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A B S T R A C T

Decision-making with low-cost data is an attractive approach in the field of agriculture as it aids to solve the
difficulty of inheriting advanced cultivation technologies. To provide expertise in the decision-making process
for stress cultivation, precision irrigation based on plant water stress is required to steadily produce high-quality
fruits. Single low-cost data namely, single-modal data, is used in the traditional approach. However, for ad-
vanced cultivation, multimodal data such as physiological and meteorological data is required. In this study, we
propose a multimodal neural network with clustering-based drop (C-Drop) for accurate estimation of plant water
stress, as it is an index for irrigation decision-making, using plant image and environmental data. Our proposed
method extracts temporal multimodal features from leaf wilting features (physiological data) using environ-
mental features (meteorological data) as an attention mechanism of a multimodal neural network that includes
long short-term memory layers. Moreover, the proposed neural network with C-drop realizes a novel end-to-end
deep learning architecture in consideration of environmental conditions. On evaluating this method against the
existing methods, the proposed method was found to improve the accuracy of plant water stress estimation by
21% for mean absolute error and root-mean-squared error, thereby indicating that this method is precise and
stable for the plant water stress estimation. The performance of our proposed method to support precision
irrigation will allow new-age farmers to produce high-quality fruits steadily.

1. Introduction

Advances in technology enable explicit knowledge modeling of
decision-making by the expert. In the field of agriculture, expert
farmers produce high-quality crops based on their knowledge and de-
cision-making skills. However, the knowledge of decision-making
seems to have been lost owing to the reduced population of farmers and
the difficulties involved in technological inheritance. Recently, several
studies have reported that determining the factors behind making a
decision using information technologies is highly valuable to prevent
the loss of sophisticated expert knowledge (Singh et al., 2018). These
studies apply data mining, image processing, and machine learning
technologies to the images of plants and environmental data to extract
variables that are considered as the decision-making factors. Defining
decision-making factors of stress cultivation is strongly needed because
such cultivation approach can produce high-quality fruits such as high-
sugar content tomato.

Stress cultivation requires decision-making for precision irrigation

based on the plant water stress. Therefore, a water stress index should
be defined for irrigation scheduling as a decision-making factor. The
sugar content of fruits increases when the amount of water being pro-
vided by restricted irrigation is decreased during the cultivation.
Therefore, the total yield decreases but each fruit is much better in
quality (Patanè and Cosentino, 2010). However, when irrigation is
extremely restricted, and the plants are exposed to high water stress,
they will die, and recovery will not be possible. To provide stress cul-
tivation to new farmers who have no expert knowledge, a practical and
accurate measurement method of plant water stress is required to
support the irrigation scheduling.

Previous studies have proposed several methods to measure plant
water stress. In general, water stress changes according to the water
potential, which includes the water content of the leaves and stems.
Thus, plant water stress is measured accurately by the direct evaluation
of the water potential (Boyer, 1967). However, this measurement
method cannot be applied to real-time irrigation scheduling because it
requires destructive measurement including leaf excision and long
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processing time for quantitation. Several studies have proposed non-
destructive estimation methods using plant stress responses including
leaf vibrations (Sano et al., 2015) and stem diameter variations (Meng
et al., 2017; Wang et al., 2017). These methods can estimate plant
water stress in real-time and can be applied to real-time irrigation
control based on water stress. Water stress diminishes the water content
in plant cells and decreases the turgor pressure in leaves and stems. As a
response to stress, the leaf tension decreases and the stem diameter
shrinks. Thus, the two methods estimate water stress by measuring the
leaf turgor pressure using an ultrasonic speaker and microphone or
measuring the stem diameter variations using a laser displacement
sensor. However, the two methods are inadequate to provide the water
stress cultivation method to new farmers because these measuring
sensors are expensive and require expert knowledge to install and
measure the water stress.

Plant images and environmental data are also used for estimating
plant water stress (Sánchez-Molina et al., 2015; Takayama and Nishina,
2007; Guo et al., 2017; Kaneda et al., 2017). These methods cost low
and provide ease of measurement. The measurement devices (RGB
cameras) and environmental sensors have become inexpensive owing to
the popularity of IoT devices that can measure plant data without any
contact. These methods can substitute specialty sensors including laser
displacement sensors that require expert knowledge and are expensive
with more powerful sensors such as cameras and environmental sen-
sors. Therefore, image or environmental-data-based methods can be
applied to deliver water stress cultivation to new farmers who cannot
use specialty sensors. Traditional methods used single-modal data
(plant image or environmental data). In contrast, a water stress esti-
mation method (Kaneda et al., 2017) uses both plant images and en-
vironmental data as the multimodal data. This method estimates water
stress using multimodal neural network, including CNN, and sliding
window-based support vector regression (SW-SVR) (Kaneda and
Mineno, 2016). In the experimental results, this method has proven to
be more accurate in estimating the plant water stress.

Meanwhile, there are two issues in the existing method. First, the
temporal information is not considered, despite which the input fea-
tures and dependent variables have a temporal dependence relation-
ship. Recently, recurrent neural network (RNN) has shown state-of-the-
art results in certain time-series applications by extracting temporal
features optimized for the main problem (Benabderrahmane et al.,
2018; Veličković et al., 2017). However, the existing water stress esti-
mation method concluded that RNN should be applied in the future
work because the combination of CNN and RNN requires large amounts
of network parameters. The trade-off relationship between temporal
feature extraction by RNN and the increase in the number of network
parameters should be resolved. The second problem is insufficient
consideration of environmental characteristics. The existing method
assumed that the plant images and environmental data have equal
importance in water stress estimation. However, the leaf wilting in
plant images and environmental data have a different role on plant
physiology water stress estimation (Wakamori and Mineno, 2019). The
environmental data can define the importance of leaf wilting for the
estimation. However, the existing method processed the two data
equally in the neural network and SW-SVR. The dynamic attention
mechanism based on environmental consideration optimizes the fea-
tures for estimating water stress.

This article proposes a water stress estimation method called mul-
timodal neural network with clustering-based drop (C-Drop). As com-
pared to the existing method (Kaneda et al., 2017), our method cal-
culates the variations in stem diameter in the same way as the water
stress index but with improved multimodal neural network and input
data. Our multimodal neural network includes long short-term memory
(LSTM) layers, which is an RNN. The proposed method adopts optical-
flow-based feature extraction instead of CNN-based feature extraction
that was used in the existing methods. Considering that leaf wilting is
defined by the movement of the leaf, optical flow, which can quantify

the movement of objects in an image, extracts the wilting features,
thereby contributing to the estimation of water stress index without
using CNN. Moreover, the leaf wilting and environmental data have a
temporal dependence relationship with the stem diameter variations,
which should be resolved. Using LSTM layers that can solve the tem-
poral dependence, the neural network is expected to build a highly
accurate water stress estimation model. The multimodal neural network
appropriately trains the water stress estimation model with the pro-
posed C-Drop as a dynamic attention mechanism on environment data.

The remaining of this article is as follows: Section 2 presents the
details of the plant water stress and related work. The detailed proposal
is described in Section 3. In Section 4, the proposal is evaluated using
actual cultivation data. Finally, the conclusions are presented in Section
5.

2. Preliminaries

2.1. Plant water stress

Plant water potential and stress are generally controlled by irriga-
tion scheduling and physical and chemical natures of the substrate or
soil conditions. In this study, we intend to distinguish dynamic reg-
ulation factors and static regulation factors for water stress. The dy-
namic factors include climatic environment and irrigation scheduling
that dynamically changes the water stress due to diurnal or seasonal
variations. The static factors are the physical and chemical nature of the
substrate or soil. In conventional farming, the static factors are defined
when cultivation is initiated and not changed during cultivation. In this
study, we focus on the dynamic regulation factors for plant water stress
caused as leaves’ transpiration speed exceeds the water absorption root
speed.

