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One of the main problems about PFA(S) is that whether a coherent Suslin tree forces that there are no S-spaces
under PFA(S). We analyze a forcing notion related to this problem, and show that under PFA(S), S forces
that every topology on ω1 generated by a basis in the ground model is not an S-topology. This supplements the
previous work due to Stevo Todorcevic [25].
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1 Introduction

A regular space (X, τ) is called hereditarily separable if every subspace is separable, and is called hereditarily
Lindelöf if every subspace is Lindelöf. Their properties look like dual notions in the sense that points are switched
with open sets in their definitions. It was one of famous open problems in general topology whether they coincide.
A regular space is called an S-space (1) if it is hereditarily separable but not hereditarily Lindelöf, and is called an
L-space if it is hereditarily Lindelöf but not hereditarily separable. Stevo Todorcevic proved [22] that PFA implies
that there are no S-spaces, and Justin Tatch Moore proved [10,11] that there are L-spaces . Zoltán Szentmiklóssy
proved that MAℵ1

implies [17] that there are no compact S-spaces . For the study of S and L spaces, see [22],
and [1, 13, 16].

The P -ideal dichotomy is defined by Todorcevic [23]. The origin of the P -ideal dichotomy is an analysis of the
problem whether every hereditarily separable regular space is Lindelöf (i.e. there are no S-spaces [24, §23]), and
he proved (e.g. [23]) that PFA implies the P -ideal dichotomy and if the P -ideal dichotomy holds and p > ℵ1,
then there are no S-spaces [24, §23]. According to [13, §7], Todorcevic firstly proved that PFA implies no S-
spaces directly, that is, he proved that for each right-separated (2) hereditarily separable regular space of order
type ω1, there is a proper forcing which adds an uncountable discrete subspace. It follows that PFA implies no
S-spaces, because every S-space has a right-separated subspace of order type ω1, and a right-separated regular
space of order type ω1 is an S-space iff it has no uncountable discrete subspace (e.g. [13, §3]).

In [25], Stevo Todorcevic introduced the forcing axiom PFA(S), which says that there exists a coherent Suslin
tree S such that the forcing axiom holds for every proper forcing which preserves S to be Suslin, that is, for
every proper forcing P which preserves S to be Suslin and ℵ1-many dense subsets Dα, α ∈ ω1, of P, there exists
a filter on P which intersects all Dα’s. Since the preservation of a Suslin tree by the proper forcing is closed
under countable support iteration (due to Tadatoshi Miyamoto [9]), it is consistent relative to some large cardinal
assumption that PFA(S) holds.

∗ Corresponding author E-mail: styorio@ipc.shizuoka.ac.jp
Supported by FY 2010 Researcher Exchange Program between JSPS and NSERC, Grant-in-Aid for Scientific Research (C) 22540124 Japan
Society for the Promotion of Science, and Leading Young Researchers of Shizuoka University 2011.

(1) Usually, an S-space is denoted by an ‘S’-space. However, in this note, we always use S as a (particular) coherent Suslin tree. So we
adopt notation an ‘S’-space.

Sometime an S-space is defined as a hereditarily separable non-Lindelöf regular space. But our terminology allows us to consider e.g.
compact S-space [1]. We note that every compact space is of course Lindelöf.

(2) A space is called right-separated if the set of points can be well-ordered such that every initial segment is open. We note that an
uncountable right-separated space is not Lindelöf, and a non-hereditarily Lindelöf space has an uncountable right-separated subspace [13, §3].
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2 T. Yorioka: S-space problem in the extension with a coherent Suslin tree

The first appearance of such a forcing axiom is in the paper [8] due to Paul B. Larson and Todorcevic. In this
paper, they introduced the weak version of PFA(S), called Souslin’s Axiom (in which the properness is replaced
by the cccness), and under this axiom, the coherent Suslin tree S, which is a witness of the axiom, forces a weak
fragment of Martin’s Axiom. In [25], it is also proved that under PFA(S), S forces the open graph dichotomy
(3) and the P -ideal dichotomy. Namely, many consequences of PFA are satisfied in the extension with S under
PFA(S). On the other hand, many people proved that some consequences from ♢ are satisfied in the extension
with a Suslin tree (e.g. [12, Theorem 6.15.]). In particular, the pseudo-intersection number p is ℵ1 in the extension
with a Suslin tree. In fact, the extension with S under PFA(S) is designed as a universe which satisfied some
consequences of ♢ and PFA simultaneously. By the use of this model, Larson and Todorcevic proved that the
affirmative answer to Katětov’s problem is consistent [8].

It is not known whether under PFA(S), S (which is a witness of PFA(S)) forces that there are no S-spaces.
In [25], Todorcevic proved that there are no compact S-spaces in the extension with S under PFA(S). To do this,
he develops the theory of compact countably tight spaces in the extension with S under PFA(S), and proved that
under PFA(S), S forces that every non-Lindelöf subspace of a compact countably tight space has an uncountable
discrete subspace [25, 8.6 Theorem]. In fact, he proved that for every S-name for a non-Lindelöf subspace of
a compact countably tight space, there is a proper forcing which adds an S-name for an uncountable discrete
subspace. In this note, we will show the following.

