Characterizing Cycle-Complete Dissimilarities in Terms of Associated Indexed 2-Hierarchies

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2019-07-09
	キーワード (Ja):
	キーワード (En):
	作成者: Ando, Kazutoshi, Shoji, Kazuya
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/00026712

Characterizing Cycle-Complete Dissimilarities in Terms of Associated Indexed 2-Hierarchies^{*}

Kazutoshi Ando^{1[0000-0002-1415-062X]} and Kazuva Shoji²

¹ Faculty of Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan ando.kazutoshi@shizuoka.ac.jp

² Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan

Abstract. 2-ultrametrics are a generalization of the ultrametrics and it is known that there is a one-to-one correspondence between the set of 2-ultrametrics and the set of indexed 2-hierarchies (which are a generalization of indexed hierarchies). Cycle-complete dissimilarities, recently introduced by Trudeau, are a generalization of ultrametrics and form a subset of the 2-ultrametrics; therefore the set of cycle-complete dissimilarities corresponds to a subset of the indexed 2-hierarchies. In this study, we characterize this subset as the set of indexed *acyclic* 2-hierarchies, which in turn allows us to characterize the cycle-complete dissimilarities. In addition, we present an $O(n^2 \log n)$ time algorithm that, given an arbitrary cycle-complete dissimilarities of order n, finds the corresponding indexed acyclic 2-hierarchy.

Keywords: Hierarchical classification \cdot Quasi-hierarchy \cdot Quasi-ultrametric \cdot Cluster analysis.

1 Introduction

Ultrametrics appear in a wide variety of research fields, including phylogenetics [10], cluster analysis [9], and cooperative game theory [2]. They have, among others, two important properties: there is a one-to-one correspondence between the set of ultrametrics and the set of indexed hierarchies [6, 8, 3], and every dissimilarity has a corresponding subdominant ultrametric [7].

2-ultrametrics [7] are a generalization of the ultrametrics and maintain their important properties: there is a one-to-one correspondence between the set of the 2-ultrametrics and the set of indexed 2-hierarchies [7] (which are a generalization of indexed hierarchies), and every dissimilarity has a corresponding subdominant 2-ultrametric [7].

Motivated by the work of Trudeau [11], Ando et al. [1] introduced the concept of cycle-complete dissimilarities. These form a subset of the 2-ultrametrics, so there is a corresponding subset of the indexed 2-hierarchies. In this study, we characterize this subset as the set of indexed *acyclic* 2-hierarchies, which in

^{*} This work was supported by JSPS KAKENHI Grant Number 18K11180.

turn allows us to characterize the cycle-complete dissimilarities. In addition, we present an $O(n^2 \log n)$ time algorithm that, given an arbitrary cycle-complete dissimilarity of order n, finds the corresponding indexed acyclic 2-hierarchy.

The rest of this paper is organized as follows. In Section 2, we review 2ultrametrics and 2-hierarchies and the one-to-one correspondence between them. In Section 3, we characterize the cycle-complete dissimilarities in terms of indexed 2-hierarchies. In Section 4, we present an $O(n^2 \log n)$ time algorithm for finding the indexed 2-hierarchy corresponding to a given cycle-complete dissimilarities. Finally, in Section 5, we conclude this paper.

2 2-ultrametrics and indexed 2-hierarchies

Let X be a finite set. A mapping $d: X \times X \to \mathbb{R}_+$ is called a *dissimilarity* on X if for all $x, y \in X$ we have

$$d(x, y) = d(y, x)$$
 and $d(x, x) = 0.$ (1)

A dissimilarity d on X is proper if d(x, y) = 0 implies x = y for all $x, y \in X$. In addition, it is called a *quasi-ultrametric* [5] if for all $x, y, z, t \in X$ we have

$$\max\{d(x,z), d(y,z)\} \le d(x,y) \Longrightarrow d(z,t) \le \max\{d(x,t), d(y,t), d(x,y)\}.$$
 (2)

A family \mathcal{K} of subsets of X is called a *quasi-hierarchy* on X if \mathcal{K} satisfies the following conditions.

