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Abstract: The Advanced Satellite with New system ARchitecture for Observation-2 (ASNARO-2),
which carries the X-band Synthetic Aperture Radar (XSAR), was launched on 17 January 2018 and is
expected to be used to supplement data provided by larger satellites. Land cover classification is
one of the most common applications of remote sensing, and the results provide a reliable resource
for agricultural field management and estimating potential harvests. This paper describes the
results of the first experiments in which ASNARO-2 XSAR data were applied for agricultural crop
classification. In previous studies, Sentinel-1 C-SAR data have been widely utilized to identify
crop types. Comparisons between ASNARO-2 XSAR and Sentinel-1 C-SAR using data obtained in
June and August 2018 were conducted to identify five crop types (beans, beetroot, maize, potato,
and winter wheat), and the combination of these data was also tested. To assess the potential for
accurate crop classification, some radar vegetation indices were calculated from the backscattering
coefficients for two dates. In addition, the potential of each type of SAR data was evaluated
using four popular supervised learning models: Support vector machine (SVM), random forest
(RF), multilayer feedforward neural network (FNN), and kernel-based extreme learning machine
(KELM). The combination of ASNARO-2 XSAR and Sentinel-1 C-SAR data was effective, and overall
classification accuracies of 85.4 ± 1.8% were achieved using SVM.
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1. Introduction

Agricultural practices determine the level of food production, and increases in agricultural output
are essential for global political and social stability and equity [1]. Cultivated land has been developed
and managed through a range of social actions and policies to meet this need [2]. Cropland mapping is
necessary for estimating the amount and type of crops harvested and supporting the management
of agricultural fields. A system of individual income support for farmers has been adopted in Japan,
and some local governments use manual surveys to document field properties such as crop type and
location [3]. Recently, more efficient methods of cropland mapping have become necessary to reduce
costs, and as a result the application of remote sensing techniques based on satellite data has received
considerable attention.

Tokachi Plain is one of Japan’s foremost food production regions, and beans, beetroot, maize,
potatoes, and winter wheat are its predominant crops. A number of studies have shown that optical
remote sensing data can be used to produce maps with high spatial and spectral resolutions [4] and are
effective for gathering various types of biomass information, such as leaf chlorophyll content [5] and
leaf area index (LAI) [6]. Indeed, Landsat series data have proven effective for identifying crop types
with a high level of accuracy [7,8], and red-edge and shortwave infrared reflectance data are useful for
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improving crop monitoring over large areas [8–10]. However, the quality of optical remote sensing
data depends on atmospheric influences and weather conditions.

Substantial information about soil and vegetation parameters has been obtained through
microwave remote sensing, and this type of technique is increasingly being used to manage land and
water resources for agricultural applications [11–14]. Synthetic aperture radar (SAR) systems offer a
large amount of information about soil moisture, crop height, and crop cover rate, which are useful for
monitoring plant phenology [12,15]. Furthermore, since SARs are not subject to atmospheric influences
or weather conditions, they can be used for multi-temporal analysis in monsoon areas. Previous studies
have shown that the C-band is the most effective frequency for agricultural applications because of
its sensitivity to structural properties, crop growth stages, and soil moisture conditions [16,17]. More
opportunities were provided to obtain C-band SAR data with the recent launches of Sentinel-1A and
Sentinel-1B by the European Space Agency (ESA) in 2014 and 2016, respectively. These data, which
are distributed free of charge, have an average revisit time of two days between 0 and 45 degrees
latitude [18]. As a result, Sentinel-1 data have been widely used for land cover classification [19–21],
monitoring of phenology [22], and biomass or production estimation. The interferometric wide-swath
(IW) mode that offers VV (vertical transmit and receive) and VH (vertical transmit, horizontal receive)
polarization data is normally used as the default acquisition mode [23,24].