Theorem Under PFA(S), S forces that every topology on ω1 generated by a basis in the ground model is not
an S-topology.

Mary Ellen Rudin and Todorcevic respectively proved that the negation of Suslin Hypothesis (i.e. there exists
a Suslin tree) implies the existence of S-spaces ( [14, 15] and [22, §5]). Therefore under PFA(S), there are S-
spaces. By the theorem, we notice that such spaces cannot generate an S-topology in the extension with S under
PFA(S).

We will show the theorem in a more general form by investigating forcing notions which are so-called S-name
versions of forcing notions in the proof of [22, 8.9.Theorem]. In the next section, we give necessary notation,
some comments and a sufficient claim (Main Claim) to show the theorem. We will give a proof of Main Claim
in §§3-4. We give a precise strategy of the proof in the next section.

2 Preliminaries

2.1 A coherent Suslin tree

In this work, a coherent Suslin tree is a Suslin tree S ⊆ ω<ω1 such that

• for any s and t in S, s ≤S t iff s ⊆ t,

• S is closed under taking initial segments,

• for any s and t in S, the set {α ∈ min{lv (s) , lv (t)}; s(α) ̸= t(α)} is finite (here, lv (s) is the length of s,
that is, the domain of s), and

• for any s ∈ S and t ∈ ωlv(s), if the set {α ∈ lv (s) ; s(α) ̸= t(α)} is finite, then t ∈ S also.

For a countable ordinal α, let Sα be the set of the α-th level nodes, that is, the set of all members of S of domain
α, and let S≤α :=

∪
β≤α Sβ . For s ∈ S, we let

S↾s := {u ∈ S; s ≤S u} .

We note that ♢, or adding a Cohen real, builds a coherent Suslin tree [20, 21]. A coherent Suslin tree has a
strong homogeneity, that is, it has canonical commutative isomorphisms. Let s and t be nodes in S with the same
level. Then we define a function ψs,t from S↾s into S↾t such that for each v ∈ S↾s,

ψs,t(v) := t ∪ (v↾[lv (s) , lv (v)))

(3) This is so called the open coloring axiom [22, §8].
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(here, v↾[lv (s) , lv (v)) is the function v restricted to the domain [lv (s) , lv (v))). We note that ψs,t is an isomor-
phism, and if s, t, u are nodes in S with the same level, then ψt,u ◦ ψs,t = ψs,u. (On a coherent Suslin tree, see
e.g. [2, 7].)

In [9], Miyamoto introduced the following characterization of the preservation of a Suslin tree by proper
forcing extensions.

Theorem 2.1 (Miyamoto, [9, (1.1) Proposition.]) For a Suslin tree S and a proper forcing P, P preserves S
to be Suslin iff for any sufficiently large regular cardinal θ, any countable elementary substructure N of H(θ)
which contains P and S as members and p ∈ P ∩ N , there exists q ≤P p which is (P, N)-generic such that for
every t ∈ S of level ω1 ∩N , the pair ⟨p, t⟩ is (P× S,N)-generic.

P r o o f. We show here only the if case, which is the necessary implication in this note. Suppose that p ∈ P
and Ȧ be a P-name for a maximal antichain in S.

We take a sufficiently large regular cardinal θ and a countable elementary substructure N of H(θ) which
contains P, S, p and Ȧ as members, and let q ≤P p be as in the assumption. Then the set

D :=
{
⟨r, s⟩ ∈ P× S; r ⊩P “ s ∈ Ȧ ”

}
is predense in P× S and is a member of the model N .

Then by our assumption, for every t ∈ Sω1∩N , the pair ⟨q, t⟩ is (P × S,N)-generic. Therefore for every
t ∈ Sω1∩N , D ∩N is predense below ⟨q, t⟩ in P× S. Thus for every t ∈ Sω1∩N ,

q ⊩P “ ∃s <S t(s ∈ Ȧ) ”.

This says that
q ⊩P “ Ȧ ⊆ S ∩ ω<ω1∩N ”,

hence q forces that Ȧ is countable. This finishes the proof.

2.2 A forcing notion P(τ̇ ,
⟨
U̇α;α ∈ ω1

⟩
)

Let S be a coherent Suslin tree and τ̇ an S-name for a right-separated hereditarily separable regular topology on
ω1 of order type ω1. If there exists a proper forcing which preserves S to be Suslin and adds an S-name for an
uncountable discrete subset of (ω1, τ̇), then under PFA(S), S (which is a witness of PFA(S)) forces that there
are no S-spaces.

To define such a forcing notion, we use a sequence
⟨
U̇α;α ∈ ω1

⟩
of S-names such that for each α ∈ ω1,

⊩S “ α ∈ U̇α ∈ τ̇ and clτ̇ (U̇α) ∩ [α+ 1, ω1) = ∅ ”.