- (i) $X \in \mathcal{K}, \emptyset \notin \mathcal{K},$
- (ii) $\{x\} \in \mathcal{K}$ for all $x \in X$,
- (iii) $\forall A, B \in \mathcal{K} : A \cap B \in \mathcal{K} \cup \{\emptyset\},\$
- (iv) $\forall A, B, C \in \mathcal{K} : A \cap B \cap C \in \{A \cap B, B \cap C, C \cap A\}.$

For any quasi-hierarchy \mathcal{K} on X, a mapping $f: \mathcal{K} \to \mathbb{R}_+$ satisfying the following two conditions is called an *index* of \mathcal{K} and the pair (\mathcal{K}, f) is called an *indexed quasi-hierarchy* on X.

(1)
$$\forall x \in X: f(\{x\}) = 0,$$

(2) $\forall A, B \in \mathcal{K}: A \subset B \Longrightarrow f(A) < f(B).$

A quasi-hierarchy (X, \mathcal{K}) is said to be a 2-hierarchy if it also satisfies

(v)
$$\forall A, B \in \mathcal{K} : A \cap B \notin \{A, B\} \implies |A \cap B| \le 1.$$

Likewise, a dissimilarity d on X is called a 2-ultrametric [7] if for all $x, y, z, t \in X$, we have

$$d(x,y) \le \max\{d(x,z), d(y,z), d(x,t), d(y,t), d(z,t)\}.$$
(3)

Let d be a dissimilarity on X and σ be a positive real number. Then, the undirected graph $G_d^{\sigma} = (X, E_d^{\sigma})$ defined by

$$E_d^{\sigma} = \{\{x, y\} \mid x, y \in X, x \neq y, d(x, y) \le \sigma\}$$

$$\tag{4}$$

is called the *threshold graph* of d at the threshold σ . We denote the set of all the maximal cliques of threshold graphs of d's by \mathcal{K}_d , i.e.,

$$\mathcal{K}_d = \bigcup_{\sigma \ge 0} \{ K \mid K \text{ is a maximal clique of } G_d^\sigma \}.$$
(5)

In addition, for each $K \in \mathcal{K}_d$ we define diam_d(K) as

$$\operatorname{diam}_d(K) = \max\{d(x, y) \mid x, y \in K\}$$
(6)

and call it the *diameter* of K with respect to d.

With these definitions in place, we can now present the following useful lemma, followed by two propositions that clarify the relationships between quasiultrametrics and indexed quasi-hierarchies and between 2-ultrametrics and indexed 2-hierarchies.

Lemma 1. Let d be a dissimilarity on X. If $K \in \mathcal{K}_d$, then K is a maximal clique of G_d^{σ} for $\sigma = \operatorname{diam}_d(K)$.

Proof. Let $K \in \mathcal{K}_d$ be arbitrary and $\sigma = \operatorname{diam}_d(K)$. Since $d(x, y) \leq \operatorname{diam}_d(K) = \sigma$ for all $x, y \in K$, K is a clique of G_d^{σ} . Also, K is not a clique of $G_d^{\sigma'}$ for any σ' such that $\sigma' < \sigma$ since $d(x, y) = \sigma$ for some $x, y \in K$. Therefore, K is a maximal clique of $G_d^{\sigma''}$ for some σ'' such that $\sigma \leq \sigma''$. However, since for such a σ'' , every clique of G_d^{σ} is a clique of $G_d^{\sigma''}$, it follows that K must be a maximal clique of G_d^{σ} .

Proposition 1 (Diatta and Fichet [5]). A proper dissimilarity d on X is a quasi-ultrametric if and only if $(\mathcal{K}_d, \operatorname{diam}_d)$ is an indexed quasi-hierarchy on X.

