

Heterologous production of coryneazolicin in Escherichia coli

メタデータ	言語: eng
	出版者:
	公開日: 2020-01-07
	キーワード (Ja):
	キーワード (En):
	作成者: Takuma, Momoko, Kuroha, Mai, Nagano, Yuki,
	Kaweewan, Issara, Hemmi, Hikaru, Oyoshi, Takanori,
	Kodani, Shinya
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/00027003

1	Heterologous production of coryneazolicin in Escherichia coli
2	Running headline: Heterologous production of coryneazolicin
3	Authors: Momoko Takuma, ¹ Mai Kuroha, ¹ Yuki Nagano, ¹ Issara Kaweewan, ² Hikaru
4	Hemmi, ³ Takanori Oyoshi, ^{1,4} and Shinya Kodani ^{1,2,4}
5	Affiliations: ¹ Graduate School of Integrated Science and Technology, Shizuoka
6	University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 Japan; ² Graduate School of
7	Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka
8	422-8529 Japan; ³ Food Research Institute, NARO, 2–1-12 Kan-nondai, Tsukuba,
9	Ibaraki 305-8642 Japan; ⁴ Academic Institute, Shizuoka University, 836 Ohya,
10	Suruga-ku, Shizuoka 422-8529 Japan
11	*To whom correspondence should be addressed: Shinya Kodani, College of Agriculture,
12	Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529
13	Japan, Tel/Fax; +81(54)238-5008, E-mail; kodani.shinya@shizuoka.ac.jp
14	Keywords: coryneazolicin, thiazole/oxazole-modified microcins, heterologous
15	production, cytotoxicity

17 Abstract

18	Coryneazolicin belongs to a plantazolicin type peptide which is a ribosomally
19	synthesized and post-translationally modified peptide (RiPP) that contains multiple
20	azole rings. Although coryneazolicin was previously synthesized by in vitro
21	experiments, its biological activity has not been evaluated. In this report, the
22	heterologous production of coryneazolicin was accomplished to obtain enough
23	coryneazolicin for biological activity tests. The structure of coryneazolicin was
24	confirmed by ESI-MS and NMR analyses. The biological activity tests indicated that
25	coryneazolicin possessed potent antibacterial activity and cytotoxicity. Although
26	antibacterial activity of plantazolicin was previously reported, the cytotoxicity was
27	newly found in coryneazolicin among plantazolicin type peptides. In addition, we
28	revealed that coryneazolicin induced apoptosis.
29	

30 Introduction

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a 31class of naturally occurring peptides that includes more than 20 subclasses such as 32lanthipeptides.¹⁻⁴ Based on their structural characteristics, RiPPs are classified into 33 several groups, such as lantibiotics,^{5, 6} lasso peptides,⁷⁻⁹ and linear azole-containing 34peptides (LAPs).¹⁰ LAPs are defined as linear peptides containing several azole and 35 azoline rings biosynthesized from Cys, Ser, and Thr residues in the precursor peptide.¹⁰ 36 LAPs, such as microcin B17,^{11, 12} streptolysin S,¹³⁻¹⁵ goadsporin,¹⁶⁻²⁰ and 37 plantazolicin,²¹⁻²³ have been reported to have a wide variety of bioactivities. 38 Plantazolicin was originally isolated as an anti-Bacillus anthracis agent^{22, 24} from 39Bacillus velezensis FZB42 (formerly Bacillus amyloliquefaciens). Total synthesis of 40plantazolicin(s) was accomplished with different approaches by several groups.²⁵⁻²⁸ 41The biosynthetic gene cluster of plantazolicin was reported to include six essential 42genes (bamA, bamB, bamC, bamD, bamE, and bamL).²⁹ The azole and azoline rings in 43the plantazolicin precursor peptide (BamA) are enzymatically biosynthesized by a 44trimeric complex of a cyclodehydratase (BamC and BamD) and a FMN-dependent 45dehydrogenase (BamB).²⁹ After heterocycle formation, the *N*-terminal (leader peptide) 46region of the precursor peptide can be removed by the putative protease (BamE).²⁹ Two 47

