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Abstract 20 

A novel sulfur-doped graphitic carbon nitride quantum dots (S-gCNQDs) are 21 

synthesized using a single-source precursor in a one-step solvothermal process. The 22 

S-gCNQDs with a size of ~5 nm display a strong green intrinsic fluorescence at 23 

512 nm when excited at 400 nm, with a quantum yield of ~ 33 % in aqueous 24 

solution. The prepared S-gCNQDs and Ag2S nanocrystals were applied as 25 

innovative functional materials to fabricate a biosensor for virus detection based 26 

on the conjugation of specific anti-human influenza A monoclonal antibody to the 27 

S-gCNQDs and Ag2S NCs, respectively. In the presence of the influenza A virus, an 28 

interaction between the S-gCNQDs/Ag2S-labeled antibody resulted in the 29 

formation of a nanosandwich structure, which is accompanied by the fluorescence 30 

enhancement of the S-gCNQDs. The change in fluorescence intensity is linearly 31 

correlated with the concentration of the influenza A virus (H1N1) in the 10 fg/mL 32 

to 1.0 ng/mL range, with a limit of detection of 5.5 fg/mL. The assay was further 33 

applied to the determination of clinically isolated influenza A virus 34 

(H3N2/Yokohama) mixed with human serum. The obtained limit of detection 35 

was 100 PFU/mL within the detection range of 102 – 5 × 104 PFU/mL for the 36 

H3N2 virus. The recovery yield was within the range of 97.6 to 98.1%. 37 

Keywords:  Sulfur-doped graphitic carbon nitride QDs, Silver disulfide nanocrystals, 38 

Influenza A virus, Fluoroimmunoassay, Virus immunoassay, localized surface 39 

plasmonic resonance, Nanosandwich complex. 40 
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Introduction 41 

Influenza virus emerged as a major epidemic over a decade ago and has 42 

remained a growing challenge to public health that needs responsive and accurate 43 

diagnostic measures to prevent the spread of the virus and promote early 44 

treatment [1]. Therefore, the current gold-standard methods used for influenza 45 

virus immunoassays are enzyme-linked immunosorbent assay (ELISA), real-time 46 

reverse transcription-polymerase chain reaction (RT-qPCR), immunoblotting assays, 47 

and electrochemical sequence-specific genetic detection [2,3]. Although these 48 

methods offer specific advantages and are widely used, nevertheless, they suffer 49 

some drawbacks due to high operating costs and, in some cases, high interference 50 

by complex matrices. It is, therefore, still necessary to implement cost-effcient 51 

methods. 52 

The exceptional optoelectrical properties of fluorescent graphic carbon nitride 53 

quantum dots (gCNQDs) have earned widespread interest for the design of 54 

promising fluorescent probes [4–6]. The synthesis of these carbon-based 55 

nanosized-particles encompasses the “top-down and “bottom-up” approaches. 56 

The latter approach, which is ubiquitously deployed, involves the advanced 57 

chemical treatments by condensation and/or controlled pyrolysis of small and 58 

organically rich molecules such as formamide, urea, diaminomaleonitrile, 59 

melamine, guanidine, dicyandiamide and organic amines [7–13]. Doping and/or 60 

hetero-atom functionalization of carbon-based graphitic QDs has helped to 61 

improve their optical and electronic properties for various applications. For 62 
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instance, sulfur-doped graphitic carbon nitride (gC3N4) nanosheets were prepared 63 

by the ball-milling of melamine and sulfur powder for 48 h and subsequently 64 

treated under hydrothermal condition. The obtained nanosheets were deployed 65 

for enhanced electrocatalytic activity in fuel cells [14]. Phenyl-modified gC3N4, 66 

which showed a stoke shift of ~185 nm and a high fluorescence (FL) intensity, was 67 

prepared and used as a probe for thiram, a pesticide [15]. In another reported 68 

study, an electrochemical sensor for ascorbic acid (AA), dopamine and uric acid 69 

was fabricated based on gC3N4 modified with graphene oxide [16]. A complex 70 

hybrid involving Cu-Pd nanoparticles was deposited on gC3N4 hybrid nanosheets 71 

for the colorimetric detection of glucose, taking advantage of the peroxidase 72 

mimic activity of the graphitic nanostructured composites [17]. In our previous 73 

studies, the facile one-step preparation of gCNQDs functionalized with thymine 74 