Proposition 2 (Jardin and Sibson [7]). A proper dissimilarity d on X is a 2-ultrametric if and only if $(\mathcal{K}_d, \operatorname{diam}_d)$ is an indexed 2-hierarchy on X.

3 Characterizing cycle-complete dissimilarities in terms of their associated indexed 2-hierarchies

Let d be a dissimilarity on X. First, we introduce the complete weighted graph K_X , whose vertex set is X and whose edges $\{x, y\}$ have weight d(x, y) = d(y, x).

We call a sequence

$$F: x_0, x_1, \cdots, x_{l-1}, x_l \tag{7}$$

of elements in X a cycle in K_X if all the x_i $(i = 0, \dots, l-1)$ are distinct and $x_0 = x_l$. A dissimilarity d on X is called cycle-complete [1] if for each cycle (7) in K_X and each chord $\{x_p, x_q\}$ of F, we have

$$d(x_p, x_q) \le \max_{i=1}^{l} d(x_{i-1}, x_i).$$
(8)

Proposition 3. Let d be a dissimilarity on X. If d is cycle-complete, then it is also a 2-ultrametric.

Proof. Let x, y, z, t be arbitrary distinct elements of X. If d is cycle-complete, then we have

$$d(x,y) \le \max\{d(x,z), d(z,y), d(y,t), d(t,x)\}$$
(9)

$$\leq \max\{d(x,z), d(z,y), d(x,t), d(y,t), d(z,t)\}.$$
(10)

If a dissimilarity d on X is not cycle-complete, then there must exist a cycle $F: x_0, x_1, \dots, x_{l-1}, x_l (= x_0)$ of K_X and a chord $\{x_p, x_q\}$ of F such that (8) does not hold. We call such a cycle an *invalid cycle* in K_X .

Lemma 2. Let d be a dissimilarity on X that is not cycle-complete and

$$F: x_0, x_1, \cdots, x_l (= x_0) \tag{11}$$

be an invalid cycle in K_X of minimum length l. If $l \ge 5$, then for all $0 \le p \le l-3$ and $2 \le q \le l-1$ such that $2 \le q-p \le l-2$, we have

$$\lim_{i=1}^{l} d(x_{i-1}, x_i) < d(x_p, x_q) = \text{const.}$$
(12)

Proof. Let F be an invalid cycle (11) of minimum length l, where $l \geq 5$. Let

$$\delta = \max\{d(x_p, x_q) \mid \{x_p, x_q\} \text{ is a chord of } F\}$$
(13)

and $\delta = d(x_p, x_q)$ for some chord $\{x_p, x_q\}$ of F. We can assume without loss of generality that $0 \le p$ and $p+3 \le q \le l-1$. Let

$$Y = \{p, p + 1, \dots, q\},\$$

$$W = \{q, q + 1, \dots, l - 1, 0, \dots, p\}.$$

Let $\{x_i, x_j\}$ be a chord of F such that $\{i, j\} \subseteq Y$. If $d(x_i, x_j) < \delta$, then

$$F': x_0, x_1, \cdots, x_{i-1}, x_i, x_j, x_{j+1}, \cdots, x_{l-1}, x_l (= x_0)$$
(14)

is an invalid cycle with a length less than l, contradicting the initial choice of F. Hence, we must have $d(x_i, x_j) = \delta$. Similarly, for a chord $\{x_i, x_j\}$ of F such that $\{i, j\} \subseteq W$, we have $d(x_i, x_j) = \delta$.