In addition to C-band SARs, the high sensitivity of the sigma naught of X-band sensors has been
confirmed, and the potential of the X-band for identifying and forecasting crop growth using indices
such as LAI has widely been confirmed [25,26]. For examples, TerraSAR-X/TanDEM-X (Germany),
SEOSAR/Paz (Spain), COSMO-SkyMed (Italy), and RISAT-2 (India) have been launched or planned.
The backscattering coefficient of agricultural fields is expressed as a function of the geometry and
dielectric properties of the target and the amount of biomass, and the use of multi-temporal SAR
data within a vegetation period is effective for clarifying the change in scattering pattern with crop
growth [27]. The Advanced Satellite with New system ARchitecture for Observation-2 (ASNARO-2),
which carries an X-band SAR (XSAR), was launched on 17 January 2018 by Nippon Electric Company
(NEC), Japan [28], and the data it has provided have been made available and distributed by Japan
Space Imaging (http://www.spaceimaging.co.jp/en/). In addition, the Vietnam Academy of Science
and Technology has finalized a deal to purchase a radar satellite that possesses the same specifications
as ASNARO-2 from Japan for climate and natural disaster observations. This minisatellite, which
features a Next Generation Star bus and can offer very-high-resolution imagery in Spotlight mode
(1.0 m resolution), is expected to be used to supplement the data provided by larger satellites [29].
We therefore evaluated the potential of the use of ASNARO-2 XSAR Spotlight-mode data on its own
and in combination with Sentinel-1 C-SAR data for generating crop maps. We also considered some
radar indices (RIs) calculated from the backscattering coefficients for two different dates to improve
classification accuracy and indices based on differences (Ds), simple ratios (SRs), and normalized
differences (NDs) [30].

The use of machine learning algorithms in classification is essential for generating high-quality
crop maps and remote sensing data. A support vector machine (SVM) with a Gaussian kernel function
is one of the most effective classification approaches [31], and some previous studies have demonstrated
its strong performance in the identification of soil and crop types [32,33]. The random forests (RF)
approach is another algorithm for classification and regression using remote sensing data [34,35], and
it exhibits similar performance to SVMs in terms of classification accuracy and training time [36].
In addition, some studies have demonstrated the advantage of an extreme learning machine (ELM)
with a Gaussian radial basis function (RBF) kernel [37,38], and a multilayer feedforward neural network
(FNN) has also been applied to remote sensing data for land cover classification [39]. We compared
the performance of these widely used algorithms. Although grid-search strategies have been used to
optimize the hyperparameters of these algorithms [40], these could be poor choices for configuring
algorithms for new datasets. We therefore used Bayesian optimization in this study, since it allowed
sequential optimization of the noisy, expansive black-box function hyperparameters [41].

http://www.spaceimaging.co.jp/en/
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Within this framework, the main objective of the present study was to evaluate the potential of
ASNARO-2 data for crop-type classification using machine learning algorithms.

2. Materials and Methods

2.1. Study Area

The study area is the farming area located in the town of Memuro, Hokkaido, Japan (143◦00′30”
to 143◦08′00”E, 42◦47′58” to 42◦53′06”N; Figure 1), which is situated on the western Tokachi Plain.
The climate is characterized as a continental humid climate, with warm summers, cold winters,
an average annual temperature of 6 ◦C, and an annual precipitation of 920 mm.
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Figure 1. Cultivated crops based on manual surveys conducted by Tokachi Nosai and the Advanced
Satellite with New system ARchitecture for Observation-2 (ASNARO-2) X-band Synthetic Aperture
Radar (XSAR) horizontal transmit and receive (HH) polarization data (looking direction: Right)
acquired during descending passes on 28 June 2018.

Although there are six main crop types on the western Tokachi Plain, one of these—grass—is
poorly represented in this study area. The remaining five (beans, beetroot, maize, potato, and winter
wheat) were therefore featured in this study. Beetroot and potatoes are transplanted between late April
and early May, while beans and maize are sown in mid-May (Figure 2). Winter wheat is the most
widely cultivated crop in this study area and is sown in the previous year. The harvesting periods are
from late September to early November for beans, November for beetroots, late August to September
for potatoes, and from late July to early August for winter wheat.
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Figure 2. Crop calendar and growth stages in the study area.

2.2. Reference Data

Field location and attribute data, including crop type and area, were obtained based on manual
surveys conducted by Tokachi Nosai (Obihiro, Hokkaido) and recorded in a polygon shape file.
A total of 1805 fields (367 bean fields, 310 beetroot fields, 148 maize fields, 451 potato fields, and
529 winter wheat fields) covered the area in 2018. Field size was 0.27–9.03 ha (median 1.70 ha) for
beans, 1.56–8.60 ha (median 2.15 ha) for beetroot, 0.46–7.08 ha (median 1.46 ha) for maize, 0.17–8.57 ha
(median 1.53 ha) for potatoes, and 0.19–14.51 ha (median 2.40 ha) for wheat.