In a greenhouse (a general cultivation environment), environmental
factors such as temperature, relative humidity, and brightness con-
tinuously change due to the strength of solar radiation. Thus, the cul-
tivation systems in a greenhouse cannot accurately control the en-
vironmental factors that depend on the weather and the seasons
without using large capital investments such as a fully controlled plant
factory. A simple environmental control that includes shade and ven-
tilation is used in greenhouse, which is not highly accurate and cannot
regulate the transpiration speed of plants. However, any cultivation
environment that utilizes a greenhouse can control the irrigation
timing. Therefore, several plant water stress estimation methods have
been proposed to control irrigation and regulate plant water status
(Sano et al., 2015; Meng et al., 2017; Wang et al., 2017; Sánchez-Molina
et al., 2015; Takayama and Nishina, 2007; Guo et al., 2017). These
methods are categorized into two types: plant response utilization
method and environmental data utilization method.

The plant response utilization method observes the changes in
plants due to water stress such as leaf vibrations (Sano et al., 2015) and
stem diameter variations (Meng et al., 2017; Wang et al., 2017). In
addition, image-based method observes leaf wilting extracted from
plant images (Takayama and Nishina, 2007; Guo et al., 2017). These all
methods use plant response. Therefore, they can directly express water
stress. Moreover, the plant image-based method has two advantages:
ease of measurement and low-cost as compared to the leaf vibration and
stem-diameter-based methods. The measuring device, an RGB camera,
can measure without establishing contact. It is less expensive than other
sensors. Using camera devices based on mature and widespread IoT
technologies can reduce the hardware cost in practical application.
These methods enable new farmers to inherit water stress cultivation
without expert guidance and are low-cost. The water stress index is
calculated by an estimation method to express water stress regardless of
camera angle or location. Conversely, different commercial cultivation
environmental conditions, such as the type of farming facility or camera
location, are a cause for variation in index of previous method. In this
sense, these “plant image-based” methods can be further improved to
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quantify water stress and leaf wilting.
Methods that use environmental data apply the knowledge from

climate data related to control transpiration speed to indirectly express
water stress (Sánchez-Molina et al., 2015). Environmental data-based
methods have the same two advantages of image-based methods: the
ease of measurements and its low-cost. In addition, environmental data
can express the water stress levels because it indirectly relates to
transpiration speed, a water stress index. The use of environmental data
to estimate water stress could be further improved by combining it with
plant response data such as leaf wilting, information which is not
available in environmental data. Furthermore, environmental data has
the potential to support leaf wilting interpretation extracted from plant
images, transforming it into an absolute index of water stress by the
relationship modeling of the optical-flow-based analysis between leaf
wilting and stem diameter variations (Wakamori and Mineno, 2019).

To investigate this hypothesis, a multimodal method (Kaneda et al.,
2017) has been proposed. The method estimates the variations in stem
diameter as an absolute index of water stress from plant images and
environmental data. The estimation is performed by a regression model
that calculates the stem-diameter-based absolute water stress index
from plant images and environmental data with a neural network. To
measure the stem diameter, it replaces expensive sensors for cheap ones
including an RGB camera and an environmental sensor. Details of this
method are described in Section 2.3. Nevertheless, the relationships
between the three collected data (leaf wilting extracted from plant
images, environmental data, and stem diameter variations) are men-
tioned below. Leaf wilting and environmental data perform distinct
roles in the estimation of stem diameter variations to calculate the
water stress index in plants. Leaf wilting data directly expresses stem
diameter variations because both are related to water transport caused
by transpiration in day-time (Fricke, 2017). Most of the water is
transported from roots to leaves according to the plant water potential
gradient. When the leaf osmotic pressure, which defines the water po-
tential in leaves decreases due to transpiration, water is transported
from roots to leaves through the stems. In this sense, leaf wilting di-
rectly correlates with stem diameter variations with a water transport
temporal dependence. The transpiration speed is defined by environ-
mental conditions. Light is a cause for stomatal opening. Plant tran-
spiration is based on the difference in vapor pressure of the air outside
the stomata. Therefore, the variations in the stem diameter as an ab-
solute index of water stress can be appropriately estimated by plant
images and environment data. The importance of leaf wilting increases
in specific environmental conditions of high transpiration speed.

2.2. Multimodal neural network

Multimodal neural network continues to become more sophisticated
(Veličković et al., 2017; Duan et al., 2018). These neural networks learn
how to fuse multimodal input features with their deep architecture
(Ngiam et al., 2011) and can roughly resolve the relationship between
multimodal features and the dependent variables. Recent studies have
proposed network architectures suitable for multimodal data. As a ty-
pical architecture, multi-stream architecture has been proposed (Duan
et al., 2018) that has independent streams, which extract independent
modal features from each modality of data. This is followed by com-
bining the independent features with the neural network and extracting
multimodal features that optimize the main problem. In addition, cross-
modal LSTM (X-LSTM) has been proposed as state-of-the-art archi-
tecture for time-series multimodal modeling (Veličković et al., 2017).
X-LSTM extracts independent features from their respective streams and
cross-modal features using cross-connection. The cross-connection, in-
spired by biological cross-modal systems, allows the information flow
between multimodalities. It is implemented by branching each stream
and connecting them to other modal streams. By using the cross-con-
nect, the X-LSTM demonstrated higher accuracy than the existing
methods in time-series modeling using time-series healthcare data. Our

proposal includes input feature design and C-Drop. The architecture of
the proposed neural network is not limited to a specific architecture. In
this study, we evaluate the proposed concept using two architectures:
multi-stream and X-LSTM, as typical architecture and state-of-the-art
architecture, respectively.

2.3. Multimodal sliding window-based support vector regression

Multimodal SW-SVR (Kaneda et al., 2017) has been proposed for
predicting water stress and it demonstrated the precision of multimodal
data for water stress modeling. This method predicts future stem dia-
meter variations as a plant water stress index from the plant images and
environmental data using a multimodal neural network and SW-SVR.
The neural network extracts multimodal features from the input data,
then the SW-SVR predicts plant water stress using the extracted fea-
tures. This method adopts a two-stream architecture as the multimodal
neural network. One stream extracts the wilting features from the plant
images by CNN, and the other stream extracts environmental features
using fully connected layers. For input images, a preprocessing method
has been proposed known as remarkable moving objects detected by
adjacent optical flow (ROAF). In ROAF image, the non-wilting area is
masked based on optical flow and the wilting area is emphasized. By
masking the unnecessary area, the CNN can extract leaf wilting features
efficiently from the image. These streams are then fused and the net-
work extracts multimodal features that are given as input to the SW-
SVR. The SW-SVR is an ensemble learning algorithm based on feature
clustering. Its basic theory is to build weak learners based on feature
clustering, and dynamic weighting for the inference values of weak
learners. First, the SW-SVR builds weak learners for each feature con-
dition such as different seasons and weather. The specific feature con-
dition is defined by the cluster center calculated by k-means. Each weak
learner is allocated to each cluster center. The weak learners are then
trained using neighborhood data from the cluster center. To predict
future values, weak learners collect training data by dynamic-short
distance data collection (D-SDC) that selects effective data for the
specific condition by considering movement using ‘k’ neighborhood
data for their cluster center on Euclidean distance, which is the feature
variation to predict horizons. The SW-SVR proposes the future predic-
tions. It is also used for estimating the current by training weak learners
using current dependent variable. Finally, the inference values of SW-
SVR take the changing characteristics of testing data into account by
dynamically prioritizing them. The SW-SVR dynamically determines
the weights of weak learners that are based on the similarities between
the input feature and each corresponding weak learner. Here, when the
first clustering result defined the environmental conditions, the water
stress was theorized with high accuracy by weak learners trained in
similar environmental conditions.