We can find it because (ω1, τ̇) is an S-name for a right-separated regular space. Let κ be the least regular cardinal
such that

τ̇ ,
⟨
U̇α;α ∈ ω1

⟩
∈ H(κ).

We consider a forcing notion P(τ̇ ,
⟨
U̇α;α ∈ ω1

⟩
) which adds an S-name for an uncountable discrete subset

of (ω1, τ̇) as follows (Proposition 2.3). This forcing is fairly a naive way to add a desired uncountable set by use
of side-condition-method as in [22, 8.9.Theorem] (see also [3, 19]). This forcing is very similar to the one used
in the proof [25, 8.6 Theorem].

Definition 2.2 Suppose that S is a coherent Suslin tree, τ̇ is an S-name for a right-separated hereditarily
separable regular topology on ω1 of order type ω1, and a sequence

⟨
U̇α;α ∈ ω1

⟩
of S-names satisfies that for

each α ∈ ω1,
⊩S “ α ∈ U̇α ∈ τ̇ and clτ̇ (U̇α) ∩ [α+ 1, ω1) = ∅ ”.

P(τ̇ ,
⟨
U̇α;α ∈ ω1

⟩
) consists of finite functions p such that
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4 T. Yorioka: S-space problem in the extension with a coherent Suslin tree

• dom(p) is a finite ∈-chain of countable elementary submodels of the structure H(κ) which contain S, τ̇ and⟨
U̇α;α ∈ ω1

⟩
as members,

• for any M ∈ dom(p), p(M) = ⟨tpM , α
p
M ⟩ ∈ (S \M)× (ω1 \M) (hence tpM ̸∈M and αp

M ̸∈M ),

• for any M ∈ dom(p) and β ∈ ω1 ∩M , tpM decides whether β ∈ U̇αp
M

or not,

• for any M,M ′ ∈ dom(p), if M ∈M ′, then tpM , α
p
M ∈M ′, and

• for any M,M ′ ∈ dom(p), if tpM <S t
p
M ′ , then

tpM ′ ⊩S “ αp
M ̸∈ U̇αp

M′
”,

ordered by extensions.

The following proposition guarantees that under PFA(S), if P(τ̇ ,
⟨
U̇α;α ∈ ω1

⟩
) is proper and preserves S

to be Suslin, then S forces that (ω1, τ̇) has an uncountable discrete subspace (remember that S has a strong
homogeneity). The following proof is similar to ones in [22, 8.9.Theorem] and [25, 8.6 Theorem].

Proposition 2.3 If the forcing notion P(τ̇ ,
⟨
U̇α;α ∈ ω1

⟩
) is proper and preserves S to be Suslin, then some

member of P(τ̇ ,
⟨
U̇α;α ∈ ω1

⟩
) forces that there are s ∈ S and an S-name Γ̇ such that

s ⊩S “
{
U̇α;α ∈ Γ̇

}
witnesses that Γ̇ is uncountable discrete ”.

P r o o f. In this proof, we write P instead of P(τ̇ ,
⟨
U̇α;α ∈ ω1

⟩
). We denote by Ġ the canonical P-name for

a generic filter, and by ĠS the canonical S-name for a generic filter. Then we define P-name Ḋ for a subset of S
and P-name Γ̇ for an S-name for subset of ω1 as follows:

⊩P “ Ḋ :=
{
tpM ; p ∈ Ġ and M ∈ dom(p)

}
”

and
⊩P “ ⊩S “ Γ̇ :=

{
αp
M ; p ∈ Ġ and tpM ∈ Ḋ ∩ ĠS

}
” ”.

It follows from the definition of P that for every s ∈ S,

⊩P “ s ⊩S “
{
U̇α;α ∈ Γ̇

}
witnesses that Γ̇ is discrete ” ”.

So it suffices to show that we will find q ∈ P and s ∈ S such that

q ⊩P “ s ⊩S “ Γ̇ is uncountable ” ”.

LetM be a countable elementary submodel ofH(θ), for a sufficiently large regular cardinal θ (that is, P ∈M ),
which contains S, τ̇ ,

⟨
U̇α;α ∈ ω1

⟩
and H(κ). We take q ∈ P such that dom(q) = {M ∩H(κ)}, and write

q(M ∩H(κ)) = ⟨t, α⟩ (hence t ̸∈M ). Then by our assumption that P is proper, we claim that q forces that Ḋ is
uncountable.

To show this, we note that, since P ∈M ,

⊩P “ Ḋ ∈M [Ġ] ”.

Suppose that q doesn’t force that Ḋ is uncountable. Then there exists an extension r of q in P which forces that
Ḋ is countable. Then by the elementarity and the definition of Ḋ,

r ⊩P “ t ∈ Ḋ ⊆M [Ġ] ”.
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However by the properness of P (this is our assumption),

⊩P “ M [Ġ] ∩ S =M ∩ S ”,

which is a contradiction because t ̸∈M .
By our assumption that P is proper (here, in particular, preserves the uncountablity) and preserves S to be

Suslin, there are a member q′ of P and s ∈ P such that q′ forces in P that Ḋ is dense and uncountable above s in
S. This is what we want.