48	methyl residues are added to the amino residue of the N-terminus Arg in the core of the
49	peptide by an S-adenosylmethionine (SAM)-dependent methyltransferase (BamL) to
50	afford the target plantazolicin. ²⁹⁻³¹ Genome mining for gene clusters analogous to that of
51	plantazolicin revealed the distribution of similar biosynthetic gene clusters in
52	Gram-positive bacteria. ³² Among them, the plantazolicin analog coryneazolicin (1, Fig.
53	1a) was synthesized in an in vitro experiment based on the biosynthetic gene cluster of
54	actinobacterium Corynebacterium urealyticum. ³² However, the biological activity of
55	coryneazolicin has not yet been reported. Based on this precedent, we successfully
56	accomplished the heterologous production of coryneazolicin using Escherichia coli as
57	host cells. Here, we describe the heterologous production and biological activities of
58	coryneazolicin (1 in Fig 1a).
59	

60 Results and Discussion

61	As shown in Fig. 1b, the gene cluster of coryneazolicin (length: 6052 bp) includes six
62	essential genes (curA: precursor gene, curB: dehydrogenase, curC/curD:
63	cyclodehydratase complex, <i>curE</i> : protease, and <i>curL</i> : methyltransferase) and two
64	unknown protein coding genes. ³² The full length of the gene cluster was amplified by
65	PCR and integrated into the vector pET-28a to give the coryneazolicin expression
66	vector pET-28a-10395 (Fig. 2). The vector pET-28a-10395 was cloned in <i>E. coli</i> DH5 α
67	and transformed into E. coli BL21 (DE3). The bacterium E. coli BL21 (DE3), harboring
68	pET-28a-10395, was cultured on modified basal agar medium ³³ at 23 °C for 4 days with
69	isopropyl- β -D-1-thiogalactopyranoside (IPTG) to express the genes. The bacterial cells
70	were harvested with a spatula and extracted with twice the volume of MeOH. The
71	MeOH extract of the cells was analyzed by HPLC and ESI-MS. ESI-MS analysis
72	showed incompletely modified coryneazolicin analogs (Fig. S1a). Judging from the
73	ESI-MS results, non specific cleavages of the leader sequence were possibly caused by
74	endogenous proteases of E.coli. In addition, dimethylation of the N-terminus amino
75	residue seemed to be incomplete in this expression system. The gene cluster of
76	coryneazolicin includes genes coding for a protease and a methyltransferase (curE and
77	curL), and we proposed that the enzymes derived from these genes would not function

78	properly. To compensate for the incompleteness of the modification, we planned to
79	utilize the genes for protease <i>bamE</i> and methyltransferase <i>bamL</i> in the plantazolicin
80	biosynthetic gene cluster ²⁹ of <i>Bacillus velezensis</i> . The genes of protease <i>bamE</i> and
81	methyltransferase <i>bamL</i> were amplified by PCR and integrated into the vector
82	pACYCDuet-1 to give the vector pACYC-BamLE (Fig. 2). The vector pACYC-BamLE
83	was transformed into <i>E. coli</i> BL21 (DE3) harboring pET-28a-10395. The bacterium <i>E</i> .
84	coli BL21 (DE3), harboring two vectors, pET-28a-10395 and pACYC-BamLE, was
85	cultured on modified basal agar medium containing IPTG at 23 °C for 4 days to express
86	the genes. The HPLC and ESI-MS analyses of the extract of the cells indicated the
87	complete modification by this system to give 1 (Fig. S1b).
88	The molecular formula of 1 was confirmed to be $C_{55}H_{56}N_{18}O_9S_7$ by accurate ESI-MS
89	(Fig. S2) since the ion corresponding to $[M+H]^+$ was observed at m/z 1337.2587 (mass
90	error: -0.972 ppm, the calculated m/z value, 1337.2600). In the ESI-MS experiment, the
91	observed fragmentation ions at m/z 693.2 and 665.2 corresponded to the fragment ion
92	diMeArg-Thz-Oxz-Thz-MeOxz-MeOxz-Ile and its decarbonylated ion, respectively
93	(Fig. 3). These data coincided with the ESI-MS data in a previous report. ³² To
94	determine the structure, the NMR spectra, including the ¹ H, ¹³ C, DEPT-135,
95	DQF-COSY, TOCSY, NOESY, HMBC, and HSQC spectra, of coryneazolicin in 500