2.3. Satellite Data

ASNARO-2 has a sun-synchronous (dawn–dusk) near-circular orbit at an altitude of 504 km
and provides X-band SAR data with a 1-day cycle over Japan (in emergencies). The local time of the
descending node is 06:00 a.m., to ensure sufficient battery charging time, and X-band SAR data can be
obtained via three imaging modes: Spotlight, Stripmap, and ScanSAR. We used the Spotlight mode in
this study and obtained the data at a spatial resolution of 1.0 m along a 10 km swath. We used the HH
(horizontal transmit and receive) polarization data acquired during descending passes on 28 June and
9 August 2018 (Table 1).
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Table 1. Characteristics of the satellite data.

Satellite/Sensor Acquisition
Date

Mode Polarization
Off Nadir
Angle (◦)

Incidence Angle (◦) Pass
Direction

Look
Direction

Near Far

Sentinel-1B C-SAR 21 June 2018 IW VH/VV 30.61 45.88 Ascending Right
ASNARO-2/XSAR 28 June 2018 Spotlight HH 42.49 Descending Right
Sentinel-1B C-SAR 08 August 2018 IW VH/VV 30.61 45.88 Ascending Right
ASNARO-2/XSAR 09 August 2018 Spotlight HH 42.50 Descending Right

Sentinel-1 follows a sun-synchronous, near-polar, circular orbit at a height of 693 km, with a
12-day repeat cycle. The satellite is equipped with a C-band imager (C-SAR) at 5.405 GHz with an
incidence angle between 20◦ and 45◦. There are four imaging modes (Stripmap [SM], Interferometric
Wide swath [IW], Extra Wide swath [EW], and Wave [WV]), but we used IW mode, which offers VV and
VH polarization data and is commonly used as the default acquisition mode. We used data acquired
during ascending passes on 21 June and 8 August 2018 (Table 1). Data were downloaded from the ESA
Data Hub (https://scihub.copernicus.eu/dhus/) as Ground Range-detected (GRD) products, which are
focused, multi-looked, calibrated, and projected to ground range prior to download. Sigma naught and
gamma naught are trigonometric transformations of radar brightness on a logarithmic scale, and sigma
naught values are used for monitoring phenology and other vegetation-related parameters [25,42].
Thus, our sigma naught values were calculated from XSAR and C-SAR data. Data were orthorectified
using the 10 m mesh DEM produced by the Geospatial Information Authority of Japan (GSI) and the
Earth Gravitational Model 2008 (EGM2008).

Some radar indices (RI), such as the normalized radar backscatter soil moisture index (NBMI),
which is expressed as the ND between two backscattering coefficients at different times, have been
applied to estimating soil moisture [43], vegetation biomass [44], and the vegetation water content [45].
In addition to ND, Ds and SRs were also considered in this study, and these indices were calculated
using sigma naught:

D
(
σ0

date 1, σ0
date 2

)
= σ0

date 1 − σ
0
date 2, (1)

SR
(
σ0

date 1, σ0
date 2

)
= σ0

date 1/σ0
date 2, (2)

ND
(
σ0

date 1, σ0
date 2

)
=
(
σ0

date 1 − σ
0
date 2

)
/
(
σ0

date 1 + σ
0
date 2

)
(3)

where σ0
date 1 and σ0

date 2 are sigma naught values acquired in June and August, respectively.
To compensate for spatial variability, to avoid problems related to uncertainty in georeferencing,
and to remove the spike noise, average SAR data values were calculated for each field and observation
using field polygons (shape file format) using QGIS software (version 2.18.27).

2.4. Classification Procedure

Jeffries–Matusita (J–M) distances [46], which range from 0 to 2.0 and indicate the degree to which
two crop types are statistically separated, were calculated to compare the SAR data among crop types.
In general, if the J–M value is greater than 1.9, then separation is good, and if it is between 1.7 and 1.9,
then separation is fairly good. Subsequently, crop classifications were conducted using the following
three datasets: Case 1, X-band HH polarization data from ASNARO-2 XSAR and C-band VH/VV
polarization data from Sentinel-1B combined; Case 2, X-band HH polarization data from ASNARO-2
XSAR; and Case 3, C-band VH/VV polarization data from Sentinel-1B.