Next, let $\{x_i, x_j\}$ be a chord of F such that $i \in Y - W$ and $j \in W - Y$. If i = p + 1, then, since $d(x_{p+1}, x_q) = \delta$, we have $d(x_{p+1}, x_j) = \delta$ by the same argument as above. If i > p + 1, then, since $\{x_p, x_{p+2}\}$ is a chord of F such that $\{p, p+2\} \subseteq Y$, we have $d(p, p+2) = \delta$. Then, we again have that $d(x_i, x_j) = \delta$ by the same argument as above. \Box

For a family \mathcal{K} of subsets of X, a sequence

$$C_0, C_1, \cdots, C_{l-1}, C_l$$
 (15)

of subsets in \mathcal{K} is called a *cycle* in \mathcal{K} if we have

- (i) $C_{i-1} \cap C_i \notin \{C_{i-1}, C_i, \emptyset\}$ for $i = 1, \dots, l$,
- (ii) $C_i \cap C_j = \emptyset$ for $0 \le i \le l-3$ and $2 \le j \le l-1$ with $2 \le j-i \le l-2$, and (iii) $C_0 = C_l$,

where $l \geq 3$. If \mathcal{K} has no cycle, we call it *acyclic*.

Theorem 1. A proper dissimilarity d on X is cycle-complete if and only if $(\mathcal{K}_d, \operatorname{diam}_d)$ is an indexed acyclic 2-hierarchy on X.

Proof. Here, we treat the "if" and "only if" parts separately.

(The "only if" part:) If we assume d is cycle-complete, that means it is a 2-ultrametric (Proposition 3), and hence, (\mathcal{K}_d, \dim_d) is an indexed 2-hierarchy (Proposition 2). Thus, it only remains to show that \mathcal{K}_d is acyclic.

Suppose, to the contrary, that there is a cycle

$$K_0, K_1, \cdots, K_{l-1}, K_l (= K_0) \tag{16}$$

in \mathcal{K}_d . Then, let

$$\delta = \max\{\operatorname{diam}_d(K_i) \mid i = 0, \cdots, l - 1\}$$
(17)

and $i^* = 0, \dots, l-1$ such that $\operatorname{diam}_d(K_{i^*}) = \delta$. If

$$d(x,y) \le \delta$$
 for all $x, y \in \bigcup_{i=0}^{l-1} K_i$, (18)

then $\bigcup_{i=0}^{l-1} K_i$ would be a clique of G_d^{δ} . However, this is impossible since K_{i^*} is a maximal clique of G_d^{δ} (Lemma 1). Hence, there would have to exist $x, y \in \bigcup_{i=0}^{l-1} K_i$ such that $d(x, y) > \delta$. Without loss of generality, suppose that $x \in K_a$ and $y \in K_b$ for $0 \leq a < b \leq l-1$ and choose $x_i \in K_i \cap K_{i+1}$ for $i = 0, \dots, l-1$. For the sake of simplicity, we assume that $x, y \notin K_i \cap K_{i+1}$ for $i = 0, \dots, l-1$. Then, we could construct an invalid cycle F in K_X via

$$F: x_0, \cdots, x_{a-1}, x, x_a, \cdots, x_{b-1}, y, x_b, \cdots, x_{l-1}, x_l (= x_0),$$
(19)

contradicting the cycle-completeness of d.

(The "if" part:) Here, we assume $(\mathcal{K}_d, \operatorname{diam}_d)$ is an indexed acyclic 2-hierarchy on X and show that the mapping d is cycle-complete. By Proposition 2, d is a 2ultrametric. If d is not cycle-complete, then there would have to exist an invalid cycle in K_X . Let $F: x_0, x_1, \dots, x_{l-1}, x_l (= x_0)$ be such a cycle of minimum length l.

First, we consider the case where $l \ge 5$. By Lemma 2, we have

$$d(x_p, x_q) > \max_{i=1}^{l} d(x_{i-1}, x_i) \text{ for all chord } \{x_p, x_q\} \text{ of } F.$$
 (20)

For each $i = 0, \dots, l-1$, let us choose a maximal clique K_i of G_d^{σ} such that $\{x_i, x_{i+1}\} \subseteq K_i$, where $\sigma = \max_{i=1}^l d(x_{i-1}, x_i)$. By (20), we would have

$$K_i \cap \{x_0, x_1, \cdots, x_{l-1}\} = \{x_i, x_{i+1}\} \quad (i = 0, \cdots, l-1).$$
(21)