It is not known whether the assumption of the above proposition is true in general. The following is a sufficient
condition that P(τ̇ ,

⟨
U̇α;α ∈ ω1

⟩
) is proper and preserves S to be Suslin.

Main Claim Let S be a coherent Suslin tree, τ̇ an S-name for a right-separated hereditarily separable regular
topology on ω1 of order type ω1. Suppose that τ̇ has the following condition:

(⋆) For any point δ ∈ ω1, S-name U̇ for an open neighborhood of δ, α ∈ ω1, t ∈ Sα and F ∈ [Sα]
<ℵ0 , there

exists an S-name U̇ ′ for an open neighborhood of δ such that t ⊩S “ U̇ ′ ⊆ U̇ ” and for every s ∈ F ,

s ⊩S “ ψt,s(U̇
′) is open in τ̇ ”.

Then for any sequence
⟨
U̇α;α ∈ ω1

⟩
of S-names such that for each α ∈ ω1,

⊩S “ α ∈ U̇α ∈ τ̇ and clτ̇ (U̇α) ∩ [α+ 1, ω1) = ∅”,

P(τ̇ ,
⟨
U̇α;α ∈ ω1

⟩
) is proper and preserves S to be Suslin.

For an explanation of isomorphisms for forcings, see e.g. [4, Ch. VII. §7] or [5, IV.4]. For an argument of
isomorphisms on a coherent Suslin tree, see e.g. [8, 26]. We note that in the condition (⋆) for an s ∈ F , it holds
that s = ψt,s(t) and

s ⊩S “ ψt,s(U̇
′) is open in ψt,s(τ̇) ”,

but it may happen that
s ̸⊩S “ ψt,s(U̇

′) is open in τ̇ ”.

That is, τ̇ doesn’t have the condition (⋆) in general. By thinking of the isomorphisms of names, the following
proposition holds.

Proposition 2.4 If τ̇ generated by a basis which is in the ground model, then τ̇ satisfies the condition (⋆).

This guarantees that Theorem in the introduction follows from Main Claim.

To show Main Claim, we separate two parts: §3 and §4. In §3, we don’t assume that τ̇ satisfies the condition
(⋆), that is, the argument in §3 applies to any τ̇ . In fact, the scenario of this section is essentially same as in
Todorcevic’s one of [25, 8.6 Theorem]. In Lemma 3.1 (§3), we give a sufficient condition to prove Main Claim.

We use the condition (⋆) in §4 to show Lemma 4.1 which implies Main Claim. In [25, 8.6 Theorem], to
prove his theorem, he introduced the U-sequentiality for a non-principal ultrafilter U on ω and used it to prove
the similar statement to Lemma 4.1.

In both sections, our argument is concentrated only on how to prove that P(τ̇ ,
⟨
U̇α;α ∈ ω1

⟩
) preserves S

to be Suslin, using Theorem 2.1. We notice that it follows from the same (or more simple) argument that
P(τ̇ ,

⟨
U̇α;α ∈ ω1

⟩
) is proper.

3 A sufficient lemma to show the properness and the preservation of S

In this section, we prove the following lemma.
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6 T. Yorioka: S-space problem in the extension with a coherent Suslin tree

Lemma 3.1 Let S be a coherent Suslin tree, τ̇ an S-name for a right-separated hereditarily separable regular
topology of order type ω1, and

⟨
U̇α;α ∈ ω1

⟩
a sequence of S-names such that for each α ∈ ω1,

⊩S “ α ∈ U̇α ∈ τ̇ and clτ̇ (U̇α) ∩ [α+ 1, ω1) = ∅”.

Suppose that
⟨
U̇α;α ∈ ω1

⟩
satisfies the following condition:

(•) For any countable elementary substructure N of H(θ) which contains S, τ̇ ,
⟨
U̇α;α ∈ ω1

⟩
and H(κ) as

members, r ∈ P(τ̇ ,
⟨
U̇α;α ∈ ω1

⟩
) with r ∩N = ∅, u ∈ S with lv (trM ) ≤ lv (u) for all M ∈ dom(r), and

S-name Ẋ ∈ N for an uncountable subset of ω1, there are β ∈ ω1 ∩N and s ∈ S ∩N such that s ≤S u,
s ⊩S “ β ∈ Ẋ ”, and for every M ∈ dom(r),

trM ⊩S “ β ̸∈ U̇αr
M

”.

Then P(τ̇ ,
⟨
U̇α;α ∈ ω1

⟩
) is proper and preserves S to be Suslin.