96	μ L of DMSO- d_6 were analyzed. A spin system containing four normal amino acids, one
97	Ile, one Pro, and two Gly, was constructed based on the HSQC, HMBC, DQF-COSY,
98	and TOCSY spectra (Fig. 4 and Table S3). In the same manner, azole groups including
99	seven Thz and two methyl oxazole (MeOxz) units were identified from the NMR
100	experiments (Fig. 4 and Table S3). However, some of the units that were expected in
101	coryneazolicin, including N^{α} , N^{α} -dimethylarginine (diMeArg) and Oxz, were not
102	detected in the NMR experiments. Two fragments (partial structures A and B) were
103	constructed from the HMBC and NOESY results (Fig. 4a). The sequence of partial
104	structure A was determined to be MeOxz1-MeOxz2-Ile-Pro. Briefly, the connection
105	between Ile and Pro was determined based on the NOESY correlation between the
106	α -proton of Ile (δ H 4.76) and the δ -proton of Pro (δ H 3.89). The connection between
107	MeOxz2 and Ile was confirmed based on the NOESY correlation between the amide
108	proton of Ile (δ H 7.76) and the methyl protons of MeOxz2 (δ H 2.77). A long-range
109	HMBC coupling was observed from the methyl proton of MeOxz1 (δ H 2.67) and the
110	methyl proton of MeOxz2 (δ H 2.77) to the carbon of MeOxz2 (δ C 153.0). The
111	sequence of partial structure B was determined to be Thz-Gly-Gly. The connection
112	between the two Gly units was determined based on the HMBC correlations from the $\boldsymbol{\alpha}$
113	proton of Gly1 (δ H 3.98) and the amide proton of Gly2 (δ H 8.32) to the carbonyl

 $\overline{7}$

114	carbon (δ C 169.3). The connection between Thz and Gly1 was determined based on the
115	HMBC correlations from the methine proton of Thz (δ H 8.58) and the amide proton of
116	Gly1 (δ H 8.61) to the carbonyl carbon (δ C 160.8).In addition to the Thz unit in
117	fragment B, presence of six other Thz units were indicated in the molecule based on the
118	NMR spectra (Fig. 4b). It was not possible to determine the connections of these Thz
119	units due to their lack of long-range couplings in the HMBC spectrum. Over all, we
120	proposed the structure of coryneazolicin to be 1, which was identical to the previously
121	reported structure. ³²

132	To investigate whether treatment with 1 alters the proliferation of cancer cells, we
133	incubated HCT116 and HOS with various concentrations of 1 for 72 h and assessed cell
134	viability using the CellTiter-Glo luminescent cell viability assay. Coryneazolicin (1)
135	showed dose-dependent cytotoxicity against these cell lines and showed an IC_{50} values
136	of 6.5 nM (HCT116) and 3.2 nM (HOS) against these cell lines, respectively. These data
137	indicate that 1 is highly toxic to the HCT116 and HOS cancer cell lines. To investigate
138	further mechanism of cytotoxicity, the apoptosis inducing assay using 1 was performed.
139	As a result, apoptosis was observed after 48h from inoculation of 1 with dosage of 20
140	nM on HCT116 and HOS cancer cell lines. A macrocyclic peptide with eight azole rings,
141	telomestatin, was reported to inhibit the telomerase activity of in vitro cancer cells. ³⁶
142	The mechanism of apoptosis induction of 1 was also thought to be inhibition of
143	telomerase or topoisomerase.