In particular, all K_i $(i = 0, \dots, l-1)$ would be pairwise distinct. Also, since each K_i is a maximal clique of G_d^{σ} , we would have

$$K_i \cap K_{i+1} \notin \{K_i, K_{i+1}, \emptyset\} \quad (i = 0, \cdots, l-1).$$
 (22)

Let i and j be such that $0 \leq i, j \leq l-1$ and $2 \leq j-i \leq l-2$. We now show that $K_i \cap K_j = \emptyset$. To the contrary, suppose that $x \in K_i \cap K_j$. Then, we would have

$$d(x_i, x) \le \sigma \text{ and } d(x, x_{j+1}) \le \sigma.$$
 (23)

From this, it would follow that

$$F': x_0, \cdots, x_i, x, x_{j+1}, \cdots, x_l$$

is an invalid cycle of length less than l, contradicting the choice of F. Thus, $K_i \cap K_j = \emptyset$, so we would have shown that $K_0, K_1, \dots, K_{l-1}, K_l (= K_0)$ is a cycle in \mathcal{K}_d , a contradiction.

Next, we consider the case where l = 4. Let

$$F: x_0, x_1, x_2, x_3, x_4 (= x_0) \tag{24}$$

be an invalid cycle in K_X and $\sigma = \max\{d(x_{i-1}, x_i) \mid i = 1, 2, 3, 4\}$. We assume, without loss of generality, that $d(x_0, x_2) > \sigma$ and show that $d(x_1, x_3) > \sigma$. Suppose, to the contrary, that $d(x_1, x_3) \leq \sigma$. Then, there would exist maximal cliques K and K' of G_d^{σ} such that $\{x_0, x_1, x_3\} \subseteq K$ and $\{x_1, x_2, x_3\} \subseteq K'$, and hence, $\{x_1, x_3\} \subseteq K \cap K'$. This contradicts the assumption that \mathcal{K}_d is a 2-hierarchy since $K \neq K'$ by $d(x_0, x_2) > \sigma$. Then, by defining K_i as a maximal clique of G_d^{σ} such that $\{x_i, x_{i+1}\} \subseteq K_i$ for i = 0, 1, 2, 3, we would have (21) and (22), similar to the $l \geq 5$ case.

Now, suppose that for some $x \in X - \{x_0, x_1, x_2, x_3\}$ we have $x \in K_0 \cap K_2$. Then, there would have to exist a maximal clique K of G_d^{σ} such that $\{x_0, x, x_3\} \subseteq K$. It would then follow that $K \cap K_0 \supseteq \{x_0, x\}$ and $K \neq K_0$, contradicting the assumption that \mathcal{K}_d is a 2-hierarchy. Therefore, we have that $K_0 \cap K_2 = \emptyset$ and similarly that $K_1 \cap K_3 = \emptyset$. Then, $K_0, K_1, K_2, K_3, K_4(=K_0)$ would be a cycle in \mathcal{K}_d , contradicting the assumption that \mathcal{K}_d is acyclic.

Corollary 1. The mapping $d \mapsto (\mathcal{K}_d, \operatorname{diam}_d)$ is a one-to-one correspondence between the set of proper cycle-complete dissimilarities on X and the set of indexed acyclic 2-hierarchies on X.

4 Algorithm

A vertex v of a connected graph G is called a *cut vertex* if G-v is not connected. A graph is called 2-*connected* if it is connected and has no cut vertex. Note that a graph with only one vertex is 2-connected. A maximal 2-connected subgraph of a graph G is called a 2-connected component of G.

Lemma 3. Let d be a cycle-complete dissimilarity on X. Then, for all $\sigma \ge 0$, the vertex set of a 2-connected component of G_d^{σ} is a clique of G_d^{σ} .

