⊆ X be the vertex set of a 2-connected component of Gσd . If
|Q| ≤ 2, then Q is a clique of Gσd by the definition of a 2-connected component,
so we assume |Q| ≥ 3. Suppose, to the contrary, that there exist distinct vertices
x, y ∈ Q such that {x, y} 6∈ Eσd . By the definition of Q, there are two openly
disjoint paths P1 and P2 in Gσd connecting x and y. By concatenating P1 and
P2, we can create a cycle in KX , where all the edges have weights of at most σ.
Since {x, y} is a chord of this cycle, it follows from the cycle-completeness of d
that d(x, y) ≤ σ, and hence {x, y} ∈ Eσd , a contradiction. ut

The set of maximal cliques of the threshold graph of a cycle-complete dis-
similarity is characterized as follows.

Lemma 4. Let d be a cycle-complete dissimilarity on X and σ ≥ 0. Then,
K ⊆ X is a maximal clique of Gσd = (X,Eσd ) if and only if K is the vertex set
of some 2-connected component of Gσd .

Proof. Assume that K ⊆ X is a maximal clique of Gσd = (X,Eσd ). Since K
corresponds to a 2-connected subgraph of Gσd , it is a subset of the vertex set Q
of some 2-connected component of Gσd . However, since Q is a clique (Lemma 3),
we must have K = Q by the maximality of K. Conversely, if Q ⊆ X is the vertex
set of a 2-connected component of Gσd , then Q is a clique of Gσd (Lemma 3). If
this clique is not maximal, then there must exist a vertex x ∈ X −Q such that
{x, y} ∈ Eσd for all y ∈ Q, contradicting the assumption that Q is the vertex set
of a 2-connected component of Gσd . ut

Based on Lemma 4, we have designed an algorithm for constructing the
indexed acyclic 2-hierarchy (Kd,diamd) for a given proper cycle-complete dis-
similarity d, as outlined in Algorithm 1. The validity of the algorithm follows
straightforwardly from the propositions presented above.
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Input : Proper cycle-complete dissimilarity d on X.
Output: Indexed acyclic 2-hierarchy (Kd, diamd).

1 Let e1, . . . , em be the edges of KX ordered in nondecreasing order of d, where

m = n(n−1)
2

;
2 K ← {{x} | x ∈ X};
3 f({x})← 0 (x ∈ X);
4 L ← ∅;
5 for i = 1 to m do
6 {x, y} ← ei;
7 if x and y are in different 2-connected components of Gi−1 then
8 if x and y are in the same component then
9 Let P be a path connecting x and y in Gi−1;

10 Let Q1, . . . , Ql be the vertex sets of the 2-connected components of
Gi−1 which contain at least two vertices of P ;

11 Q←
⋃l
k=1Qk;

12 L ← L ∪ {Q} − {Q1, . . . , Ql};
13 else
14 Q← {x, y};
15 L ← L ∪ {Q};
16 end

17 end
18 if d(ei) < d(ei+1) or i = m then
19 K ← K ∪ L;
20 f(K)← d(ei) (K ∈ L);
21 L ← ∅;
22 end

23 end
24 return (K, f);

Algorithm 2: More detailed description of the algorithm for computing
(Kd,diamd).

It is not immediately clear how to implement Algorithm 1 efficiently, how-
ever. To achieve this, we need to able to identify the 2-connected components
of a threshold graph efficiently. Let e1, . . . , em be the edges of KX arranged in

nondecreasing order of d, where m = n(n−1)
2 . Then, we construct the vertex sets

of the 2-connected components of the undirected graph Gi = (X,Ei) incremen-
tally for i = 0, 1 · · · ,m, where Ei is defined by Ei = {e1, · · · , ei}. A more detailed
description of the algorithm is given in Algorithm 2.