146 Materials and methods

147 Bacterial Strains

148	The bacterium <i>Corynebacterium urealyticum</i> JCM 10395 ^T was obtained from JCM
149	(Japan Collection of Microorganisms, RIKEN BioResource Research Center, Japan).
150	The bacterial strains <i>Escherichia coli</i> NBRC 102203 ^T , <i>Pseudomonas aeruginosa</i> NBRC
151	12689 ^T , <i>Bacillus subtilis</i> NBRC 13719 ^T , <i>Staphylococcus aureus</i> NBRC 100910 ^T and
152	<i>Micrococcus luteus</i> NBRC 3333 ^T were obtained from the NBRC culture collection
153	(NITE Biological Resource Center, Japan). The bacterium Bacillus velezensis DSM
154	23117 (formerly Bacillus amyloliquefaciens strain FZB42) was obtained from DSMZ
155	(Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Germany).
156	Molecular cloning of the biosynthetic gene cluster of coryneazolicin.
157	The gene cluster of coryneazolicin was integrated into the expression vector pET-28a
158	(Merck Millipore, USA) by performing amplification and integration of the partial
159	sequences twice. The crude genome DNA was extracted from Corynebacterium
160	urealyticum JCM 10395 using the DNeasy Blood & Tissue Kit (Qiagen, Venlo,
161	Netherlands). The partial sequence (2050 bp) of the gene cluster was amplified by PCR
162	with the primer pair 10395-F2 and 10395-R1 (Table S1) using template DNA of <i>C</i> .

163	urealyticum and EmeraldAmp PCR Master Mix (Takara Bio Inc., Shiga, Japan)
164	according to the manufacturer's instructions. The insert DNA fragment and the pET-28a
165	vector (Merck Millipore, USA) were double-digested with BamHI-HF and NotI-HF
166	(NEB) according to the manufacturer's instructions. The DNA products were ligated
167	using a DNA Ligation Kit Mighty Mix (Takara Bio Inc.) to afford the plasmid
168	pET-28a-10395A. E. coli DH5 α cells were transformed with 2.5 µL of the ligation
169	mixture by a chemocompetent transformation, and the cells were plated on LB agar
170	plates containing kanamycin (final concentration of 30 μ g/mL). The remaining partial
171	sequence (4070 bp) of the gene cluster was amplified by PCR with the primer pair
172	10395-F1 and 10395-R2 (Table S1) using EmeraldAmp PCR Master Mix (Takara Bio
173	Inc.). The inserted DNA fragment and the plasmid pET-28a-10395A were
174	double-digested with NcoI-HF and BamHI-HF (New England Biolabs, Ipswich, MA,
175	USA) according to the manufacturer's instructions. The DNA products were ligated
176	using the DNA Ligation Kit Mighty Mix (Takara Bio Inc.) to afford the plasmid
177	pET-28a-10395, which contained the whole gene cluster of coryneazolicin. E. coli
178	DH5 α cells were transformed with 2.5 μ L of the ligation mixture by a chemocompetent
179	transformation, and the cells were plated on LB agar plates containing kanamycin (final
180	concentration of 30 μ g/mL). The plasmid was extracted and isolated using the FastGene

Plasmid Mini Kit (Nippon gene Co., Ltd., Tokyo, Japan) following the manufacturer's
instructions. Finally, the plasmid pET-28a-10395 was transformed into the expression
host, *E. coli* BL21 (DE3), for the heterologous expression of coryneazolicin.

184 Construction of the vector pACYC-BamLE

185 The crude genome DNA was extracted from *Bacillus velezensis* DSM 23117 using a

- 186 DNeasy Blood & Tissue Kit (Qiagen). The sequence of gene *bamL* was amplified by
- 187 PCR with the primer pair BamL-F and BamL-R (Table S1) using template DNA of *B*.
- 188 *velezensis* and EmeraldAmp PCR Master Mix (Takara Bio Inc.) following the
- 189 manufacturer's instructions. The insert DNA fragment and the pACYCDuet-1 vector
- 190 (Merck Millipore, USA) were double-digested with NcoI-HF and KpnI-HF (New
- 191 England Biolabs) according to the manufacturer's instructions. The DNA products were
- 192 ligated using the DNA Ligation Kit Mighty Mix (Takara Bio Inc.) to obtain the plasmid
- 193 pACYC-BamL. E. coli DH5 α cells were transformed with 5 μ L of the ligation mixture
- 194 by a chemocompetent transformation, and the cells were plated on LB agar plates
- 195 containing chloramphenicol (final concentration of 20 µg/mL). The sequence of gene
- 196 *bamE* was amplified by PCR with the primer pair BamE-F and BamE-R (Table S1)
- 197 using template DNA of *B. velezensis* and EmeraldAmp PCR Master Mix (Takara Bio
- 198 Inc.) according to the manufacturer's instructions. The insert DNA fragment and the