(T-gCNQDs) and tannic acid (TA-gCNQDs), respectively, were reported [9, 10]. 75 

The strongly fluorescent gCNQDs derivatives were deployed as highly competitive 76 

probes for Hg
2+ 

and AA. However, innovative materials are still increasingly 77 

needed for the production of sensors/biosensors with real-time and realistic 78 

diagnostic applications. This ambition motivates the interest in the adoption of 79 

simple one-step in situ approaches for novel hybrid heteroatom-doped materials 80 

preparation. 81 

In this work, the analytical application of novel S-gCNQDs was examined by 82 

the fluoroimmunoassay of the influenza A virus as a test analyte. A 83 

fluoroimmunosensing method was developed by utilizing the metal-induced 84 
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fluorescence enhancement of S-gCNQDs in the presence of Ag2S nanocrystals 85 

(NCs). To develop the practical biosensor for influenza virus, novel S-gCNQDs 86 

and Ag2S NCs, as innovative materials, were covalently conjugated to specific anti-87 

human influenza A monoclonal antibodies for the capture of the target influenza 88 

A virus. An immuno-reaction ensued between the antibody-labeled S-89 

gCNQDs/Ag2S NCs in the presence of the influenza A virus. As a result, an 90 

immunocomplex structure was formed, followed by an enhancement of the 91 

fluorescence of the S-gCNQDs influenced by the proximity of Ag2S NCs. The 92 

developed immunoassay is rapid and achieved a sensitive femtogram limit of 93 

detection (LOD) of 5.5 fg/mL for influenza A virus (H1N1). Also, clinically isolated 94 

influenza A virus (H3N2) was quantified down to 100 PFU/mL and shows that the 95 

developed system is highly sensitive compared to some commercially available 96 

rapid diagnostic test kits (with LODs of ~5000 PFU/mL). This system can be 97 

adapted for the versatile detection of other viral antigens by labeling the S-98 

gCNQDs and Ag2S NCs with suitable capture antibodies, which can induce the 99 

needed immunoreactions. 100 

 101 

Experimental 102 

Chemicals and biological reagents/materials 103 

Silver nitrate (AgNO3), 3-Mercaptopropionic acid (MPA, 99 %), dimethyl 104 

formamide (DMF), bovine serum albumin (BSA), Rhodamine 6G, N-105 
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hydroxysuccinimide (NHS), and N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide 106 

hydrochloride (EDC) were purchased from Sigma-Aldrich (St Louis, USA, 107 

https://www.sigmaaldrich.com/). 4-Amino-3-hydrazino-5-mercapto-1, 2, 4 triazole, 108 

Bovine serum albumin (BSA), 4-mercaptobenzoic acid (4-MBA) and NaOH were 109 

supplied by FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan, 110 

http://ffwk.fujifilm.co.jp/en/index.html). Diethylene glycol (DEG) was purchased 111 

from Tokyo Chemical Industry (TCI) (Tokyo, Japan, 112 

https://www.tcichemicals.com/en/jp/). 113 

Anti-human influenza A (H1N1) monoclonal antibody (clone C179), anti-114 

human influenza A (H3N2) monoclonal antibody (Clone F49) and anti-human 115 

influenza A (H1, H2, H3) monoclonal antibody (Clone C111) which is positive for 116 

both influenza viruses H1N1 and H3N2 were purchased from Takara Bio. Inc 117 

(Kusatsu, Shiga, Japan, https://www.takara-bio.com/). Influenza virus A/New 118 

Caledonia (20/99/IVR/116) (H1N1) was purchased from ProSpec-Tany 119 

TechnoGene Ltd. (Rehovot, Israel, https://www.prospecbio.com/). Human Serum 120 

from human male AB plasma, USA origin, sterile-filtered was obtained from 121 

Sigma-Aldrich (St Louis, USA, https://www.sigmaaldrich.com/), Dengue virus DNA 122 

was supplied by Integrated DNA Technologies (Iowa, USA) (www.idtdna.com). 123 

Clinically isolated influenza virus A/Yokohama/110/2009 (H3N2) was kindly 124 

provided by Dr. C. Kawakami of Yokohama City Institute of Health, Japan. Goat 125 

anti-rabbit IgG-HRP were purchased from Santa Cruz Biotechnology (Dallas, Texas, 126 