Input : Proper cycle-complete dissimilarity d on X. **Output**: Indexed acyclic 2-hierarchy $(\mathcal{K}_d, \operatorname{diam}_d)$. 1 Let $0 < \sigma_1 < \cdots < \sigma_l$ be the distinct values of d(x, y) $(x, y \in X, x \neq y)$; **2** $\mathcal{K} \leftarrow \mathcal{K}^{(0)} \leftarrow \{\{x\} \mid x \in X\};$ 3 $f({x}) \leftarrow 0 \ (x \in X);$ 4 for p = 1 to l do Let $\mathcal{K}^{(p)}$ be the vertex sets of the 2-connected components of $G_d^{\sigma_p}$; 5 $\mathcal{L} \leftarrow \mathcal{K}^{(p)} - \mathcal{K}^{(p-1)};$ 6 diam_d(K) $\leftarrow \sigma_p \ (K \in \mathcal{L});$ 7 $\mathcal{K} \leftarrow \mathcal{K} \cup \mathcal{L};$ 8 9 end 10 return (\mathcal{K}, f) ;

Algorithm 1: Outline of the algorithm for computing $(\mathcal{K}_d, \operatorname{diam}_d)$.

Proof. Let $Q \subseteq X$ be the vertex set of a 2-connected component of G_d^{σ} . If $|Q| \leq 2$, then Q is a clique of G_d^{σ} by the definition of a 2-connected component, so we assume $|Q| \geq 3$. Suppose, to the contrary, that there exist distinct vertices $x, y \in Q$ such that $\{x, y\} \notin E_d^{\sigma}$. By the definition of Q, there are two openly disjoint paths P_1 and P_2 in G_d^{σ} connecting x and y. By concatenating P_1 and P_2 , we can create a cycle in K_X , where all the edges have weights of at most σ . Since $\{x, y\}$ is a chord of this cycle, it follows from the cycle-completeness of d that $d(x, y) \leq \sigma$, and hence $\{x, y\} \in E_d^{\sigma}$, a contradiction.

The set of maximal cliques of the threshold graph of a cycle-complete dissimilarity is characterized as follows.

Lemma 4. Let d be a cycle-complete dissimilarity on X and $\sigma \geq 0$. Then, $K \subseteq X$ is a maximal clique of $G_d^{\sigma} = (X, E_d^{\sigma})$ if and only if K is the vertex set of some 2-connected component of G_d^{σ} .

Proof. Assume that $K \subseteq X$ is a maximal clique of $G_d^{\sigma} = (X, E_d^{\sigma})$. Since K corresponds to a 2-connected subgraph of G_d^{σ} , it is a subset of the vertex set Q of some 2-connected component of G_d^{σ} . However, since Q is a clique (Lemma 3), we must have K = Q by the maximality of K. Conversely, if $Q \subseteq X$ is the vertex set of a 2-connected component of G_d^{σ} , then Q is a clique of G_d^{σ} (Lemma 3). If this clique is not maximal, then there must exist a vertex $x \in X - Q$ such that $\{x, y\} \in E_d^{\sigma}$ for all $y \in Q$, contradicting the assumption that Q is the vertex set of a 2-connected component of G_d^{σ} .

Based on Lemma 4, we have designed an algorithm for constructing the indexed acyclic 2-hierarchy (\mathcal{K}_d , diam_d) for a given proper cycle-complete dissimilarity d, as outlined in Algorithm 1. The validity of the algorithm follows straightforwardly from the propositions presented above.