In order to handle overfitting and underfitting, a stratified random sampling approach was used
to divide the data into three datasets (Table 2): A training set (50%), used to fit the models; a validation
set (25%), used to estimate the prediction error associated with model selection; and a test set (25%),
used to assess the generalization error in the final selected model [47]. This procedure was repeated
10 times (hereafter referred to as rounds 1–10) to ensure robust results.

https://scihub.copernicus.eu/dhus/
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Table 2. Number of fields in each of the three datasets.

Training Data Validation Data Test Data

Beans 183 92 92
Beetroots 155 77 78

Maize 74 37 37
Potatoes 225 113 113
Wheat 264 132 133

The four most widely applied machine learning algorithms, SVM, RF, FNN, and the
kernel-based ELM (KELM), were used for crop classification based on the satellite data in R software
(version 3.5.0) [48].

SVM category data with maximum separation margins [49] have been used with kernels to fit
a nonlinear model [50]. A Gaussian RBF kernel, which has two hyperparameters that control the
flexibility of the classifier (the regularization parameter, C, and the kernel bandwidth, γ), has been used
in numerous previous studies [33,51–53]. With respect to the boundaries of classes, higher C values
lead to higher penalties for inseparable points, which sometimes result in over-fitting, and smaller C
values lead to under-fitting. The γ value defines the reach of a single training example; small values
indicate a ‘far’ reach, and large values indicate a ‘close’ reach.

RF builds multiple trees based on random bootstrapped samples of the training data [54], and the
nodes of each tree are split using the best split variable from a group of randomly selected variables [55].
The output is determined by a majority vote based on the trees. Although two hyperparameters, the
number of trees (ntree) and the number of variables used to split the nodes (mtry), are optimized,
the best split for a node can increase the classification accuracy [56–58]. Next, three additional
hyperparameters are considered: The minimum number of unique cases in a terminal node (nodesize),
the maximum depth of tree growth (nodedepth), and the number of random splits (nsplit).

FNN, which is a neural network trained to a back-propagation learning algorithm, is the most
popular neural network. The first layer is called the input layer, the last, the output layer, and the
layers in between are hidden layers [59]. Dropout was also used, since it has been shown to be able to
provide classifications [60]. We optimized seven hyperparameters in this study: Number of hidden
layers (num_layer), number of units (num_unit), dropout ratio (dropout) for each layer, learning rate
(learning.rate), momentum (momentum), batch size (batch.size), and number of iterations of training
data needed to train the model (num.round). An ELM is also expressed as a single hidden-layer FNN.
However, a vast number of nonlinear nodes and the hidden layer bias are defined randomly in this
algorithm, and the hyperparameters are the regulation coefficient (Cr) and the kernel parameter (Kp)
when an RBF kernel is applied.

2.5. Accuracy Assessment

The crop maps that were generated were evaluated based on measures of quantity disagreement
(QD), allocation disagreement (AD), and the F1 score, which is calculated based on producer accuracy
(PA), user accuracy (UA), overall accuracy (OA), and the kappa index. QD and AD are much more
useful for summarizing a cross-tabulation matrix than the kappa index of agreement, and their sum
indicates the total disagreement [61].

McNemar’s test [62] was used to identify whether there were significant differences between
the classification results; a χ2 value greater than 3.84 indicates a significant difference between two
classification results at the 95% significance level.
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3. Results and Discussion

3.1. Separability Assessments

ASNARO XSAR data acquired on 28 June (X-HH-0628) had relatively high J–M distances (>1.7) for
three combinations of crops: Beans–potatoes, beetroot–wheat, and potatoes–wheat (Figure 3). For four
of the remaining combinations (beans–maize, beans–potatoes, beetroot–potatoes, and maize–potatoes),
they were <1.0.
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Figure 3. Jeffries–Matusita distances for sigma naught. In the legend, the first letter of each dataset
name indicates the frequency of the microwaves, the next two letters indicate the polarization type,
and the last four numbers indicate the observation date.