In this proof, we use (•) only in the last part of the proof. That is, we don’t need (•) in the other parts, so
we can apply the argument to the forcing notion P(τ̇ ,

⟨
U̇α;α ∈ ω1

⟩
) for a general τ̇ and

⟨
U̇α;α ∈ ω1

⟩
. In the

proof, we will mention the place where (•) is used.
In §4, we show that any sequence

⟨
U̇α;α ∈ ω1

⟩
as in Definition 2.2 satisfies (•) whenever τ̇ satisfies the

condition (⋆), which finishes the proof of Main Claim. We say again that we don’t assume the condition (⋆) in
this section.
Proof of Lemma 3.1. Let S be a coherent Suslin tree, τ̇ an S-name for a right-separated hereditarily separable
regular topology on ω1 of order type ω1, and

⟨
U̇α;α ∈ ω1

⟩
a sequence of S-names such that for each α ∈ ω1,

⊩S “ α ∈ U̇α ∈ τ̇ and clτ̇ (U̇α) ∩ [α+ 1, ω1) = ∅ ”.

In this proof, we write P instead of P(τ̇ ,
⟨
U̇α;α ∈ ω1

⟩
).

Let θ be a large enough regular cardinal, N a countable elementary submodel of H(θ) such that N contains
S, τ̇ ,

⟨
U̇α;α ∈ ω1

⟩
, P and H(κ) as members, and p0 ∈ P ∩N .

It is true that for every p ∈ P, if N ∩H(κ) ∈ dom(p), then p is (N,P)-generic. Such a conclusion is a general
one for every forcing with models as side-conditions. At first, we should prove it. This proof is included in the
following theorem (by ignoring the coordinate of the Suslin tree). So we omit the details of this proof.

For eachM ∈ dom(p0), we write p0(M) = ⟨tp0

M , α
p0

M ⟩. LetN ′ := N∩H(κ), which is a countable elementary
submodel of H(κ). We take (arbitrary) αp1

N ′ ∈ ω1 \N , and take tp1

N ′ ∈ S \N such that for every M ∈ dom(p0),
tp0

M and tp1

N ′↾(ω1 ∩ N) are incomparable in S, and tp1

N ′ decides whether β ∈ U̇α
p1
N′

for every β ∈ ω1 ∩ N

(= ω1 ∩N ′). Then we define
p1 := p0 ∪ {⟨N ′, ⟨tp1

N ′ , α
p1

N ′⟩⟩} ,

which is a condition of P and moreover an extension of p0 (4). Let s1 ∈ Sω1∩N .
We show that ⟨p1, s1⟩ is (N,P(τ̇ ,

⟨
U̇α;α ∈ ω1

⟩
)× S)-generic whenever

⟨
U̇α;α ∈ ω1

⟩
satisfies (•).

Let D ∈ N be a dense open subset of P × S. Let r ≤P p1 and u ≥S s1 be such that ⟨r, u⟩ ∈ D. By
extending u if necessary, we may assume that for every M ∈ dom(r), lv (u) ≥ lv (trM ) holds (where we denote
r(M) = ⟨trM , αr

M ⟩). By the coherency of S, we can take γ ∈ ω1 ∩N such that for every M ∈ dom(r),

{ξ ∈ lv (trM ) ∩ lv (s1) ; t
r
M (ξ) ̸= s1(ξ)} ⊆ γ.

(4) Actually, the following argument works whenever p1 is an extension of p0 in P such that N ′ ∈ dom(p1).
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We note that

{ξ ∈ lv (trM ) ∩ lv (s1) ; t
r
M (ξ) ̸= s1(ξ)} = {ξ ∈ lv (trM ) ∩ ω1 ∩N ; trM (ξ) ̸= u(ξ)} .

Let {Mr
i ; i ∈ m} be the ∈-increasing enumeration of the set dom(r) \N .

For each v ∈ S, we define

T−1
v :=

{
⟨αq

M ;M ∈ dom(q) \ dom(r ∩N)⟩ ;

• q ∈ P,

• q is an end-extension of r ∩N ,

• ⟨q, v⟩ ∈ D,

• |q| = |r|, and letting {Mq
i ; i ∈ m} be the ∈-increasing enumeration of the set dom(q) \ dom(r ∩N),

• for every M ∈ dom(q), lv (tqM ) ≤ lv (v),

• for every i ∈ m, tq
Mq

i
↾γ = trMr

i
↾γ and

tq
Mq

i
↾
[
γ, lv

(
tq
Mq

i

))
= v↾

[
γ, lv

(
tq
Mq

i

))
iff trMr

i
↾
[
γ, lv

(
trMr

i

))
= u↾

[
γ, lv

(
trMr

i

))}
.

We note that the set
{
T−1
v ; v ∈ S

}
belongs to the model N , and for any v, v′ ∈ S, if v ≤S v

′, then T−1
v ⊆ T−1

v′ .
Moreover, we note that ⟨αr

M ;M ∈ dom(r \N)⟩ is in T−1
u . We consider each T−1

v as a tree which consists of
all initial segments of its members, where each sequence ⟨αq

M ;M ∈ dom(q) \ dom(r ∩N)⟩ is considered to be
ordered by the usual order on ordinals. By induction on i < m, for each v ∈ S, we define the set

T i
v := T i−1

v \

{
σ ∈ T i−1

v ; ∃σ′ ∈ T i−1
v such that |σ′| = m− i− 1, σ′ ⊆ σ and

v ̸⊩S “
{
β ∈ ω1; ∃t ∈ Ġ

(
σ′ ⌢ ⟨β⟩ ∈ T i−1

t

)}
is uncountable ”

}
.