Input : Proper cycle-complete dissimilarity d on X. **Output**: Indexed acyclic 2-hierarchy (\mathcal{K}_d , diam_d). 1 Let e_1, \ldots, e_m be the edges of K_X ordered in nondecreasing order of d, where $m = \frac{n(n-1)}{2};$ **2** $\mathcal{K} \leftarrow \{\{\bar{x}\} \mid x \in X\};$ 3 $f({x}) \leftarrow 0 \ (x \in X);$ 4 $\mathcal{L} \leftarrow \emptyset;$ 5 for i = 1 to m do $\{x, y\} \leftarrow e_i;$ 6 if x and y are in different 2-connected components of G_{i-1} then 7 if x and y are in the same component then 8 Let P be a path connecting x and y in G_{i-1} ; 9 Let Q_1, \ldots, Q_l be the vertex sets of the 2-connected components of 10 G_{i-1} which contain at least two vertices of P; $\begin{array}{l} Q \leftarrow \bigcup_{k=1}^{l} Q_{k}; \\ \mathcal{L} \leftarrow \mathcal{L} \cup \{Q\} - \{Q_{1}, \dots, Q_{l}\}; \end{array}$ 11 12 13 else $Q \leftarrow \{x, y\};$ $\mathbf{14}$ $\mathcal{L} \leftarrow \mathcal{L} \cup \{Q\};$ 15 16 end 17 end if $d(e_i) < d(e_{i+1})$ or i = m then 18 $\mathcal{K} \leftarrow \mathcal{K} \cup \mathcal{L};$ 19 $f(K) \leftarrow d(e_i) \ (K \in \mathcal{L});$ 20 21 $\mathcal{L} \leftarrow \emptyset;$ end 22 23 end **24 return** (\mathcal{K}, f) ;

It is not immediately clear how to implement Algorithm 1 efficiently, however. To achieve this, we need to able to identify the 2-connected components of a threshold graph efficiently. Let e_1, \ldots, e_m be the edges of K_X arranged in nondecreasing order of d, where $m = \frac{n(n-1)}{2}$. Then, we construct the vertex sets of the 2-connected components of the undirected graph $G_i = (X, E_i)$ incrementally for $i = 0, 1 \cdots, m$, where E_i is defined by $E_i = \{e_1, \cdots, e_i\}$. A more detailed description of the algorithm is given in Algorithm 2.

Let G = (X, E) be an undirected graph whose vertex set is X. Let A and Q be the set consisting of all the cut vertices and the set of the 2-connected components of G, respectively. The block forest (cf. [4]) of G is the bipartite graph B = (A, Q; F) defined by $F = \{(a, Q) \mid a \in A, Q \in Q, a \in Q\}$, as shown in Figure 1.

Theorem 2. Given a proper cycle-complete dissimilarity d on X, Algorithm 2 correctly produces the indexed acyclic 2-hierarchy (\mathcal{K}_d , diam_d) and terminates in $O(n^2 \log n)$ time, where n = |X|.

Proof. First, we show that the algorithm is valid. In Lines 6–17, it finds the vertex set Q of the 2-connected component of G_i formed by adding the edge $e_i = \{x, y\}$ to G_{i-1} , if it exists. This set is either $Q_1 \cup \cdots \cup Q_l$ or $e_i = \{x, y\}$, depending on whether or not x and y are in the same component. Then, the algorithm adds Q to the list \mathcal{L} , removing Q_1, \cdots, Q_l in the first case. Then, the collection \mathcal{L} of vertex sets in Line 19 is exactly the same as $\mathcal{K}^{(p)} - \mathcal{K}^{(p-1)}$ in Line 6 of Algorithm 1, where $d(e_i) = \sigma_p$.

Next, we consider the algorithm's time complexity. It takes $O(n^2 \log n)$ time to sort the edges of K_X using any standard sorting algorithm, so the complexity must be at least that. Here, we show that the other operations in Algorithm 2 only require $O(n^2)$ time. To achieve this bound, we represent the 2-connected components of G_i as block forest B_i , and assume that each of the trees in the forest B_i is rooted at some vertex for $i = 0, 1, \dots, m$. In addition, we use a mapping $q: X - A \to \mathcal{Q}$ that associates each $x \in X - A$ with the unique 2connected component q(x) of G_{i-1} to which x belongs. With this, given arbitrary $x, y \in X$, we can determine whether or not x and y are in the same 2-connected component of G_{i-1} in O(1) time. We can also find the 2-connected components Q_1, \dots, Q_l (Line 10) in O(n) time by searching for the path P' in the forest B_i connecting the nodes corresponding to x and y, as shown in Figure 1(b). The block forest can be updated in O(n) time by reducing the 2-connected components Q_1, \dots, Q_l on the path P' to a single 2-connected component Q. See Figure 2(b). The mapping q can also be updated in O(n) time. Since the number of i's for which x and y are in different 2-connected components is O(n) [1, Lemma 3.5], it follows that the total time taken to compute Lines 8–16 is $O(n^2)$.