199	vector pACYC-BamL were digested with KpnI-HF (New England Biolabs) according
200	to the manufacturer's instructions. The DNA products were ligated using the DNA
201	Ligation Kit Mighty Mix (Takara Bio Inc.) to obtain the plasmid pACYC-BamLE. The
202	insertion was confirmed by PCR, and the clone possessing BamL and BamE oriented in
203	the same direction was chosen to obtain <i>E. coli</i> DH5 α harboring pACYC-BamLE. The
204	plasmid pACYC-BamLE was extracted and isolated using the FastGene Plasmid Mini
205	Kit (Nippon Genetics) following the manufacturer's instructions. The plasmid
206	pACYC-BamLE was transformed into the expression host <i>E. coli</i> BL21(DE3) harboring
207	pET-28a-10395 to obtain <i>E. coli</i> BL21(DE3) harboring two vectors, pET-28a-10395
208	and pACYC-BamLE. The bacterium E. coli BL21(DE3) harboring pET-28a-10395 and
209	pACYC-BamLE was selected and maintained on LB agar medium containing
210	kanamycin (final concentration of 30 $\mu\text{g/mL})$ and chloramphenicol (final concentration
211	of 20 µg/mL).
212	Production of coryneazolicin

213 The bacterium *E. coli* BL21 (DE3) harboring pET-28a-10395 and pACYC-BamLE was

- cultured using modified basal agar medium (8 L) containing
- 215 isopropyl-β-D-1-thiogalactopyranoside (final concentration of 0.1 mM) and antibiotics
- 216 including kanamycin (final concentration of 30 µg/mL) and chloramphenicol (final

217	concentration of 20 μ g/mL). The modified basal agar medium ³³ was prepared by
218	combining the inorganic compounds (K_2SO_4 , 2 g; K_2HPO_4 , 3 g; NaCl, 1 g; NH ₄ Cl, 5 g;
219	MgSO ₄ ·7H ₂ O, 80 mg; CuCl ₂ , 0.5 mg; MnSO ₄ ·H ₂ O, 2.5 mg; FeCl ₃ , 0.5 mg; and
220	CaCl ₂ ·2H ₂ O, 0.5 mg) and 20 g of agar in 1 L of distilled water and adjusting the pH to
221	7.3. After autoclaving, the medium was supplemented with sterilized glucose and yeast
222	extracts to final concentrations of 0.25% and 0.4% , respectively. The bacterial cells
223	were cultured at 23 °C for 4 days. The bacterial cells were harvested using a spatula and
224	extracted with twice the volume of MeOH. After centrifugation, the MeOH extract was
225	purified by HPLC (column: handy-ODS, 4.6×250 mm, FUJIFILM Wako Pure
226	Chemical Co. Osaka, Japan, elution: isocratic mode with 40% MeCN containing 0.05%
227	TFA, UV detector set at 220 nm). HPLC purification was performed repeatedly to
228	obtain coryneazolicin (3.2 mg).

229 ESI-MS analysis

ESI-MS data were obtained in positive ion mode using a JMS-T100LP mass spectrometer (JEOL Ltd., Tokyo, Japan). For accurate ESI-MS, reserpine was used as an internal standard.

233 NMR experiments

An NMR sample was prepared by dissolving **1** in 500 μ l of DMSO-*d*₆. All NMR spectra

235	were obtained on Bruker Avance III HD 800 spectrometers with quadrature detection in
236	the phase-sensitive mode by States-TPPI (time-proportional phase incrementation) and
237	in the echo-antiecho mode. One-dimensional (1D) ¹ H, ¹³ C, and DEPT-135 spectra were
238	recorded at 25 °C with a 12 ppm window for proton and 239 ppm or 222 ppm windows
239	for carbon. The following 2D ¹ H-NMR spectra were recorded at 25 °C with 10 ppm
240	spectral widths in the t1 and t2 dimensions: 2D double-quantum filtered correlated
241	spectroscopy (DQF-COSY), recorded with 512 and 1024 complex points in the t1 and
242	t2 dimensions; 2D homonuclear total correlated spectroscopy (TOCSY) with DIPSI-2
243	mixing sequence, recorded with mixing time of 80 ms, 512 and 1024 complex points in
244	t1 and t2 dimensions; 2D nuclear Overhauser effect spectroscopy (NOESY), recorded
245	with mixing time of 200 ms. 256 and 1024 complex points in the t1 and t2 dimensions.
246	2D ¹ H- ¹³ C heteronuclear single quantum correlation (HSQC) and heteronuclear multiple
247	bond connectivity (HMBC) spectra were acquired at 25 °C in the echo-antiecho mode
248	or in the absolute mode, respectively. The ¹ H- ¹³ C HSQC and HMBC spectra were
249	recorded with 1024 \times 512 complex points for 12 ppm or 10 ppm in the $^1\mathrm{H}$ dimension
250	and 160 ppm or 222 ppm in the ¹³ C dimension, respectively, at a natural isotope
251	abundance. 2D ^{1}H - ^{15}N HSQC spectrum was recorded with 1024 × 128 complex points
252	for 15 ppm in the ¹ H dimension and 99 ppm in the ¹⁵ N dimension at a natural isotope