USA, https://www.scbt.com/home). Commercial RIDT kit - QuikNavi Flu 2 was 127 

https://www.sigmaaldrich.com/
http://ffwk.fujifilm.co.jp/en/index.html
https://www.tcichemicals.com/en/jp/
https://www.takara-bio.com/
https://www.prospecbio.com/
https://www.sigmaaldrich.com/
http://www.idtdna.com/
https://www.scbt.com/home
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purchased from Denka -Seiken Co. Ltd. (Tokyo, Japan, http://denka-seiken.jp/jp/). 128 

For selectivity studies, Prof. K. Morita of Institute of Tropical Medicine, Nagasaki 129 

University, kindly provided the zika virus used in this study. Noro virus-like 130 

particles (NoV-LPs) were prepared in our lab, according to the previously 131 

reported protocol [18]. Hepatitis E virus-like particles (HEV-LPs) were prepared 132 

according to the previous report [19]. All experiments were carried out using high 133 

purity deionized (DI) water (>18 MΩ·cm). All detection/sampling protocol was 134 

carried out according to the standard protocol for influenza virus immunoassays 135 

[20]. 136 

 137 

Instrumentation 138 

Ground state electronic absorption (UV/vis), fluorescence excitation and emission 139 

spectra were recorded on a filter-based multimode microplate reader (Infinite 140 

F200 M; TECAN, Ltd, Männedorf, Switzerland, https://www.tecan.com/). Images 141 

of the transmission electron microscope (TEM) were acquired using JEM-2100F 142 

operating at 100 kV (JEOL, Ltd., Tokyo, Japan, 143 

https://www.jeol.co.jp/en/products/detail/JEM-2100.html). Powder X-ray 144 

diffraction (PXRD) analysis was carried out using a RINT ULTIMA XRD (Rigaku 145 

Co., Tokyo, Japan, https://www1.rigaku.com/ja) with αNi filter and a Cu-Kα 146 

source. Data were collected over 2θ = 15 – 60° at a scan rate of 0.01°/step and 10 147 

s/point. Dynamic light scattering (DLS) analysis was done on a Malvern Zetasizer 148 

http://denka-seiken.jp/jp/
https://www.tecan.com/
https://www.jeol.co.jp/en/products/detail/JEM-2100.html
https://www1.rigaku.com/ja
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nanoseries, Nano-ZS90 (Malvern Inst. Ltd., Malvern, UK, 149 

https://www.malvernpanalytical.com/). Fourier transform infrared spectroscopy 150 

was performed using FT/IR-6300 with ATR PRO610P-S (JASCO, Tokyo, Japan, 151 

https://www.jasco.co.jp/). Raman spectroscopic measurements and surface-152 

enhanced Raman scattering (SERS) experiment of 4-MBA (Raman reporter) and 153 

the virus-immunocomplex using Ag2S NCs as the SERS substrate were carried out 154 

using NRS-7100 Raman Spectrometer with f500 spectrograph (JASCO, Tokyo, 155 

Japan). The measurements were done using a 20× objective lens at 1 % laser 156 

power and 2 s integration time. Fluorescence lifetime imaging microscopy (FLIM) 157 

experiment for lifetime determination was done using a Nikon Eclipse Ti-U 158 

microscope with a Nikon CFI S Plan Fluor ELWD 40x (NA=0.60) and Hamamatsu 159 

C8898 (Wavelength: 374 nm, Pulse width: 74 ps, peak power: 47mW) as the 160 

laser source (Hamamatsu, Japan). The FLIM camera used was a Lab-made camera 161 

with a custom CMOS image sensor. The images were acquired by the FLIM CMOS 162 

camera via the Framelink PCIe card (VCE-CLEX02). The FLIM CMOS camera has a 163 

pixel array of 128 x 128 pixels; each has a four-tap pixel with a pitch of 22.4 µm x 164 