Then we note that for any v, v′ ∈ S, if v ≤S v
′, then Tm−1

v ⊆ Tm−1
v′ . Moreover, by the construction of T i

v’s, for
every v ∈ S, i < m and σ ∈ T i−1

v of height m − i − 1, if σ is still in T i
v , then the set of successors of σ in T i

v

coincides with the set of successors of σ in T i−1
v . It follows that for every σ ∈ Tm−1

v of length < m,{
τ ∈ Tm−1

v ;σ ⊆ τ
}
=

{
τ ∈ Tm−|σ|−1

v ;σ ⊆ τ
}
.

Therefore it follows that for every σ ∈ Tm−1
v which is not terminal,

v ⊩S “
{
β ∈ ω1;∃t ∈ Ġ

(
σ⌢ ⟨β⟩ ∈ Tm−1

t

)}
is uncountable ”.

We note that the set
{
Tm−1
v ; v ∈ S

}
also belongs to the model N ∩H(κ) = N ′. So for each M ∈ dom(r \N),{

Tm−1
v ; v ∈ S

}
∈M .

Fact 3.2 ⟨αr
M ;M ∈ dom(r \N)⟩ is a cofinal path through Tm−1

u .
Proof of Fact 3.2. Recall that ⟨αr

M ;M ∈ dom(r \N)⟩ belongs to the tree T−1
u . By induction on i < m, we show

that the initial segment of the sequence ⟨αr
M ;M ∈ dom(r \N)⟩ of length m− i− 1 belongs to the tree T i

u.
Suppose that σ⌢ ⟨α⟩ is an initial segment of the sequence ⟨αr

M ;M ∈ dom(r \N)⟩ and σ⌢ ⟨α⟩ ∈ T i−1
u . We

will show that σ ∈ T i
u, that is,

u ⊩S “
{
β ∈ ω1; ∃t ∈ Ġ

(
σ⌢ ⟨β⟩ ∈ T i−1

t

)}
is uncountable ”.
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LetM ∈ dom(r\N) be such that σ ∈M and α ̸∈M . Since lv (u) ≥ lv (trM ) ≥ ω1∩M , {w ∈ S ∩M ;w <S u}
forms a (S,M)-generic filter.

Suppose that

u ̸⊩S “
{
β ∈ ω1; ∃t ∈ Ġ

(
σ⌢ ⟨β⟩ ∈ T i−1

t

)}
is uncountable ”.

Then some extension of u forces that
{
β ∈ ω1;∃t ∈ Ġ

(
σ⌢ ⟨β⟩ ∈ T i−1

t

)}
is countable. Since such an extension

also generates a (M,S)-generic filter and the phrase “the set
{
β ∈ ω1;∃t ∈ Ġ

(
σ⌢ ⟨β⟩ ∈ T i−1

t

)}
is countable”

can be described in M [Ġ], there exists w ∈ S ∩M such that w ≤S u and

w ⊩S “
{
β ∈ ω1; ∃t ∈ Ġ

(
σ⌢ ⟨β⟩ ∈ T i−1

t

)}
is countable ”

(5). Since S is ℵ0-distributive, there are a countable set Z in N and w′ ∈ S ∩M such that w ≤S w
′ ≤S u and

w′ ⊩“ Z =
{
β ∈ ω1; ∃t ∈ Ġ

(
σ⌢ ⟨β⟩ ∈ T i−1

t

)}
”.

This is a contradiction because u ≥S w
′ and

u ⊩S “ α ∈
{
β ∈ ω1; ∃t ∈ Ġ

(
σ⌢ ⟨β⟩ ∈ T i−1

t

)}
\ Z ”.

⊣(Fact 3.2)

Therefore, the set
T ′ :=

{
v ∈ S;u↾γ ≤S v and Tm−1

v is of height m
}

is not empty, in particular, contains u as a member. We note that T ′ is in N .
We have not used (•) yet. We will use it from now on. Since u ∈ T ′ ∈ N and lv (u) ≥ ω1 ∩N , there exists

s2 ∈ S ∩N such that s2 ≤S u and Tm−1
s2 has a cofinal branch of height m (6). Let

a :=
{
i ∈ m; trMr

i
↾
[
γ, lv

(
trMr

i

))
= u↾

[
γ, lv

(
trMr

i

))}
.