5 Conclusions

It is known [5] that the mapping $d \mapsto (\mathcal{K}_d, \operatorname{diam}_d)$ gives a one-to-one correspondence between the set of quasi-ultrametrics and the set of indexed quasihierarchies on X, where \mathcal{K}_d is the set of all the maximal cliques of threshold graphs of d and the function $\operatorname{diam}_d: \mathcal{K}_d \to \mathbb{R}_+$ gives the diameter of each clique in \mathcal{K}_d . This leads to a similar one-to-one correspondence between the set of 2-ultrametrics and the set of indexed 2-hierarchies on X [7]. The cyclecomplete dissimilarities [1] form a subset of the 2-ultrametrics, so the mapping $d \mapsto (\mathcal{K}_d, \operatorname{diam}_d)$ gives a correspondence between these and a subset of the indexed 2-hierarchies on X. In this paper, we have characterized this subset as the set of indexed acyclic 2-hierarchies on X, which has then allowed us to characterize the cycle-complete dissimilarities. In addition, we have presented an algorithm for finding the indexed acyclic 2-hierarchy (\mathcal{K}_d , diam_d) on X corresponding to a cycle-complete dissimilarity d on X and shown that runs in $O(n^2 \log n)$ time, where n = |X|.

Fig. 1. (a) All 2-connected components of a graph G. (b) Block forest of G, where the cut vertices are indicated by rectangles, and the path P' between Q_2 and Q_4 is indicated by a wavy line.

Fig. 2. (a) All 2-connected components of the graph $G + \{x, y\}$, where G is the graph in Figure 1(a). (b) Block forest of $G + \{x, y\}$, where the cut vertices are indicated by rectangles. Here, Q_2, Q_3 and Q_4 in Figure 1(b) have been reduced to form Q_8 .

Acknowledgments

The authors are grateful to the anonymous referees for useful comments which improved the presentation of the original version of this paper.

References

- K. Ando, R. Inagaki and K. Shoji: Efficient algorithms for subdominant cyclecomplete cost functions and cycle-complete solutions. *Discrete Applied Mathematics* 225 (2017) 1–10.
- K. Ando and S. Kato: Reduction of ultrametric minimum cost spanning tree games to cost allocation games on rooted trees. *Journal of the Operations Research Society* of Japan 53 (2010) 62–68.
- 3. J.-P. Benzécri: L'analyse des Données (Dunod, 1973).
- 4. J.A. Bondy and U. S. R. Murty: Graph Theory (Springer, 2008).
- J. Diatta and B. Fichet: Quasi-ultrametrics and their 2-ball hypergraphs. Discrete Mathematics 192 (1998) 87–102.
- C.J. Jardin, N. Jardin and R. Sibson: The structure and construction of taxonomic hierarchies. *Mathematics Biosciences* 1 (1967) 173–179.
- 7. N. Jardin and R. Sibson: Mathematical Taxonomy (Wiley, New York, 1971).
- 8. S.C. Johnson: Hierarchical clustering schemes. Psychometrika 32 (1967) 241-254.
- G.W. Milligan: Ultrametric hierarchical clustering algorithms. *Psychometrika* 44 (1979) 343–346.
- 10. C. Semple and M. Steel: *Phylogenetics* (Oxford University Press, 2003).
- 11. C. Trudeau: A new stable and more responsive cost sharing solution for minimum cost spanning tree problems. *Games and Economic Behavior* **75** (2012) 402–412.