RIs were calculated using the backscattering coefficients obtained from the ASNARO-2 XSAR
data from the two dates and were effective in distinguishing beans–potatoes, beetroot–potatoes,
maize–potatoes, and potatoes–wheat, with J–M distance values of >1.9 (Figure 4). In particular, it is
notable that the RIs were able to distinguish beans–potatoes, beetroot–potatoes, and maize–potatoes,
since their J–M distance values were <1.0 when only the original sigma naught values were used.
The growth of the potatoes was inhibited by chemicals in July to facilitate easy harvesting, with
a resultant decrease in the backscattering of the X-band. In contrast, this backscattering increased
with the growth of beetroots and maize. Wheat had already been harvested in mid-August, and
the backscattering of the X-band from winter fields was similar to that from bare fields. These facts
contributed to the good separability. This confirmed the advantages of RIs with respect to the capacity
to identify crop types based on ASNARO-2 XSAR data.

In contrast, for Sentinel-1 C-SAR data, all J–M distance values were <1.0. Vertical polarized
microwaves have a less penetration than horizontal polarized waves over mature wheat fields [14],
and their intensity is decreased via absorption by the vertical structure of dense, narrow stems [25,63].
The main scattering pattern was surface scattering and the intensity was low in August, with the result
that the differences in sigma naught were small. The RIs from the C-SAR data were therefore not
effective in identifying winter wheat. Although it was also difficult to distinguish bean, beetroot, and
maize fields, their scattering patterns were different: They have a relatively high allocation of volume
and single- and double-bounce scattering due to their structures [30]. Polarimetric analysis could
therefore be used in future research for the identification of these crops. XSAR can provide single
polarization data, but there are few opportunities to obtain HH or HV polarization data from C-SAR
data. However, horizontal polarized data can penetrate deeper into crop canopies.
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3.2. Accuracy Assessment

For all the algorithms, the combination of ASNARO-2 XSAR and Sentinel-1 C-SAR data was
effective in improving the classification accuracy, and the classification results from Case 1 were
superior to those from Cases 2 and 3 (Tables 3 and 4). Of the four algorithms, SVM exhibited the best
performance and achieved an overall accuracy of 0.854 ± 0.018 (kappa = 0.810 ± 0.023; AD + QD =

0.146 ± 0.018). Although the overall accuracy of every algorithm was >0.8, the differences among them
were significant (p < 0.05; Table 4).

In particular, based on average Fl scores, the classification accuracy for bean, maize, and potato
fields was improved by combining the two datasets (Case 1): For Cases 1, 2, and 3, respectively, the
F1 scores were 0.817 (SVM), 0.682 (RF), and 0.671 (SVM) for beans; 0.519 (SVM), 0.397 (FNN), and
0.214 (FNN) for maize; and 0.815 (RF), 0.728 (FNN), and 0.676 (SVM) for potatoes. This indicates
that ASNARO-2 can be used effectively for crop classification to supplement the data provided by
larger satellites.

Many studies have been undertaken in different regions to classify crop types using remote
sensing data (Table 5). Some of these focused on similar cultivation styles and crops (e.g., corn, soybean,
beetroots, potatoes, and wheat) to this study, although none focused on exactly the same area or crop
types as our study. We obtained similar accuracies to these studies, although some authors have
reported higher accuracies using optical remote sensing data, which was not consistently available
for this study area. Geographic object-based image analysis (GEOBIA) is a promising technique for
mapping croplands, and some studies have confirmed its potential, although very fine resolutions
(<1 m) are required for good results [64]. Since XSAR can provide remote sensing images with a
resolution of 1.0 m, we are planning to evaluate the potential of GEOBIA with XSAR data in the future.
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Table 3. Accuracy of the four classification algorithms used in this study: Support vector machine (SVM), random forest (RF), multilayer feedforward neural network
(FNN), and kernel-based extreme learning machine (KELM). PA: Producer accuracy; UA: User accuracy; OA: Overall accuracy; AD: Allocation disagreement; QD:
Quantity disagreement. Case 1: X-band HH polarization data from ASNARO-2 XSAR and C-band vertical transmit, horizontal receive (VH)/ vertical transmit and
receive (VV) polarization data from Sentinel-1B combined; Case 2: X-band HH polarization data from ASNARO-2 XSAR; Case 3: C-band VH/VV polarization data
from Sentinel-1B.