If a is empty, then for any cofinal path of Tm−1
s2 in N and its witness p2 ∈ P ∩N , ⟨p2, s2⟩ ∈ D ∩N and by

the choice of γ, ⟨r ∪ p2, u⟩ is a common extension of ⟨r, u⟩ and ⟨p2, s2⟩. Because then

• since p2 ∈ N and N ∩H(κ) ∈ dom(p1) ⊆ dom(r), the set dom(p2) ∪ dom(r) forms an ∈-chain, and

• for any M ∈ dom(p2) \ dom(r ∩ N) and M ′ ∈ dom(r \ N), it is true that lv (tp2

M ) ≤ lv (s2) < ω1 ∩
N ≤ lv (trM ′), tp2

M↾ [γ, lv (tp2

M )) ̸= s2↾ [γ, lv (tp2

M )) (since a is empty and s2 <S u), trM ′↾ [γ, ω1 ∩N) =
u↾ [γ, ω1 ∩N) and s2 ≤S u, hence it holds that tp2

M ̸≤S t
r
M ′ .

So the proof is finished. Therefore the interesting case is that a is not empty.

Suppose that a is not empty. For each i ∈ m, let

bi :=
{
j ∈ a; trMr

j
↾γ = trMr

i
↾γ
}
.

We note that for each j ∈ bi, by the choice of γ, trMr
j
↾(ω1 ∩N) = trMr

i
↾(ω1 ∩N).

(5) If lv (u) ≥ ω1 ∩ M and A ∈ M ∩ P(S) contains u as a member, then there exists w ∈ A ∩ M with w ≤S u. Indeed, the set
{t ∈ S; (S↾t) ∩A = ∅ or t ∈ A} is in M and dense in S. So there exists w <S u which belongs to this set (we should remember that the
set {w ∈ S;w <S u} is an (S,M)-generic filter). Since u ∈ A, we have w ∈ A.

(6) Recall that if lv (u) ≥ ω1 ∩N and A ∈ N ∩ P(S) contains u as a member, then there exists w ∈ A ∩N with w ≤S u. Here, we

consider the set
{
v ∈ S;Tm−1

v has a cofinal branch of height m
}

. It belongs to the model N .
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Let Ẋ0 be an S-name such that

⊩S “ Ẋ0 :=
{
β ∈ ω1; ∃t ∈ Ġ

(
⟨β⟩ ∈ Tm−1

t

)}
”.

We note that Ẋ0 ∈ N and since Tm−1
s2 has a cofinal branch,

s2 ⊩S “ Ẋ0 is uncountable ”.

By applying the condition (•) to the tuple N , r↾
{
Mr

j ; j ∈ b0
}

, u and Ẋ0, we get β0 ∈ ω1 ∩N and s′2 ∈ S ∩N
such that s2 ≤S s

′
2 ≤S u, s′2 ⊩S “ β0 ∈ Ẋ0 ”, and for every j ∈ b0,

trMr
j
⊩S “ β0 ̸∈ U̇αr

Mr
j

”.

Next, let Ẋ1 be an S-name such that

⊩S “ Ẋ1 :=
{
β ∈ ω1;∃t ∈ Ġ

(
⟨β0, β⟩ ∈ Tm−1

t

)}
”.

We note that Ẋ1 ∈ N and since Tm−1
s′2

also has a cofinal branch,

s′2 ⊩S “ Ẋ1 is uncountable ”.

By applying the condition (•) to the tuple N , r↾
{
Mr

j ; j ∈ b1
}

, u and Ẋ1, we get β1 ∈ ω1 ∩N and s′′2 ∈ S ∩N
such that s′2 ≤S s

′′
2 ≤S u, s′′2 ⊩S “ β1 ∈ Ẋ1 ”, and for every j ∈ b1,

trMr
j
⊩S “ β1 ̸∈ U̇αr

Mr
j

”.

By repeating this procedure, we can take s3 ∈ S ∩N and a cofinal branch ⟨βi; i ∈ m⟩ through Tm−1
s3 ⊆ T−1

s3
such that s2 ≤S s3 ≤S s1 (≤S u) and for every i ∈ m and j ∈ bi,

trMr
j
⊩S “ βi ̸∈ U̇αr

Mr
j

”.

Since ⟨βi; i ∈ m⟩ ∈ Tm−1
s3 ∩N ⊆ T−1

s3 ∩N , there exists p3 ∈ P∩N which is its witness. Then ⟨p3, s3⟩ ∈ D∩N .
We note that for any M ∈ dom(p3) and M ′ ∈ dom(r) \N , if tp3

M and trM ′ are comparable in S (i.e. tp3

M ≤S t
r
M ′

holds), then it follows that tp3

M↾ [γ, lv (tp3

M )) = s3↾ [γ, lv (tp3

M )) and tp3

M↾γ = trM ′↾γ. Therefore by the choice of

p3, r ∪ p3 satisfies the last condition of the definition of P(τ̇ ,
⟨
U̇α;α ∈ ω1

⟩
). Thus ⟨r ∪ p3, u⟩ is a common

extension of ⟨r, u⟩ and ⟨p3, s3⟩, which finishes the proof. ⊣(Lemma 3.1)

4 Proof of Main Claim

We don’t know whether there exists
⟨
U̇α;α ∈ ω1

⟩
as in Definition 2.2 which satisfies (•) for each τ̇ as in

Definition 2.2 in general. The following lemma provides a sufficient condition for this.
Lemma 4.1 Let S be a coherent Suslin tree, and τ̇ an S-name for a right-separated hereditarily separable

regular topology on ω1 of order type ω1. Suppose that τ̇ satisfies the following condition:

(⋆) For any point δ ∈ ω1, S-name U̇ for an open neighborhood of δ, α ∈ ω1, t ∈ Sα and F ∈ [Sα]
<ℵ0 , there

exists an S-name U̇ ′ for an open neighborhood of δ such that t ⊩S “ U̇ ′ ⊆ U̇ ” and for every s ∈ F ,

s ⊩S “ ψt,s(U̇
′) is open in τ̇ ”.