Let G = (X,E) be an undirected graph whose vertex set is X. Let A and
Q be the set consisting of all the cut vertices and the set of the 2-connected
components of G, respectively. The block forest (cf. [4]) of G is the bipartite
graph B = (A,Q;F ) defined by F = {(a,Q) | a ∈ A,Q ∈ Q, a ∈ Q}, as shown
in Figure 1.
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Theorem 2. Given a proper cycle-complete dissimilarity d on X, Algorithm 2
correctly produces the indexed acyclic 2-hierarchy (Kd,diamd) and terminates in
O(n2 log n) time, where n = |X|.
Proof. First, we show that the algorithm is valid. In Lines 6–17, it finds the
vertex set Q of the 2-connected component of Gi formed by adding the edge
ei = {x, y} to Gi−1, if it exists. This set is either Q1 ∪ · · · ∪ Ql or ei = {x, y},
depending on whether or not x and y are in the same component. Then, the
algorithm adds Q to the list L, removing Q1, · · · , Ql in the first case. Then, the
collection L of vertex sets in Line 19 is exactly the same as K(p) − K(p−1) in
Line 6 of Algorithm 1, where d(ei) = σp.

Next, we consider the algorithm’s time complexity. It takes O(n2 log n) time
to sort the edges of KX using any standard sorting algorithm, so the complexity
must be at least that. Here, we show that the other operations in Algorithm 2
only require O(n2) time. To achieve this bound, we represent the 2-connected
components of Gi as block forest Bi, and assume that each of the trees in the
forest Bi is rooted at some vertex for i = 0, 1 · · · ,m. In addition, we use a
mapping q:X − A → Q that associates each x ∈ X − A with the unique 2-
connected component q(x) of Gi−1 to which x belongs. With this, given arbitrary
x, y ∈ X, we can determine whether or not x and y are in the same 2-connected
component of Gi−1 in O(1) time. We can also find the 2-connected components
Q1, · · · , Ql (Line 10) in O(n) time by searching for the path P ′ in the forest
Bi connecting the nodes corresponding to x and y, as shown in Figure 1(b).
The block forest can be updated in O(n) time by reducing the 2-connected
components Q1, · · · , Ql on the path P ′ to a single 2-connected component Q.
See Figure 2(b). The mapping q can also be updated in O(n) time. Since the
number of i’s for which x and y are in different 2-connected components is
O(n) [1, Lemma 3.5], it follows that the total time taken to compute Lines 8–16
is O(n2). ut

5 Conclusions

It is known [5] that the mapping d 7→ (Kd,diamd) gives a one-to-one corre-
spondence between the set of quasi-ultrametrics and the set of indexed quasi-
hierarchies on X, where Kd is the set of all the maximal cliques of thresh-
old graphs of d and the function diamd:Kd → R+ gives the diameter of each
clique in Kd. This leads to a similar one-to-one correspondence between the
set of 2-ultrametrics and the set of indexed 2-hierarchies on X [7]. The cycle-
complete dissimilarities [1] form a subset of the 2-ultrametrics, so the mapping
d 7→ (Kd,diamd) gives a correspondence between these and a subset of the in-
dexed 2-hierarchies on X. In this paper, we have characterized this subset as
the set of indexed acyclic 2-hierarchies on X, which has then allowed us to
characterize the cycle-complete dissimilarities. In addition, we have presented
an algorithm for finding the indexed acyclic 2-hierarchy (Kd,diamd) on X cor-
responding to a cycle-complete dissimilarity d on X and shown that runs in
O(n2 log n) time, where n = |X|.
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(a)

Q1

Q2

Q3

Q4

Q5

Q6

Q7

x

y

(b)

Q1

Q2

Q3

Q4

Q5

Q6

Q7
P ′

Fig. 1. (a) All 2-connected components of a graph G. (b) Block forest of G, where
the cut vertices are indicated by rectangles, and the path P ′ between Q2 and Q4 is
indicated by a wavy line.

(a)

Q1

Q5

Q6

Q7Q8

x

y

(b)

Q1 Q5

Q6

Q7Q8

Fig. 2. (a) All 2-connected components of the graph G+ {x, y}, where G is the graph
in Figure 1(a). (b) Block forest of G + {x, y}, where the cut vertices are indicated by
rectangles. Here, Q2, Q3 and Q4 in Figure 1(b) have been reduced to form Q8.
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