22.4 µm. The sensor response time is 170ps, measured with a 472 nm laser diode. 165 

Details of the Phasor plots generation are given in Electronic Supporting 166 

Information (ESM).Conjugation of the antibody to the individual nanoparticles 167 

was confirmed by enzyme-linked immunosorbent assay (ELISA) using a microplate 168 

(Model 680; Bio-Rad, Hercules, USA, https://www.bio-rad.com/en-us/). 169 

 170 

https://www.malvernpanalytical.com/
https://www.jasco.co.jp/
https://www.bio-rad.com/en-us/
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Synthesis of S-gCNQDs 171 

Sulfur-doped graphitic carbon nitride QDs (S-gCNQDs) were prepared by the 172 

solvothermal treatment of a novel precursor i.e., mercapto-based triazole 173 

compound (Scheme 1). Briefly, 4-Amino-3-hydrazino-5-mercapto-1, 2, 4 triazole 174 

(50 mg), and citric acid (5 mg) were dissolved in 10 mL of DMF, and the mixture 175 

was sonicated for 20 min to obtain a suspension. The resulting mixture was 176 

transferred and sealed in a 50 mL Teflon-lined stainless steel autoclave and heated 177 

at 200 °C for 8 h. The autoclave was allowed to cool naturally, and the obtained 178 

product was filtered through a 0.22 m microporous filter membrane and then 179 

dialyzed for 2 d using a dialysis tubing membrane - MWCO 2.0 kDa to obtain 180 

pure S-gCNQDs solution. The solution was further freeze-dried to get a solid 181 

product.  182 

Ag2S NCs were synthesized according to procedures reported previously with 183 

some modification [21]. Detailed synthesis procedures are presented in Electronic 184 

Supporting Information (ESM). 185 

 186 

Antibody conjugation process and virus detection 187 

Firstly, anti-human influenza virus A (H1N1) (Clone C179) or (H1, H2, H3) (Clone 188 

C111) monoclonal antibody was conjugated onto the surface of S-gCNQDs or Ag2S 189 

NCs via EDC/NHS chemistry. To achieve this, 100 L of 0.1 M EDC was added to 190 

2 mL (0.1 mg/mL) of S-gCNQDs to activate the carboxylic groups on their surface, 191 
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and the solution was stirred for 1 h, following by the addition of 100 L of 0.1 M 192 

NHS to the mixture and the stirring continued for another 1 h. Then 5.1 μg/mL of 193 

the antibody (prepared in PBS 7.6) was added to the activated S-gCNQDs, and 194 

the resulting mixture was stirred for 8 h at 7 °C. Anti-human influenza virus A 195 

(H3N2) monoclonal antibody (Clone F49) was also conjugated to S-gCNQDs for 196 

the detection of the clinically isolated influenza virus A/Yokohama/110/2009 197 

(H3N2). Similar procedures were followed for the antibody conjugation of the 198 

Ag2S NCs, but using anti-human influenza virus A (H1, H2, H3) (Clone C111) 199 

monoclonal antibody instead of anti-human influenza virus A (H1N1) (Clone 200 

C179). The obtained antibody-conjugated S-gCNQDs or Ag2S NCs were purified 201 

by centrifugation (3000 × g, 5 min) to remove unbound antibodies followed by 202 

incubation with 5 % BSA (for blocking) to ensure non-specific binding interactions. 203 

Excess BSA was further removed by centrifugation, and the conjugates redissolved 204 

in ultra-pure DI water for further use. 205 

Following the antibody conjugation, the virus assay was carried out using 206 

different concentrations of influenza A virus (H1N1) within the range from 1.0 207 

fg/mL to 10 ng/mL. Typically, in a 96-well plate, 100 μL of the antibody-208 

conjugated S-gCNQDs ( 2.0 mg/mL in PBS, pH 7.6) was incubated with 100 μL of 209 

each concentration (1, 10, 10
2
, 10

3
, 10

4
, 10

5
, 10

6
 fg/mL) of the influenza A/New 210 

Caledonia virus (H1N1) for 2 min. Then 50 μL of the antibody-conjugated-Ag2S (1 211 

mg/mL in PBS, pH 7.6) was added to the mixture and shaken for 5 min to induce 212 

the virus-mediated nanosandwich complex formation. Then the FL intensity 213 
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change of the S-gCNQDs in the hybrid sandwich nanostructure was measured at 214 