Then for any a sequence
⟨
U̇α;α ∈ ω1

⟩
of S-names such that for each α ∈ ω1,

⊩S “ α ∈ U̇α ∈ τ̇ and clτ̇ (U̇α) ∩ [α+ 1, ω1) = ∅”,

it satisfies the condition (•) in Lemma 3.1.
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Proof of Lemma 4.1. Suppose that N , r, u and Ẋ are as in the assumption of the condition (•). Then we note that
u ̸∈ N , that is, lv (u) ≥ ω1 ∩N .

Since {w ∈ S ∩N ;w <S u} forms a (S,N)-generic filter, S is ℵ0-distributive and (ω1, τ̇) is an S-name for
a hereditarily separable space, there are t ∈ S ∩N and a countable set Y ∈ N such that t ≤S u↾(ω1 ∩N), and

t ⊩S “ Y ⊆ Ẋ and clτ̇ (Y ) = clτ̇ (Ẋ) ”.

We note that since Ẋ is an S-name for an uncountable subset of ω1, it is true that

t ⊩S “ clτ̇ (Y ) is uncountable ”.

Let dom(r) = {Mζ ; ζ < k} and take wζ ∈ S, ζ < k, and δ ∈ ω1 such that (t ≤S) u ≤S w0, for each ζ < k,
trMζ

≤S wζ , all wζ are of the same level, δ > max
ζ<k

αr
Mr

ζ
, and

w0 ⊩S “ δ ∈ clτ̇ (Y ) ”.

Then by the property of U̇α, we note that for each ζ < k,

wζ ⊩S “ δ ̸∈ clτ̇ (U̇αr
Mζ

) ”.

By induction on ζ < k, using the condition (⋆), we take an S-name V̇ζ such that

• wζ ⊩S “ δ ∈ V̇ζ ∈ τ̇ and clτ̇ (U̇αr
Mζ

) ∩ V̇ζ = ∅ ”,

• for every ζ ′ ∈ k, wζ′ ⊩S “ ψwζ ,wζ′ (V̇ζ) is open in τ̇ ”, and

• wζ+1 ⊩S “ V̇ζ+1 ⊆ ψwζ ,wζ+1
(V̇ζ) ”.

It follows from the last conditions that

wk−1 = ψwk−2,wk−1
(wk−2) ⊩S “ ψwk−2,wk−1

(V̇k−2)

⊆ ψwk−2,wk−1
(ψwk−3,wk−2

(V̇k−3)) = ψwk−3,wk−1
(V̇k−3) ”,

and so
wk−1 ⊩S “ V̇k−1 ⊆ ψwk−2,wk−1

(V̇k−2) ⊆ ψwk−3,wk−1
(V̇k−3) ”.

Therefore, by induction, for every ζ ∈ k,

wk−1 ⊩S “ V̇k−1 ⊆ ψwζ ,wk−1
(V̇ζ) ”,

and hence it follows that

wζ = ψwk−1,wζ
(wk−1) ⊩S “ ψwk−1,wζ

(V̇k−1) ⊆ ψwk−1,wζ
(ψwζ ,wk−1

(V̇ζ)) = V̇ζ ”.

We take β ∈ Y and x ≥S w0 such that x ⊩S “ β ∈ ψwk−1,w0(V̇k−1) ”. Then for every ζ ∈ k,

ψw0,wζ
(x) ⊩S “ β ∈ ψw0,wζ

(ψwk−1,w0(V̇k−1)) = ψwk−1,wζ
(V̇k−1) ⊆ V̇ζ , hence β ̸∈ U̇αr

Mζ
”.

Since it holds that β ∈ Y ⊆ ω1 ∩N , Ẋ ∈ N , t ≤S u ≤S w0 ≤S x, lv (x) > ω1 ∩N , and

t ⊩S “ Y ⊆ Ẋ ”,

there exists s ∈ S ∩N such that s ≤S x and

s ⊩S “ β ∈ Ẋ ”.

Then we note that s ≤S u. Since β ∈ Y ⊆ ω1 ∩N ⊆ Mζ and trMζ
≤S wζ ≤S ψw0,wζ

(x), by the definition of
conditions of P, for every ζ < k,

trMζ
⊩S “ β ̸∈ U̇αr

Mζ
”,

which is what we want. ⊣(Lemma4.1)
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