SVM RF KELM FNN

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

PA
Beans 0.850 ± 0.022 0.639 ± 0.102 0.709 ± 0.048 0.807 ± 0.037 0.672 ± 0.037 0.705 ± 0.043 0.817 ± 0.041 0.682 ± 0.074 0.683 ± 0.032 0.813 ± 0.060 0.583 ± 0.104 0.660 ± 0.088

Beetroots 0.905 ± 0.042 0.786 ± 0.223 0.645 ± 0.050 0.909 ± 0.032 0.914 ± 0.033 0.633 ± 0.053 0.881 ± 0.047 0.836 ± 0.186 0.677 ± 0.060 0.899 ± 0.036 0.935 ± 0.029 0.687 ± 0.062
Maize 0.414 ± 0.065 0.114 ± 0.102 0.078 ± 0.078 0.300 ± 0.091 0.281 ± 0.082 0.084 ± 0.048 0.230 ± 0.126 0.035 ± 0.085 0.041 ± 0.045 0.408 ± 0.119 0.327 ± 0.099 0.157 ± 0.071

Potatoes 0.827 ± 0.035 0.810 ± 0.068 0.719 ± 0.040 0.854 ± 0.034 0.795 ± 0.031 0.699 ± 0.045 0.806 ± 0.050 0.619 ± 0.060 0.687 ± 0.044 0.826 ± 0.057 0.788 ± 0.055 0.689 ± 0.050
Wheat 0.972 ± 0.024 0.824 ± 0.343 0.855 ± 0.029 0.978 ± 0.013 0.970 ± 0.021 0.856 ± 0.031 0.980 ± 0.016 0.929 ± 0.109 0.874 ± 0.028 0.980 ± 0.013 0.977 ± 0.011 0.849 ± 0.028

UA
Beans 0.787 ± 0.036 0.669 ± 0.069 0.639 ± 0.045 0.770 ± 0.053 0.694 ± 0.047 0.628 ± 0.054 0.745 ± 0.025 0.504 ± 0.086 0.651 ± 0.043 0.796 ± 0.049 0.723 ± 0.059 0.656 ± 0.061

Beetroots 0.874 ± 0.037 0.882 ± 0.043 0.702 ± 0.041 0.892 ± 0.033 0.879 ± 0.033 0.679 ± 0.043 0.852 ± 0.053 0.829 ± 0.051 0.684 ± 0.032 0.873 ± 0.047 0.855 ± 0.038 0.673 ± 0.050
Maize 0.713 ± 0.091 0.704 ± 0.214 0.301 ± 0.201 0.650 ± 0.128 0.595 ± 0.100 0.508 ± 0.209 0.718 ± 0.176 0.187 ± 0.291 0.679 ± 0.322 0.687 ± 0.123 0.570 ± 0.154 0.413 ± 0.119

Potatoes 0.800 ± 0.020 0.609 ± 0.157 0.640 ± 0.027 0.780 ± 0.021 0.688 ± 0.016 0.623 ± 0.024 0.770 ± 0.033 0.687 ± 0.060 0.615 ± 0.031 0.791 ± 0.024 0.678 ± 0.026 0.642 ± 0.044
Wheat 0.964 ± 0.015 0.950 ± 0.023 0.788 ± 0.030 0.958 ± 0.017 0.961 ± 0.018 0.794 ± 0.024 0.937 ± 0.018 0.920 ± 0.034 0.777 ± 0.031 0.951 ± 0.017 0.944 ± 0.027 0.799 ± 0.032

F1
Beans 0.817 ± 0.022 0.645 ± 0.051 0.671 ± 0.033 0.787 ± 0.034 0.682 ± 0.034 0.664 ± 0.041 0.779 ± 0.024 0.574 ± 0.066 0.666 ± 0.030 0.802 ± 0.030 0.637 ± 0.057 0.652 ± 0.041

Beetroots 0.889 ± 0.036 0.810 ± 0.157 0.672 ± 0.040 0.900 ± 0.025 0.896 ± 0.026 0.655 ± 0.044 0.866 ± 0.044 0.817 ± 0.101 0.680 ± 0.039 0.885 ± 0.031 0.893 ± 0.025 0.677 ± 0.031
Maize 0.519 ± 0.062 0.218 ± 0.122 0.169 ± 0.090 0.406 ± 0.101 0.375 ± 0.080 0.142 ± 0.079 0.320 ± 0.143 0.153 ± 0.161 0.100 ± 0.067 0.496 ± 0.102 0.397 ± 0.081 0.214 ± 0.082