Meanwhile, considering the relationship between leaf wilting, en-
vironmental data and stem diameter described in Section 2.1, two is-
sues were found in the existing method. First, the existing method does
not consider temporal information in modeling. However, leaf wilting
and stem diameter variation, as water stress index, have temporal de-
pendency. To solve this problem, research on the estimation of water
stress using temporal information was conducted (Brillante et al.,
2016). However, in (Brillante et al., 2016), the temporal information
had a fixed length and a dynamic time feature corresponding to the
changes in a plant could not be considered. Thus, an estimation method
that considers dynamic temporal information is required. Recently,
RNN has shown state-of-the-art results in several time-series modeling
because it can extract temporal features optimized for the main pro-
blem but the existing method (Benabderrahmane et al., 2018;
Veličković et al., 2017) does not include RNN. RNN uses a large amount
of network parameters for the recurrent connection. Therefore, the
combination of CNN and RNN has larger parameters to solve spatio-
temporal problems than just CNN. The requirements of the training
data and computational resources increase according to the increase in
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the number of network parameters. For this reason, the existing study
has focused on only using CNN and mentioned that RNN will be applied
in future work. When the pre-extraction of image features without CNN
explaining the plant water stress, there is room for applying RNN-based
multimodal neural network. By extracting multimodal temporal fea-
tures using the RNN-based neural network, water stress will be esti-
mated with high accuracy considering complex temporal dependency.
For the first issue, we use optical flow in the pre-extraction of leaf
wilting, then we propose a novel water stress estimation method using
RNN-based multimodal neural network. The second problem is that the
existing method cannot consider environmental conditions end-to-end.
The multimodal neural network and SW-SVR are trained independently
in the existing method. If an environmental condition is lost in the
multimodal neural network training, SW-SVR cannot consider the lost
environmental conditions because clustering cannot find the lost con-
ditions. We assumed that leaf wilting and environmental data have a
different role in estimating stem diameter variations in Section 2.1.
Environmental data not only explains water stress indirectly but also
defines the importance of leaf wilting for estimating stem diameter
variations (Wakamori and Mineno, 2019). Therefore, end-to-end
training that prevents loss of environmental conditions will improve the
accuracy of water stress estimation using the two types of data. For the
second issue, we propose a novel neural network modeling method,
called C-Drop, which can dynamically control the network based on
environmental data. The proposal improves the accuracy of water stress
estimation by temporal multimodal feature extraction and end-to-end
consideration of environmental conditions.

3. Proposed method

3.1. Overview

We propose a novel plant water stress estimation method using a
multimodal neural network with C-Drop to support decision-making of
irrigation in stress cultivation (Fig. 1). The proposed method considers
the leaf wilting and environmental features as the key input features.
Other common features support the interpretation of wilting and en-
vironmental features for water stress. The wilting features express the
water stress directly. The environmental features are related to tran-
spiration, which is the cause of stress. Given that wilting and environ-
mental features have a different role for estimating plant water stress,
water stress is expressed multilaterally by fusing these features in a
neural network as an attention mechanism. The water stress estimation
model is built by the multimodal neural network that includes LSTM
layers, with RNN being one of the layers. Multimodal neural networks
are suitable for data with temporal dependence relationships that ex-
plain multimodality such as plant water stress. In the proposed method,
the neural network extracts multimodal features to estimate water
stress by network fusion while interpreting temporal dependence be-
tween the input features and water stress using LSTM layers. LSTM can
solve more complex temporal dependency than traditional RNN by
using memory units instead of normal units. In the memory unit, the
memory cell memorizes information. The input, output and forget op-
erations of the memory cell are controlled by three gates. The gate
control solves the gradient explosion or vanishing problem of tradi-
tional RNN. Thus, LSTM can explain complex temporal dependency by
using the memory unit. In addition, it is claimed that multiple LSTM
layers can improve the accuracy of time-series modeling (Graves et al.,
2013). Therefore, the proposed method uses a multimodal neural net-
work including multiple LSTM layers to solve the complex and temporal
dependence relationship between input features and water stress. In the
existing method (Kaneda et al., 2017), CNN has been used to extract
leaf wilting features. However, our method replaces CNN with pre-ex-
tracting wilting features to inhibit the increment of the parameters of
the neural network, even if LSTM layers are included. In other words,
our neural network focuses on temporal feature extraction by LSTM

instead of spatial feature extraction by CNN. CNN is extremely effective
in the identification of various objects that are present in an image such
as general object detection (Liu et al., 2016). However, we assume that
CNN has much higher expressiveness to recognize leaf wilting. Given
that the leaf wilting is defined by the angle of leaves, optical flow
(traditional image processing) can express the wilting from time-series
plant images. In addition, as CNN has high expressiveness, it causes
overfitting in training images that have low angular diversity owing to
fixed point measurement of plant images. By replacing CNN with op-
tical-flow-based feature pre-extraction, network parameters are re-
duced, and overfitting can be prevented by the network. Thus, we apply
the pre-extraction of wilting features using optical flow to prevent
overfitting and to focus temporal feature extraction in the multimodal
neural network. In our approach, the architecture of multimodal net-
work is not limited to a particular architecture. Various architectures of
multimodal neural networks have previously been proposed (Veličković
et al., 2017; Duan et al., 2018) but our proposed method, including
designed input features and C-Drop, can be applied in these archi-
tectures. C-Drop promotes a multi-modal neural network to fuse fea-
tures effectively via end-to-end consideration of environmental condi-
tions. C-Drop is a neural network modeling method based on
environmental features clustering and generates multiple sub-networks
in a neural network based on the clustering result. Because the sub-
networks train and infer each assigned specific data, each subnetwork
becomes an estimation model specialized for each environmental con-
dition.

As leaves move due to water stress in 3-dimensional (3D), this
movement information could improve the estimation model. We at-
tempted to obtain image depth information using the RGB-D camera
(RealSense D435, Intel Corporation). Although the error is in the range
of a few centimeters from the installation site, the leaf wilting motion is
also in the range of a few centimeters. Therefore, this study uses optical
flow data as 2D leaf movement that can be measured from a few mil-
limeters with a high degree of accuracy at the present time. If the depth
data was more accurate, the proposed method could be applied using
such multimodal data.