abundance. All NMR spectra were processed using TOPSPIN 3.5 (Bruker). Before Fourier transformation, the shifted sinebell window function was applied to the t1 and t2 dimensions. All ¹H and ¹³C dimensions were referenced to DMSO- d_6 at 25 °C.

256 Antimicrobial activity

The antibacterial activity of 1 was established by minimum inhibitory concentration 257(MIC) tests in 96-well microplates following a previous report.^{37, 38} The MICs of 1 258against Gram-positive and Gram-negative bacteria, including E. coli, P. aeruginosa, B. 259260subtilis, S. aureus, and M. luteus, were determined. The bacterial strains were cultured 261in nutrient agar media for 24 h. The testing system contained bacterial cells (approximately 10^5 CFU/mL) and various concentrations of the test compounds in 100 262µL of Muller-Hinton liquid medium. The microplates were incubated at 30 °C for 24 h. 263Tetracycline was used as a positive control reagent to evaluate the antibacterial activity 264of 1 (Table S2). 265

266 Cytotoxic assay

HCT116 (3.0×10^3) and HOS (3.0×10^3) cells were aliquoted in 96-well plates and treated with coryneazolicin (1–20 nM) in D-MEM (HCT116) or E-MEM (HOS) containing FBS (10%), respectively. Cell viability was assayed after 72 h by using the CellTiter-Glo luminescent cell viability assay (Promega, Madison, USA) with a JNR

271 272	Lumin	nescencer (ATTO, Tokyo, Japan) according to the manufacturer's protocol.		
273	Ackn	owledgments		
274	This s	tudy was supported by the Japan Society for the Promotion of Science by		
275	Grant	s-in-aids (grant number 16K01913). The NMR spectra were recorded on Bruker		
276	Avano	ce 600 and Avance III HD 800 spectrometers at the Advanced Analysis Center,		
277	NAR	Э.		
278				
279	References			
280	1.	Budisa, N. Expanded genetic code for the engineering of ribosomally		
281		synthetized and post-translationally modified peptide natural products (RiPPs).		
282		Curr. Opin. Biotechnol. 24, 591-598 (2013)		
283	2.	Letzel, A. C., Pidot, S. J. & Hertweck, C. Genome mining for ribosomally		
284		synthesized and post-translationally modified peptides (RiPPs) in anaerobic		
285		bacteria. BMC Genomics. 15, 983 (2014)		
286	3.	Link, A. J. Biosynthesis: Leading the way to RiPPs. Nat. Chem. Biol. 11,		
287		551-552 (2015)		