Potatoes 0.813 ± 0.025 0.676 ± 0.112 0.676 ± 0.027 0.815 ± 0.023 0.737 ± 0.018 0.658 ± 0.028 0.786 ± 0.030 0.649 ± 0.044 0.649 ± 0.033 0.807 ± 0.036 0.728 ± 0.025 0.663 ± 0.025
Wheat 0.968 ± 0.010 0.918 ± 0.131 0.820 ± 0.026 0.968 ± 0.007 0.965 ± 0.010 0.823 ± 0.022 0.957 ± 0.008 0.920 ± 0.055 0.822 ± 0.022 0.965 ± 0.009 0.960 ± 0.010 0.823 ± 0.025

OA 0.854 ± 0.018 0.712 ± 0.072 0.692 ± 0.015 0.845 ± 0.017 0.800 ± 0.014 0.685 ± 0.019 0.825 ± 0.023 0.712 ± 0.072 0.687 ± 0.016 0.847 ± 0.021 0.789 ± 0.016 0.686 ± 0.018
Kappa 0.810 ± 0.023 0.626 ± 0.090 0.595 ± 0.020 0.798 ± 0.022 0.739 ± 0.019 0.586 ± 0.025 0.772 ± 0.030 0.626 ± 0.090 0.588 ± 0.021 0.801 ± 0.027 0.726 ± 0.020 0.590 ± 0.023

AD 0.107 ± 0.018 0.130 ± 0.042 0.228 ± 0.024 0.105 ± 0.021 0.145 ± 0.021 0.234 ± 0.018 0.116 ± 0.022 0.166 ± 0.050 0.230 ± 0.014 0.111 ± 0.028 0.139 ± 0.028 0.238 ± 0.013
QD 0.039 ± 0.008 0.152 ± 0.186 0.080 ± 0.013 0.050 ± 0.009 0.056 ± 0.012 0.081 ± 0.008 0.059 ± 0.012 0.122 ± 0.048 0.084 ± 0.009 0.042 ± 0.014 0.071 ± 0.027 0.076 ± 0.012

AD + QD 0.146 ± 0.018 0.282 ± 0.147 0.308 ± 0.015 0.155 ± 0.017 0.200 ± 0.014 0.315 ± 0.019 0.175 ± 0.023 0.288 ± 0.072 0.313 ± 0.016 0.153 ± 0.021 0.211 ± 0.016 0.314 ± 0.018
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Table 4. Chi-square values from McNemar’s test. A chi-square value of ≥3.84 indicates a significant difference (p < 0.05) between two classification results. SVM:
Support vector machine; RF: Random forest; KELM: Kernel-based extreme learning machine; FNN: Multilayer feedforward neural network. Case 1: X-band HH
polarization data from ASNARO-2 XSAR and C-band VH/VV polarization data from Sentinel-1B combined; Case 2: X-band HH polarization data from ASNARO-2
XSAR; Case 3: C-band VH/VV polarization data from Sentinel-1B.

SVM RF KELM FNN

Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

SVM Case 1 17.42 + 7.37 21.35 + 5.08 12.08 + 4.11 12.89 + 6.55 22.82 + 7.58 20.89 + 4.81 41.24 + 23.45 28.7 + 8.71 14.53 + 6 27.65 + 17.81 19 + 7.81
Case 2 17.45 + 8.09 17.51 + 5.88 19.68 + 7.89 14.13 + 4.31 15.69 + 3.92 32.84 + 15.36 15.31 + 6 22.84 + 9.77 32.61 + 14.45 20.45 + 8.15
Case 3 16.34 + 5.81 23.05 + 5.54 11.77 + 3.15 16.94 + 8.17 32.61 + 25.22 24.8 + 9.4 22.49 + 7.11 30.83 + 9.58 31.31 + 12.39

RF Case 1 10.49 + 5.54 16.1 + 6.21 21.15 + 7.55 45.77 + 29.22 23.25 + 8.4 14.02 + 4.51 28.24 + 13.94 13.5 + 5.99
Case 2 22.37 + 6.66 22.24 + 8.21 53.89 + 27.19 25.71 + 9.95 14.33 + 6.27 25.59 + 18.25 18.65 + 7.66
Case 3 17.79 + 8.1 32.17 + 25.89 19.38 + 6.03 23.76 + 7.69 31.87 + 13.09 26.96 + 11.41