3.2. Design of input features

Input features consist of wilting features, common features, and
environmental features, as listed in Table 1. Wilting features and en-
vironmental features are key modalities to multilaterally explain water
stress. The common features support the interpretation of these two
modalities in a multimodal neural network. Wilting features express the
movement of the leaf between two time-points. They are extracted by
the following procedures: optical flow and masked optical flow. The
process of extracting wilting features is shown in Fig. 2. First, an optical
flow (a motion quantitation method) is used to calculate the leaf wilting
motion. Optical flow quantitates the motion of objects based on the
spatiotemporal variation between images taken at two time-points. The
motion is calculated in pixels and each pixel motion is expressed by
optical flow vectors that have angle and magnitude. The proposed
method uses DeepFlow (Weinzaepfel et al., 2013), an optical flow al-
gorithm, similar to the existing study (Kaneda et al., 2017). DeepFlow
calculates the dense optical flow and the motion of non-rigid objects
such as plant leaves. Thus, DeepFlow can determine the leaf wilting
motion easily and robustly from the plant image. Second, we use excess-
green (ExG) basedmasking for optical flow image to remove noise from
the outside of the plant area. ExG is a general segmentation method for
the plant area in an image (Jiang et al., 2018). The plant image has a
complex background and optical flow, so, noise will be detected in the
background. Therefore, we applied the ExG based mask to the optical
flow and created a masked optical flow that reduced the background
noise. Finally, we calculated the 11-dimensional wilting features from
the masked optical flow, which consist of histogram features (6 di-
mensions) and statistical features (5 dimensions). The histogram
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feature is defined using the histograms of oriented optical flow (HOOF)
(Chaudhry et al., 2009), which was proposed for human action re-
cognition. The HOOF is calculated based on the angle and the magni-
tude of optical flow vectors of all pixels. In our method, the plant
image-based HOOF can differentiate between leaf wilting (downward
motion) and leaf recovering (upward motion). The frequencies of HOOF
change according to the distance between the leaves, the camera and
the wilting area. Thus, we used the statistic features as reference values
for HOOF. The statistic features include the average and standard de-
viation (SD) of the angle and magnitude, and the optical flow detection
ratio obtained by dividing the number of detected optical flows by the
number of pixels. The average and SD values are considered as the
reference values for the distance between leaves and camera, and the

Fig. 1. Overview of proposed method.

Table 1
Input features for estimating plant water stress.

Type Feature # of dimensions

Wilting features: Xw Histograms of oriented optical
flow (HOOF)

6

Mean of optical flow angle 1
Standard deviation of optical
flow angle

1

Mean of optical flow magnitude 1
Standard deviation of optical
flow magnitude

1

Optical flow detection ratio 1

Common features: Xc Elapsed time from sunrise 1
Irrigation flag 1

Environmental features: Xe Temperature 1
Relative humidity 1
Vapor pressure deficit 1
Scattered light 1

Fig. 2. Process of wilting feature extraction.
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optical flow detection ratio will be the reference value for the wilting
area.

Environmental features characterize climatic conditions and explain
the plant transpiration speed, a water stress factor (Chanseetis et al.,
2005). The transpiration rate is a key factor for water stress because it
defines the easiness to lose water of plants. In this study, we used
temperature, relative humidity, vapor pressure deficit (VPD) and scat-
tered light as environmental feature inputs to explain transpiration rate.
The transpiration speed of plants is controlled by stomatal opening and
the leaf-air vapor pressure difference (LVPD) (Jolliet and Bailey, 1992;
Nereu, 2003). LVPD is the difference between the leaf vapor pressure of
a plant and the atmosphere. When the stoma is opened and the leaf
vapor pressure is higher than the atmosphere vapor pressure, the plant
experiences a high transpiration rate. The scattered light and VPD ex-
plain stomatal opening. Temperature, relative humidity, and VPD can
express the vapor pressure of the atmosphere. Additionally, leaf vapor
pressure could be expressed by the irrigation flag (described in the next
paragraph) because leaf vapor pressure is controlled by water absorp-
tion from irrigated culture. Thus, environmental features could express
the transpiration rate. This environmental data is collected by a wire-
less scattered light sensor node (Ibayashi et al., 2016). Scattered light is
the amount of sunlight unaffected by the shadows of the steel pipes in a
greenhouse (Oishi, 2016). The scattered light sensor node is cube-
shaped, coated with vinyl chloride, except for one surface, and a silicon
photodiode (S1133-14, Hamamatsu Photonics, K.K.) which measures
the scattered light in the cube. The silicon photodiode can measure the
light scattered around a plant, not the direct sunlight affected by the
steel pipes.

The common features are not categorized into wilting or environ-
mental modality. They express the plant response. Plants have a re-
sponse related to the brightness throughout the day called diurnal
variation or circadian rhythm (Meng et al., 2017; Moriyuki and Fukuda,
2016). The time elapsed after the sunrise can explain the diurnal var-
iation that cannot be expressed by the wilting and environmental data.
The irrigation flag is a binary variable, which denotes if the plants are
getting irrigated at each time point. The common feature compensates
the diurnal variations and the irrigation that is not extracted from the
wilting and environmental features.

3.3. C-Drop

We proposed a new modeling method for neural networks: C-Drop
for end-to-end consideration of environmental conditions. C-Drop cre-
ates subnetworks in the neural network by masking the nodes based on
environmental features followed by the specialization of each subnet-
work for a specific environmental condition. The proposed method
extracts temporal multimodal (such as physiological and meteor-
ological) features from leaf wilting features (physiological data) by
using environmental features (meteorological data) as an attention
mechanism of a multimodal neural network that includes LSTM layers.

The basic algorithm is composed of defining node masks based on
environmental features and creating subnetworks by applying the
masks (dotted double red1 line area in Fig. 1). The wilting features and
environmental features used in the proposed method have a different
role in estimating the plant water stress, as described in Section 2.1. The
environmental features can define the importance of wilting features on
the water stress estimation. In the leaf wilting environment, the im-
portance of wilting features should be increased, but in the environ-
ment without leaf wilting, the importance of wilting features should be
ignored as noise. The specialized modeling of water stress in each en-
vironmental condition is necessary. Each subnetwork created by C-Drop
extracts multimodal features specialized in each specific environmental

condition, followed by each subnetwork accurately estimating the
water stress by considering the dynamic importance of wilting features.
The details of the algorithm for node masks to create subnetworks,
which is a key algorithm in the C-Drop, are shown in Algorithm 1.

First, C-Drop performs clustering including preprocessing on the
environmental features to find the latent environmental conditions
(lines 1–2 in Algorithm 1). C-Drop transforms environmental features
Xe using kernel approximation (Rahimi and Recht, 2007) and principal
component analysis (PCA) as preprocessing. Next, the k-means clus-
tering (MacQueen, 1967) generates clusters from these transformed
features. The improved estimation performance by using C-Drop is re-
lated to the feature space for clustering. If the clustering result cannot
find latent environmental cluster effective for water stress estimation,
then the estimation accuracy will be reduced. The environmental fea-
tures space must be tuned to enable the clustering algorithm to find the
latent clusters because the environmental features (temperature, re-
lative humidity, and solar radiation) have complex relationships with
each other. In C-Drop, the kernel approximation and PCA generate the
transformed feature space. Kernel approximation generates a new fea-
ture space in higher dimension and converts a linear algorithm to a
nonlinear algorithm with low computational complexity. By combining
kernel approximation and PCA, which is a linear algorithm, a new
nonlinear feature space is created that consists of the features effective
for clustering, while preventing an increase in computational com-
plexity. Kernel PCA (Scholkopf and Smola, 1998) is also a nonlinear
feature mapping method that can be applied as a preprocessing in the C-
Drop. However, it has a large computational complexity in the training
phase because it uses a general kernel function such as radial basis
function (RBF) kernel. The training time in neural networks is higher,
therefore, low computational complexity is required in the preproces-
sing. In this research, we adopted the combination of kernel approx-
imation and PCA as a realistic example for calculating the complexity in
the training phase. After the preprocessing, k-means extracts clusters in
the transformed environmental features X 'e. The k-means is one of the
most popular non-hierarchical clustering algorithms and it can classify
data faster under multiple clusters as compared to other clustering al-
gorithms. The k-means extracts cluster centers =g i k( 1. .. )i , where each
center represents an environmental condition. The inverse of Euclidean
distance between all cluster centers is used as the similarity index of
specific environmental characteristics in C-Drop.

Algorithm 1 (Definition of node mask vectors for one layer).