288	4.	Sardar, D. & Schmidt, E. W. Combinatorial biosynthesis of RiPPs: docking with
289		marine life. Curr Opin Chem Biol. 31, 15-21 (2016)
290	5.	McAuliffe, O., Ross, R. P. & Hill, C. Lantibiotics: structure, biosynthesis and
291		mode of action. FEMS Microbiol Rev. 25, 285-308 (2001)
292	6.	Willey, J. M. & van der Donk, W. A. Lantibiotics: peptides of diverse structure
293		and function. Annu Rev Microbiol. 61, 477-501 (2007)
294	7.	Maksimov, M. O., Pan, S. J. & James Link, A. Lasso peptides: structure,
295		function, biosynthesis, and engineering. Nat Prod Rep. 29, 996-1006 (2012)
296	8.	Hegemann, J. D., Zimmermann, M., Xie, X. & Marahiel, M. A. Lasso peptides:
297		an intriguing class of bacterial natural products. Acc Chem Res. 48, 1909-1919
298		(2015)
299	9.	Li, Y., Zirah, S. & Rebuffat, S. Lasso peptides: bacterial strategies to make and
300		maintain bioactive entangled scaffolds: Springer; 2015.
301	10.	Melby, J. O., Nard, N. J. & Mitchell, D. A. Thiazole/oxazole-modified
302		microcins: complex natural products from ribosomal templates. Curr Opin
303		Chem Biol. 15, 369-378 (2011)
304	11.	Liu, J. Microcin B17: posttranslational modifications and their biological
305		implications. Proc Natl Acad Sci U S A. 91, 4618-4620 (1994)

306	12.	Yorgey, P., et al. Posttranslational modifications in microcin B17 define an
307		additional class of DNA gyrase inhibitor. Proc Natl Acad Sci USA. 91,
308		4519-4523 (1994)
309	13.	Todd, E. W. The differentiation of two distinct serological varieties of
310		streptolysin, streptolysin O and streptolysin S. The Journal of Pathology and
311		Bacteriology. 47, 423-445 (1938)
312	14.	Molloy, E. M., Cotter, P. D., Hill, C., Mitchell, D. A. & Ross, R. P. Streptolysin
313		S-like virulence factors: the continuing sagA. Nat Rev Microbiol. 9, 670-681
314		(2011)
315	15.	Wessels, M. R. Streptolysin S. The Journal of Infectious Diseases. 192, 13-15
316		(2005)
317	16.	Ozaki, T., et al. Dissection of goadsporin biosynthesis by in vitro reconstitution
318		leading to designer analogues expressed in vivo. Nat Commun. 8, 14207 (2017)
319	17.	Ozaki, T., et al. Insights into the Biosynthesis of Dehydroalanines in Goadsporin.
320		Chembiochem. 17, 218-223 (2016)
321	18.	Onaka, H., Tabata, H., Igarashi, Y., Sato, Y. & Furumai, T. Goadsporin, a
322		chemical substance which promotes secondary metabolism and morphogenesis
323		in streptomycetes. I. Purification and characterization. J Antibiot (Tokyo). 54,

324 1036-1044 (2001)

325	19.	Igarashi, Y., et al. Goadsporin, a chemical substance which promotes secondary
326		metabolism and Morphogenesis in streptomycetes. II. Structure determination. J
327		Antibiot (Tokyo). 54, 1045-1053 (2001)
328	20.	Onaka, H., Nakaho, M., Hayashi, K., Igarashi, Y. & Furumai, T. Cloning and
329		characterization of the goadsporin biosynthetic gene cluster from Streptomyces
330		sp. TP-A0584. <i>Microbiology</i> . 151 , 3923-3933 (2005)
331	21.	Kalyon, B., et al. Plantazolicin A and B: structure elucidation of ribosomally
332		synthesized thiazole/oxazole peptides from Bacillus amyloliquefaciens FZB42.
333		Org Lett. 13, 2996-2999 (2011)
334	22.	Molohon, K. J., et al. Structure determination and interception of biosynthetic
335		intermediates for the plantazolicin class of highly discriminating antibiotics.
336		ACS Chem Biol. 6, 1307-1313 (2011)
337	23.	Scholz, R., et al. Plantazolicin, a novel microcin B17/streptolysin S-like natural
338		product from Bacillus amyloliquefaciens FZB42. J Bacteriol. 193, 215-224
339		(2011)
340	24.	Molohon, K. J., et al. Plantazolicin is an ultra-narrow spectrum antibiotic that
341		targets the Bacillus anthracis membrane. ACS Infect Dis. 2, 207-220 (2016)