KELM Case 1 36.75 + 26.05 23.23 + 12.43 26.93 + 10.16 32.95 + 18.04 24.58 + 12.1
Case 2 25.62 + 13.34 38.78 + 17.12 52.53 + 16.47 27.31 + 15.94
Case 3 28.03 + 11.36 31.82 + 13.86 33.36 + 13.74

FNN Case 1 25.95 + 12.73 18.44 + 8.89
Case 2 22.96 + 10.57

Table 5. Summary of overall accuracy obtained in other studies.

Sensor Algorithm Study Area Class Overall Accuracy Reference

CBERS-02B Support vector machine Chao Phraya Basin, Thailand paddy fields, field crops, forest, water 0.7996 [65]

SPOT 4 Decision-based process Marmara, Turkey flamura, guadalupe, pehlivan, vetch, sunflower,
corn I, corn II, clover, river, urban, mixed 0.80 [66]

COSMO-SkyMed Support vector machine Lower Austria carrot, corn, potato, soybean, sugar beet 0.845 [67]

Landsat-8 OLI Support vector machine Ukraine–Poland border artificial/urban, bare, grassland or herbaceous
cover, woodland, wetland, water 0.89 [68]

Landsat-8 OLI Maximum likelihood Northern Italy maize, rice, soybean, winter crops, forage crops 0.927 [69]

Landsat-8 OLI, Sentinel-1 Neural networks North of Ukraine winter wheat, winter rapeseed, maize, sugar beet,
sunflower, soybean 0.894 [70]

Sentinel-1, Sentinel-2, and Landsat-8 Random Forest The lower reaches of the Yangzi
River in China forest, maize, rape, urban, water, wheat 0.93 [19]
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3.3. Misclassified Fields with Respect to Field Area

XSAR data were superior to C-SAR data for identifying beetroot and potato fields, but there
were no noticeable differences between them in the identification of bean and maize fields (Figure 5).
Although XSAR data were effective in identifying wheat fields smaller than 2.0 ha, C-SAR data were
better for identifying those larger than 2.0 ha. Combining the two types of data decreased the number
of misclassified fields. In total, 36.4% of the misclassified fields were smaller than 100 a, and 41.8%
were 1.0–2.0 ha in area. Therefore, a limitation related to the area of fields could improve the reliability
of the classification maps. One approach to improve classification accuracy is the use of more SAR
data scenes, since these data offer a significant amount of information related to vegetation parameters
and crop height and cover rate [12,26,71,72], which affect the timing of seeding, transplanting, and
harvesting. This could be useful for clarifying the differences in phenology among the five crops.
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Figure 5. Relationship between field area and number of misclassified fields for (a): Case 1, (b): Case 2,
and (c): Case 3. Case 1: X-band HH polarization data from ASNARO-2 XSAR and C-band VH/VV
polarization data from Sentinel-1B combined; Case 2: X-band HH polarization data from ASNARO-2
XSAR; Case 3: C-band VH/VV polarization data from Sentinel-1B.
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4. Conclusions

Optical satellite data are affected by atmospheric and weather conditions, and the availability
of data may thus be limited for Asian monsoon areas. In contrast, synthetic aperture radar (SAR)
systems are not subject to atmospheric influences or weather conditions and can offer a significant
amount of information related to plant phenology. As a result, Sentinel-1A and Sentinel-1B C-SAR
data have proved valuable for managing agricultural fields. However, their resolution is not sufficient
for monitoring some types of Japanese fields. In this study, we evaluated the potential of also using
ASNARO-2 XSAR data for crop-type classification through machine learning algorithms (SVM, RF,
FNN, and KELM), using SAR data acquired in June and August.

Combining XSAR and C-SAR data was effective for improving the classification accuracy, and
an overall accuracy of 0.854 ± 0.018 (kappa = 0.810 ± 0.023; AD + QD = 0.146 ± 0.018) was achieved
using SVM. The results of this study verify the validity of this remote sensing method, demonstrate its
strong potential for crop classification, and suggest that the use of data from both satellites could be
expanded in future.
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