Input:
Environmental features: Xe
Number of units: u
Drop ratio: r
Number of clusters: k

Output:
Mask vectors: = ⋯M M M M{ , , , }k1 2

Definition of node mask vectors:
1. ←X 'e fit kernel approximation and PCA to Xe ▷ Preprocessing for environ-

mental features
2. ←gi each center of k-means (X 'e), i = 1 . . . k

3. ←l u
k ▷ l: Number of initial active nodes allocated per cluster

4. ←
∗ −p u r

l
(1 ) ▷ p: Number of clusters sharing active nodes to satisfy drop ratio

r
5. For c=1 to k do ▷ Assign initial active nodes for each cluster

6. = ⋯
= > ∗ − ≤ ∗

= ≤ ∗ − > ∗{ }M m m m, , |c u
mi i l c and i l c
mi i l c or i l c

'
1, 2

1, ( 1)
0, ( 1)

7. For c=1 to k do ▷ Generate a node mask Mc for each cluster to satisfy drop
ratio r

8. compute distances between gc and all gi , i = 1 . . . k
9. sort the computed distances
10. ←Ic select index of p neighbor clusters for the center of gc

11. ←Mc compute logical OR in all ∈M i I( )i c
'

1 For interpretation of color in Fig. 1, the reader is referred to the web version
of this article.
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Next, C-Drop determines to drop or not for each node based on the
clustering result. The definition process requires two parameters:
number of target nodes u and drop ratio r, in the addition cluster
centers =g i k( 1. .. )i . The details of the definition process are described
as follows. First, the process calculates l, the number of initial active
nodes allocated per cluster, and p, the number of clusters sharing active
nodes to satisfy drop ratio r (lines 3–4 in Algorithm 1). Then, initial
active nodes are assigned for each cluster (lines 5–6 in Algorithm 1).
When the drop ratio r is not satisfied, active nodes are stored in
neighbor clusters. The environmental conditions neighbor clusters re-
quire similar features for water stress estimation. Therefore, the final
masks for each cluster are generated by sharing active nodes in p
neighbor clusters (lines 7–11 in Algorithm 1). The sharing of active
nodes enables the neural network to extract similar features efficiently
between p resembling environmental conditions. In addition, the
number of clusters and drop ratio r are tuned into hyperparameters, and
the C-Drop creates effective subnetworks and node sharing for high
accuracy water stress estimation.

Although Dropout (Nitish Srivastava et al., 2014) creates multiple
subnetworks in a neural network by masking nodes like C-Drop, the
purpose and the inference process are different. The purpose of the
Dropout is to prevent a trained model from overfitting. Dropout masks
nodes randomly with the drop ratio rd in the training phase and outputs
of the nodes are multiplied with −rd

1 without masking in the inference
phase. This improves the generalization performance of each node and
prevents overfitting in the neural network. In addition, the C-Drop
masks nodes in the training and the inference phase by the same pro-
cess, considering the environmental conditions end-to-end. The masks
in C-Drop are generated algorithmically based on environmental fea-
tures without randomness. Each subnetwork created by C-Drop uses
weights trained for each environmental condition and can perform high
accuracy inference suitable for the environmental condition. Moreover,
to prevent overfitting in each specialized subnetwork, C-Drop, which
creates the subnetworks, can use Dropout to prevent the overfitting of a
neural network.

In addition, the existing attention mechanism (Luong et al., 2015;
Xu et al., 2015) improves RNN by selectively focusing on important
data points in the temporal direction by calculating a weighted average
of the hidden layer in the past and the current state. In addition, C-Drop
focuses on the modal direction in the input feature to select important
input modality that dynamically changes based on the environmental
conditions. Thus, C-Drop is designed to adjust the importance of the
features based on the environmental conditions at a specific point of
time as a more versatile attention mechanism.

3.4. Definition of water stress index

The proposed method uses stem-diameter-based water stress index
as the dependent variable in the training phase. As water stress de-
creases the amount of water in the cells of a plant, it shrinks the stem
diameter. The plant water stress can then be quantitated based on the
stem diameter variations by a laser displacement sensor, which is
measured over time with non-disruptive measurement for plants.
Therefore, we can collect true data of plant water stress for machine
learning in actual cultivation using a laser displacement sensor. We
adopted stem-diameter-based water stress index as the dependent
variable in neural network training.

The stem diameter represents the plant water stress. However, we
cannot use the diameter as a water stress index directly because the
diameter changes with the growth of the plant and the diurnal varia-
tion. For this issue, we defined the difference in stem diameter calcu-
lated using the most recent irrigation (DSR) as a water stress index. The
DSR value dsrtis calculated as follows:

= ⋯ −− − +dsr max stem stem stem stem( , , , )t t n t n t t1

where t is the current time and n is the time elapsed since the recent

irrigation. DSR is a value calculated by subtracting the current stem
diameter from the maximum stem diameter since recent irrigation. The
variations based on plant growth and diurnal variation are almost re-
moved because the index is based on the irrigation timing, which is
repeated several times a day.

In DSR based irrigation control, a threshold value is defined for the
DSR. When the DSR value exceeds the threshold, an irrigation system
irrigates the plants. After this, the stem diameter increases owing to
water uptake, and the DSR is maintained at 0. Then, the stem diameter
decreases due to water stress and the DSR increases and exceeds the
threshold again. Therefore, DSR based irrigation scheduling can control
irrigation based on plant water stress status.

4. Evaluation

4.1. Dataset

We evaluated multimodal neural network with C-Drop using actual
cultivation datasets. To construct the datasets, we collected plant
images, environmental data (temperature, relative humidity, VPD, and
scattered light), and stem diameter data from three pinched tomato
plants (Solanum lycopersicum L. cultivar Frutica) in a dense cultivation.
Each plant was planted in a rockwool culture (Yasaihana-pod, Nippon
Rockwool Corporation), and the plant density was 148 plants/m2.
Because the rockwool culture was shaped like a small cube
(6 cm × 6 cm × 6 cm), the roots of the plant were restricted in the
cube. The data was collected at commercial greenhouses in Fukuroi,
Japan, from Dec. 22, 2017 to Jan. 8, 2018, Apr. 7, 2018 to May 24,
2018 and June 23, 2018 to July 19, 2018. In each period, we collected
plant images, environmental data and stem diameter data of the three
tomato plants. To measure this data, RGB cameras (GoPro HERO5
Session, GoPro Inc.), wireless scattered light sensor nodes (Ibayashi
et al., 2016), and laser displacement sensors (HL-T1010A, Panasonic
Corporation) were installed for each target plant, as shown in Fig. 3(a)
and (b). Each sensor device measured the data in same installation
conditions for data collection periods. The RGB cameras were installed
at a location with the highest number of leaves captured in an image.
The laser displacement sensors measured stem diameter variations be-
tween the 9th and 10th nodes of each target plant, and the measured
signals were logged by a data logger (midi LOGGER GL840, GRAPHTEC
Corporation). Wireless scattered light sensor nodes were installed above
each target plant to collect environmental data that included tem-
perature, relative humidity, VPD, and scattered light.