342	25.	Wada, H., Williams, H. E. & Moody, C. J. Total Synthesis of the
343		Posttranslationally Modified Polyazole Peptide Antibiotic Plantazolicin A.
344		Angew Chem Int Ed Engl. 54, 15147-15151 (2015)
345	26.	Banala, S., Ensle, P. & Sussmuth, R. D. Total synthesis of the ribosomally
346		synthesized linear azole-containing peptide plantazolicin A from Bacillus
347		amyloliquefaciens. Angew Chem Int Ed Engl. 52, 9518-9523 (2013)
348	27.	Fenner, S., Wilson, Z. E. & Ley, S. V. The total synthesis of the bioactive natural
349		product plantazolicin A and Its biosynthetic precursor plantazolicin B. Chemistry.
350		22 , 15902-15912 (2016)
351	28.	Wilson, Z. E., Fenner, S. & Ley, S. V. Total syntheses of linear
352		polythiazole/oxazole plantazolicin A and its biosynthetic precursor plantazolicin
353		B. Angew Chem Int Ed Engl. 54, 1284-1288 (2015)
354	29.	Deane, C. D., Melby, J. O., Molohon, K. J., Susarrey, A. R. & Mitchell, D. A.
355		Engineering unnatural variants of plantazolicin through codon reprogramming.
356		ACS Chem Biol. 8, 1998-2008 (2013)
357	30.	Lee, J., et al. Structural and functional insight into an unexpectedly selective
358		N-methyltransferase involved in plantazolicin biosynthesis. Proc Natl Acad Sci
359		<i>USA</i> . 110 , 12954-12959 (2013)

360	31.	Piwowarska, N. A., Banala, S., Overkleeft, H. S. & Sussmuth, R. D. Arg-Thz is
361		a minimal substrate for the Na, Na-arginyl methyltransferase involved in the
362		biosynthesis of plantazolicin. Chem Commun (Camb). 49, 10703-10705 (2013)
363	32.	Deane, C. D., Burkhart, B. J., Blair, P. M., Tietz, J. I., Lin, A. & Mitchell, D. A.
364		In vitro biosynthesis and substrate tolerance of the plantazolicin family of
365		natural products. ACS Chem Biol. 11, 2232-2243 (2016)
366	33.	Imbert, M. & Blondeau, R. Effect of light on germinating spores of
367		Streptomyces viridosporus. FEMS Microbiol Lett. 181, 159-163 (1999)
368	34.	Heddle, J. G., et al. The antibiotic microcin B17 is a DNA gyrase poison:
369		characterisation of the mode of inhibition. J Mol Biol. 307, 1223-1234 (2001)
370	35.	Zamble, D. B., Miller, D. A., Heddle, J. G., Maxwell, A., Walsh, C. T. &
371		Hollfelder, F. In vitro characterization of DNA gyrase inhibition by microcin
372		B17 analogs with altered bisheterocyclic sites. Proc Natl Acad Sci USA. 98,
373		7712-7717 (2001)
374	36.	Shin-ya, K., et al. Telomestatin, a novel telomerase inhibitor from <i>Streptomyces</i>
375		anulatus. J Am Chem Soc. 123, 1262-1263 (2001)
376	37.	Di Modugno, E., Erbetti, I., Ferrari, L., Galassi, G., Hammond, S. M. & Xerri, L.
377		In vitro activity of the tribactam GV104326 against gram-positive,

378		gram-negative, and anaerobic bacteria. Antimicrob Agents Chemother. 38,
379		2362-2368 (1994)
380	38.	Yang, C. L., et al. Strepchazolins A and B: two new alkaloids from a marine
381		Streptomyces chartreusis NA02069. Mar Drugs. 15, E244 (2017)
382		

384	Figure	legends
-----	--------	---------

386 H	Fig. 1. a)	Chemical	structure of c	oryneazolicin	(1), and b) bios	ynthetic	gene clus	ster of
-------	------------	----------	----------------	---------------	---------------------	--------	----------	-----------	---------

387 coryneazolicin (*curA*: precursor gene, *curB*: dehydrogenase, *curC/curD*:

388 cyclodehydratase complex, *curE*: protease, and *curL*: methyltransferase)

389 Fig. 2. Vector maps of the constructed vectors for the production of coryneazolicin (1)

- Fig. 3. Fragmentation ions of coryneazolicin (1) obtained by ESI-MS in positive ion
- 391 mode
- Fig. 4. a) Key NMR correlations for construction of partial structures A and B. b) Key
- 393 NMR correlations for detection of six thiazoles. Plain letters indicate proton chemical
- 394 shifts and bold letters indicate carbon chemical shifts.