In addition, plant images were collected from 4 a.m. to 7p.m., and
the environmental and stem diameter variations data were collected for
24 h. These sensors were similarly installed in all three cultivations of
the tomato plant and collected continuously every minute until the end
of the experiment because tomatoes require frequent irrigation every
day. However, owing to defects such as sensor failure, there are several
points when data was lost, and the number of datasets differed for each
cultivation of tomato plants. Using the collected data from 7 a.m. to
6p.m. in bright sunshine, we defined three datasets for cross-validation,
as shown in Fig. 3(c)–(e), and Table 2. In each dataset, training/vali-
dation data and testing data are independent of the target plants and
the day of measurement. Specifically, the data measured on the same
day are not included in both training/validation data and testing data.
The images of the same target plant have high similarity even if their
days of measurement are different. The plant images of different target
plant should be used for the training/validation and testing data. The
environmental data measured on the same day has similar variations
even if the target plants are different. Therefore, the environmental
data for different days should be used for the training/validation and
testing data. Separate target plants and measurement days are required
in training/validation and testing data to generalize this evaluation.
The evaluation in the existing study did not considered this in-
dependence (Kaneda et al., 2017) but we designed new datasets
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considering the independence for this evaluation. We then defined the
data types: training, validation, and testing data, for each day based on
the daily average scattered light to prevent season and weather bias. We
assumed that the proposed estimation model is being used in real cul-
tivation that is affected by seasonal and weather characteristics similar
to the training data. Therefore, we defined the data type of each day
based on the daily average scattered light representing the seasonal and
weather characteristics. Approximately 60%, 20% and 20% of all days
were defined as training, validation, and evaluation data types, re-
spectively, in order of the daily average scattered light. Thus, we
evaluated the proposed method assuming actual cultivation application
by using the datasets that considered independence and data bias.

For data augmentation, we used cropped plant images for training/
validation data. A plant image includes the area without leaf wilting,
thus, general image crop methods such as center and random crop are
not appropriate. With these methods, the leaf wilting area in the ori-
ginal image may be lost. Thus, we cropped the images based on optical
flow that detects leaf wilting and crops it from the original image. The
cropped area is determined to maximize the daily average optical flow
magnitude. We calculated optical flow using DeepFlow in the same

algorithm with wilting feature extraction. Consequently, the optical-
flow-based crop generated new images in which the wilted part of the
target plant was enlarged. The cropped area was determined daily
based on the target plant because the area with wilted leaf depends on
the view angle and the plant growth stage. The size of the cropped area
was a quarter of the original image. Finally, we resized the original and
cropped images to the same size (144 × 144) and extracted the leaf
wilting features as shown in Fig. 2.

4.2. Experimental settings

We evaluated the performance of the proposed method through two
experiments: comparison experiment and ablation experiment. In both
experiments, we applied cross-validation using three datasets shown in
Fig. 3(c)–(e), and compared the average of the testing score. In addi-
tion, we demonstrated the neural network architectures, details of the
comparison method, and details of the hyperparameters used in this
evaluation in Fig. 4, Table 3, and Table 4, respectively. In Fig. 4,
Inputimg denotes the RGB image, Inputw denotes the leaf wilting mod-
ality consisting of wilting features and common features, and Inpute

Fig. 3. Dataset for the evaluation. (a) and (b) show data collection environment, (a) overhead view of the cultivation line where data was collected, (b) layout of
measurement sensors for a target plant. (c), (d) and (e) show datasets which test the plants 1, 2 and 3, respectively.

Table 2
Number of under training, validation and testing data.

Dataset # of training data (after augmentation) # of validation data (after augmentation) # of testing data

dataset 1 (Fig. 3(c)) 61,873 (123,746) 21,420 (42,840) 9,864
dataset 2 (Fig. 3(d)) 61,970 (123,940) 21,706 (43,412) 10,382
dataset 3 (Fig. 3(e)) 61,549 (123,098) 21,298 (42,596) 10,474
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denotes the environmental modality composed of environmental and
common features. Fig. 4(a) is the existing deep neural network (DNN)
that includes CNN proposed in (Kaneda et al., 2017). Inputimg is used in
the existing DNN. Fig. 4(b) shows a single-modal network with LSTM
layers to evaluate the performances of each modality (wilting modality
and environment modality). Fig. 4(c) and (d) show the multimodal
neural networks with LSTM layers that evaluate the multimodal input
data and C-Drop. As a method of combine the two LSTMs (Fig. 4(a) and
(b)), multiple networks were combined into one network by simply
combining the last layers of the two networks. Fig. 4(c) is a typical two-
stream architecture that extracts each modal feature through respective

streams. In this study, the network extracts the leaf wilting temporal
features and environmental temporal features through respective
LSTM-based streams. Fig. 4(d) shows a recent state-of-the-art archi-
tecture for multimodal time-series data known as X-LSTM (Veličković
et al., 2017). We applied the proposed method in the two networks
(Fig. 4(c) and (d)) in this evaluation. Our proposed method focused on
designing the input features for LSTM-based neural networks and C-
Drop algorithm for estimating plant water stress. Thus, neural network
is not limited to a specific architecture. We evaluated the proposed
method in typical network architecture (Fig. 4(c)) and state-of-the-art
architecture (Fig. 4(d)). In all neural networks, parametric rectified

Fig. 4. Neural network architectures, (a) existing deep neural network (DNN) (Kaneda et al., 2017) (b) single modal network based on LSTM (LSTM), (c) multimodal
neural network named two stream LSTM (2sLSTM), (d) multimodal neural network named cross-modal LSTM (X-LSTM). The numbers in parentheses mean number
of dimensions.

Table 3
Details of the evaluation.

(a) Settings of the comparison experiment between the proposed and the existing methods.

Method Input data

RGB image Wilting features Common Features Environmental features

XGBoost (WILT, ENV) ✓ ✓ ✓

DNN (ORGIMG, ENV) (Fig. 4(a)) ✓ (Original) ✓ ✓
DNN (ORGIMG, ENV) (Fig. 4(a)) w/SW-SVR ✓ (Original) ✓ ✓
DNN (ROAFIMG, ENV) (Fig. 4(a)) ✓ (ROAF) ✓ ✓
DNN (ROAFIMG, ENV)w (Fig. 4(a)) w/SW-SVR ✓ (ROAF) ✓ ✓
2sLSTM (WILT, ENV) (Fig. 4(c)) w/C-Drop ✓ ✓ ✓
X-LSTM (WILT, ENV) (Fig. 4(d)) w/C-Drop ✓ ✓ ✓

(b) Settings of the ablation experiment of the proposal.

Method Input data

Wilting features Common Features Environmental features

LSTM (WILT) (Fig. 4(b)) ✓ ✓
LSTM (ENV) (Fig. 4(b)) ✓ ✓
2sLSTM (WILT, ENV) (Fig. 4(c)) ✓ ✓ ✓
2sLSTM (WILT, ENV) (Fig. 4(c))w/SW-SVR ✓ ✓ ✓

2sLSTM (WILT, ENV) (Fig. 4(c)) w/C-Drop (w/o preprocessing) ✓ ✓ ✓
2sLSTM (WILT, ENV) (Fig. 4(c)) w/C-Drop ✓ ✓ ✓
X-LSTM (WILT, ENV) (Fig. 4(d)) ✓ ✓ ✓
X-LSTM (WILT, ENV) (Fig. 4(d)) w/SW-SVR ✓ ✓ ✓
X-LSTM (WILT, ENV) (Fig. 4(d)) w/C-Drop (w/o preprocessing) ✓ ✓ ✓
X-LSTM (WILT, ENV) (Fig. 4(d)) w/C-Drop ✓ ✓ ✓
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linear unit (PReLu) (He, 2015), normalization processing, and Dropout
(Nitish Srivastava et al., 2014) are applied to obtain the output of each
hidden layer. For the normalization processing, we used batch nor-
malization (Sergey Ioffe, 2015) in the linear or convolutional layer and
layer normalization (Ba et al., 2016) in the LSTM layer. All weights of
neural networks were initialized by He initialization (He, 2015), and
the neural networks were trained using Adam (Diederik and Kingma,
2015) as the optimizer.

In the comparison experiment, we compared our proposed method
and the existing method (Kaneda et al., 2017), as shown in Table 3 (a).
“2sLSTM (IMG, ENV) w/C-Drop” and “X-LSTM (IMG, ENV) w/C-Drop”
are our proposed methods which were composed using our proposed
input features, multimodal neural network, and C-Drop. The two pro-
posed methods use 2sLSTM and X-LSTM (Fig. 4(c) and (d), respec-
tively). C-Drop was applied to obtain the output of the two linear layers
to construct subnetworks based on features extracted via LSTM layers.
The other DNN-based methods have been proposed in the existing study
(Kaneda et al., 2017), which includes four types of combinations based
on with or without preprocessing the input image and fine-tuning by
SW-SVR. According to the existing study, the SW-SVR is applied to the
64-dimension features extracted from the last linear layer of the DNN
(Fig. 4(a)). In the existing study, the DNN-based method was evaluated
to predict future water stress. However, the irrigation control system is
realized by estimating only the current water stress. From a practical
perspective, we evaluated the performance of the estimated current
water stress as an experimental setting. In the DNN-based method with
SW-SVR, SW-SVR uses D-SDC to extract training data considering the
prediction horizons for each weak learner as described in Section 2.3. In
this experiment, to estimate the current water stress, we built each
weak learner using the neighbor data k from the weak learner, and the
data collection size of k was tuned as a hyperparameter. Furthermore,
in XGBoost (Chen and Guestrin, 2016), the estimation was made using
the feature with the same length as the sequence length of LSTM used in
the proposed method as an explanatory variable.

Next, we evaluated the performances of the proposed input features
and C-Drop in the ablation experiment. Table 3(b) shows the details of
the ablation experiment. We compared the accuracy of estimation on
single-modal approaches using the single-modal network (Fig. 4(b))
and multimodal approaches using multimodal neural networks
(Fig. 4(c) and (d)) to evaluate the superiority of multimodality in input
features. We then compared the C-Drop and other methods such as
without C-Drop, SW-SVR and C-Drop without preprocessing to evaluate
the performance of C-Drop including preprocessing. SW-SVR is a ma-
chine learning algorithm ensemble that includes feature clustering by k-
means, like C-Drop. Thus, SW-SVR can contribute to build specialized
models considering environmental conditions just like C-Drop. How-
ever, SW-SVR will not extract more effective features than C-Drop be-
cause SW-SVR cannot apply end-to-end training in a neural-network.
When SW-SVR is applied to train neural networks, it cannot consider
environmental characteristics. Thus, latent features and clusters may
get lost while training the neural network. Moreover, as C-Drop per-
forms end-to-end neural network training, it can extract effective fea-
tures and clusters for improving the accuracy of estimation, as com-
pared to SW-SVR. The preprocessing of C-Drop finds more latent
clusters and improves the accuracy because the it clarifies the re-
lationship between the environmental features. Latent clusters are
composed of data located at large distances in the original feature
space. The preprocessing can reduce these distances by transforming
the space. After the preprocessing, the k-means algorithm finds the
latent clusters in the clarified environmental features. Thus, we com-
pared with or without C-Drop method, the SW-SVR and the C-Drop
without preprocessing to evaluate the performance of C-Drop with
preprocessing. The network parameters are numbered as 104 k, 102 k
and 102 k for single-modal network (Fig. 4(b)), 2sLSTM (Fig. 4(c)) and
X-LSTM (Fig. 4(d)), respectively. The three networks have almost
equivalent accuracy and these parameters are less than the number of
augmented training data (123 k) listed in Table 2.

The list of hyperparameters is shown in Table 4. The parameters
with multiple values were tuned using grid-search in two experiments.
The evaluation metrics are coefficient of determination (R2), mean ab-
solute error (MAE) and root-mean-squared error (RMSE). Because the
hyperparameters of all models were tuned using the validation data, the
models that had the lowest RMSE were selected. In this evaluation, the
source code was implemented using Python2.7. We used Chainer 1.22
and scikit-learn 0.19.1 to implement our proposed method and the
comparison methods.

4.3. Results and discussion

Fig. 5 shows the results of the comparison experiment. The results
demonstrate that the proposed methods 2sLSTM (WILT, ENV) w/C-
Drop and X-LSTM (WILT, ENV) w/C-Drop provided more accurate es-
timation than the existing methods for all evaluation metrics. The es-
timated performance of X-LSTM (WILT, ENV) w/C-Drop was the best
and we confirmed the effectiveness of our proposed method for X-
LSTM, which is a state-of-the-art multimodal neural network. In the
existing methods, the ROAF image was used as an input image that
improved the accuracy of estimation as compared to the original image.
In addition, applying SW-SVR to DNN further improved the accuracy.
The performances of image preprocessing and SW-SVR coincided with
the results of the existing research (Kaneda et al., 2017). The effec-
tiveness of SW-SVR, which is a clustering-based algorithm, supports the
applicability of clustering to the features of water stress modeling.
However, R2 was 0.00 in the existing DNN method (ROAFIMG, ENV) w/
SW-SVR and XGBoost, which is a state-of-the-art regression model. The
score denotes that the existing method approximately outputs the
average of true values in three datasets. DNN and SW-SVR were difficult
to extract effective features to estimate appropriate plant water stress.
Moreover, even if it used the state-of-the-art regression method like
XGBoost, it could not make estimations with an accuracy higher than

Table 4
Details of hyperparameters used in evaluation. Hyperparameters with multiple
values are tuned using grid-search.

Hyperparameter Value(s)

(a) Hyperparameters for neural network.
Learning rate 0.01
Batch size 1024
Dropout ratio 0.3, 0.5, 0.7

(b) Hyperparameters for LSTM-based neural
network.

Sequence length 60

(c) Hyperparameters for C-Drop.
Drop ratio 0.3, 0.5, 0.7
Gamma of kernel approximation 0.1, 1, 10
Component number of kernel approximation 100
Cumulative contribution rate of PCA 99%
Number of clusters 64

(d) Hyperparameters for SW-SVR.
Cost: C −10 4, −10 3, −10 2, −10 1, 100,

101, 102, 103

Tube: ε −10 4, −10 3, −10 2, −10 1, 100,
101, 102, 103

Prediction weight 0.5, 1, 3
Number of estimators 10, 100, 300
Data collection size: k 100, 1000

(e) Hyperparameters for XGBoost.
Learning rate 0.05, 0.1, 0.3, 0.6, 0.9
Max depth of a tree 3, 5, 10
Number of estimators 10, 50, 100, 150, 200, 250,

300
Subsample ratio of the training instances 0.8, 0.85, 0.9, 0.95
Subsample ratio of columns in each tree 0.3, 0.5, 1.0
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the proposed method only with the input feature quantity. Thus, the
existing method had room for improvement. On the contrary, our
proposed methods improved the accuracy of estimation for all metrics.
The R2 score was 0.381 and 0.429 in 2sLSTM (WILT, ENV) w/C-Drop
and X-LSTM (WILT, ENV) w/C-Drop, respectively. The X-LSTM (WILT,
ENV) w/C-Drop consists of the best algorithm and features that reduce
the estimation errors of MAE and RMSE by approximately 21% each, as
compared to DNN (ROAFIMG, ENV) w/SW-SVR. In this evaluation, the
dataset was independent of the target plant and the day of measure-
ment for training/validation and testing data, as shown in Fig. 3(c)–(e).
The proposed methods improved the accuracy of estimation in the in-
dependent testing data. Therefore, it was suggested that the proposed
methods have higher robustness as compared to the existing method for
estimating plant water stress. Although, the dataset used for the eva-
luation belonged to one breed (Solanum lycopersicum L. cultivar Frutica)
and three individuals (plants 1, 2, and 3), in future, there is a plan for
verification of generality by increasing the number of breeds and in-
dividual data.

Fig. 6 shows the difference between the estimated and the true DSR
in time-series. Hourly average values of estimated and the true DSR are
shown since original data have a high frequency for time-series visua-
lization. In 2sLSTM (WILT, ENV) with C-Drop and X-LSTM (WILT, ENV)
with C-Drop (Fig. 6(c)), the multimodal characteristics enable the es-
timated DSR to change by more than approximately 30 μm and follow
approximately 10 μm. In particular, X-LSTM (WILT, ENV) w/C-Drop
demonstrated high accuracy during the period 2017/12/30 7 a.m. to
2018/7/19 2 p.m., where DSR exhibited a large value during the period
2017/12/30 to 2018/1/4 and a small value during the period 2018/1/4
to 2019/7/19, thereby indicating that it can follow the true value. In
contrast, DNN (ORGIMG, ENV) (Fig. 6(a)) and DNN (ROAFIMG, ENV)
(Fig. 6(b)) demonstrated a large error during the period 2017/12/30 to
2018/1/4 and slightly false value of the period between 2017/1/4 and
2018/7/19.

In Fig. 7, it is shown the results of the ablation experiment. Each
multimodal approach demonstrated high accuracy compared to single-
modal approaches (LSTM (WILT) and LSTM (ENV)). The results de-
monstrate that the estimation performance of X-LSTM (WILT, ENV)
with C-Drop is the highest for the evaluation metrics. The difference in
the accuracy of estimation are related to different feature performances.
Thus, this result indicates that the combination of leaf wilting and

environmental features improve the accuracy of estimation by com-
plementarity explanation of plant water stress. The effect of the en-
vironmental features alone has not been evaluated in the existing study
(Kaneda et al., 2017). However, our result confirmed the performance
of the input features and the effectiveness of multimodalities in input
features. Moreover, each metric score indicates higher performance of
the proposed methods with C-Drop including preprocessing algorithms
in each neural network (2sLSTM and X-LSTM). The results support the
effectiveness of C-Drop on multimodal neural networks to improve the
accuracy of estimation in both 2sLSTM, a typical architecture, and X-
LSTM, a state-of-the-art architecture, of the multimodal neural network.

We determined that C-Drop can improve a neural network to esti-
mating the water stress independent of the detailed network archi-
tecture. When the preprocessing was not applied to C-Drop, the accu-
racy of estimation decreased in both multimodal neural networks. Thus,
the network that can implement environmental characteristics using
kernel approximation and PCA was required to improve the accuracy of
estimation in these neural networks. As the environmental features
have complex relationships, only k-means could not find latent clusters
for effective modeling of plant water stress. In this study, we used
kernel approximation and PCA as preprocessing in C-Drop to inhibit
increasing computational complexity. Besides, other space mapping
methods such as kernel PCA can be used in C-Drop preprocessing as
well. Therefore, the trade-off relationship between the computational
complexity and the accuracy of estimation should be analyzed in future
research (whereas, our results showed the necessity of preprocessing in
C-Drop). SW-SVR was able to improve R2 and RMSE score compared to
that without SW-SVR in the two multimodal neural networks. In MAE,
SW-SVR improved the accuracy in 2sLSTM. The effectiveness of SW-
SVR for estimating plant water stress can be evaluated using the ex-
isting method. The effectiveness of C-Drop and SW-SVR, which have a
similar process such as feature clustering, supports the effectiveness of
clustering-based learning to estimate plant water stress. However, the
combination of multimodal neural network and C-Drop provides more
the accuracy of estimation than SW-SVR. It is assumed that C-Drop
provides effective feature extraction and modeling by end-to-end
training in a neural network, which is impossible with SW-SVR. Thus, it
appears that applying SW-SVR to the trained neural network could not
extract effective features because effective features have been reduced
owing to the data imbalance in the training phase of the neural

Fig. 5. Results of the comparison experiment between the proposed and existing methods: (a) R2, (b) MAE, and (c) RMSE.
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network. Based on these advantages of C-Drop, we confirmed its ef-
fectiveness including preprocessing on multimodal neural networks
based on typical architecture or state-of-the-art architecture.

4.4. Inference time

We measured the inference time of training model to verify that the
proposed method is applicable to the real world. We used Intel core i7-
6700 k, Nvidia GTX960 GPU, DDR4-2133 32 GB memory, and Ubuntu
14.04 as the operating system for verification and measured the average
processing time after 100 inferences. Consequently, it took 64.94 ms
processing time for each point. Therefore, assuming an application that
estimates in a one-minute cycle, it is possible to satisfy the cultivation
control of 923 locations with the PC we used for verification. Thus, our
proposed method is proven to be worthy of application to the real
world.

5. Conclusion

We proposed a novel plant water stress estimation method using a
multimodal neural network with C-Drop to support the decision-making
of precision irrigation during stress cultivation. The multimodal neural
network includes multiple LSTM layers. The leaf wilting and environ-
mental features are used as the key input features. In plant physiology,
the leaf wilting and environmental features have a different role in the
estimation of water stress. Therefore, our method extracts effective
multimodal features for estimating plant water stress by combining the
above-mentioned features in the neural network. In addition, we pro-
posed a neural network modeling method, named C-Drop, to promote
end-to-end consideration of environmental conditions, then build a
high accuracy estimation model. C-Drop trains the neural network on
the basis of environmental conditions that not only have an indirect
relationship with water stress but also control the importance of wilting
features in water stress estimation. C-Drop creates subnetworks in the
neural network based on environmental features algorithmically, and
each subnetwork can specialize in specific environmental conditions

Fig. 6. True values and estimated values with DNN (ORGIMG, ENV), DNN (ROAFIMG, ENV), 2sLSTM (WILT, ENV) and X-LSTM (WILT, ENV) w/C-Drop.

K. Wakamori, et al. Computers and Electronics in Agriculture 168 (2020) 105118

12



and estimate water stress with high accuracy. We evaluated the pro-
posed method using actual cultivation dataset of tomato. The result of
the comparison experiment demonstrated that the proposed method
estimates the plant water stress with 21% lower MAE and RMSE than
the existing method (Kaneda et al., 2017). In the ablation experiment,
the result showed the effectiveness of multimodalities in the input
features. Moreover, it was confirmed that applying C-Drop to the
multimodal neural network improves the accuracy of estimation as a
more versatile attention mechanism.

There are four limitations and future work related in this study.
Firstly, 3D movement of leaves should be evaluated in water stress
estimation. Because the 3D leave movement characteristics has the
potential to increase the estimation accuracy, we would examine the
applicability of the RGB-D camera for leaf condition quantification in
future study. Secondly, the time information such as the elapsed days
for a specific growth event should be considered with the proposed
method. Time information through cultivation is expected to improve
the estimation accuracy by considering plant growth. Thirdly, the de-
tailed performance of C-Drop should be evaluated. Because of the
characteristics of C-Drop and of neural networks, there is a possibility
that different applications of C-Drop together with neural network may
affect the accuracy of estimation. We evaluated C-Drop in a limited
experimental condition. Thus, its applicability and related concerns
have not been clarified. In future work, it is necessary to clarify the
effect of the mask created by C-Drop on the weighting of neural net-
work. In addition, an exhaustive performance of C-Drop using more
general dataset such as meteorological data should be evaluated. To
conclude, we should investigate fruit quality cultivated by controlling
irrigation with the proposed method. The performance of the current
accuracy of water stress estimation should be evaluated by fruit quality
compared with irrigation by true DSR and estimated DSR.
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