400 nm excitation wavelength, with maximum emission intensity at 512 nm to 215 

construct a calibration curve.  216 

The analysis of clinically isolated influenza A/Yokohama (H3N2) was assayed 217 

using similar procedures upon mixing with human serum. 100 μL of the antibody-218 

conjugated S-gCNQDs (2.0 mg/mL in PBS, pH 7.6) was mixed with 50 μL of the 219 

clinical samples dissolved in PBS (pH 7.6) in 40 % diluted human serum and 220 

incubated for 2 min. This solution was followed by the addition of 50 μL of the 221 

antibody-conjugated-Ag2S NCs (1 mg/mL in PBS, pH 7.6) and then thoroughly 222 

shaken for 5 min and allowed for about further 10 min before the FL signals were 223 

collected at 512 nm emission wavelength upon excitation at 400 nm. The 224 

detected range was within 20 – 50,000 PFU/mL of the clinical samples. All 225 

detection experiments were done in triplicate under a similar procedure and at 226 

optimized conditions (See ESM for details).  227 

 228 

Results and discussion 229 

Choice of materials 230 

The surface functionalization and/or doping of carbon-based QDs with 231 

heteroatoms (S, N, and B) are known to result in substantial improvements in 232 

their optical properties and performance [22–24]. This is because their optical 233 

properties are altered by the introduction of “emissive trap sites” and/or “surface 234 
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defects,” which influence the radiative recombination of their excitons [25, 26]. 235 

This work presents an exceptionally rich novel source precursor for the 236 

preparation of gCNQDs with heteroatoms (S and N) functionality using 4-Amino-237 

3-hydrazino-5-mercapto-1, 2, 4 triazole. This compound contains a high 238 

percentage of the amino group (NH2) (essential for covalent attachments) and N-239 

atoms linked in a triazole ring with extended C-N and C=S linkages (Scheme 1). 240 

The S, N-derived gCNQDs herein has a significant advantage which is the 241 

connective affinity to interact with Au or Ag-based nanoparticles to form 242 

functional hybrids. In addition to the presence of a planar graphitic structure for 243 

non-covalent π stacking interactions, S-gCNQDs prepared using this precursor 244 

possesses more than one point of attachment for simple surface modifications and 245 

hybrid nano-structuring choices.  246 

On the other hand, plasmonic semiconductor nanostructures can act as 247 

nanoantennas when close to fluorophores resulting in changes in their optical 248 

properties. This mostly leads to a favorable effect known as metal-enhanced 249 

fluorescence (MEF) [27–29]. This type of influence has been used in detection 250 

systems where metallic nanostructures regulate the emissions of colloidal quantum 251 

dots [28]. Semiconductor nanocrystals such as Ag2S NCs used in this work, are 252 

known to exhibit tunable plasmonic properties in the near-infrared (NIR) region 253 

and are excellent nanostructures for various optical-based signal enhancement 254 

processes such as MEF, SERS, and photocatalysis [28–32]. It is in this light that we 255 

deployed Ag2S NCs in this work to push the fluorescence detection sensitivity of S-256 
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gCNQDs for the detection of influenza virus via metal-based enhancement of their 257 

fluorescence by controlling the local environment surrounding the S-gCNQDs via 258 

immunoreactions with influenza virus, as a test analyte.  259 

 260 

Synthesis and characterization of novel S-gCNQDs and Ag2S nanocrystals 261 

The precursor for the S-doped gCNQDs was 4-amino-3-hydrazino-5-mercapto-1, 2, 262 

4 triazole. This precursor was inspired by its high nitrogen/sulfur content and 263 

relatively low cost. Hence, the solvothermal treatment and condensation of the 264 

heterocyclic triazole ring of the precursor to achieving novel S-gCNQDs follows a 265 

similar formation mechanism as outlined in literature for the synthesis of gCNQDs 266 

using other triazole compounds [7, 8, 12, 13]. 267 

To characterize the prepared S-gCNQDs, TEM was employed, and the image 268 

acquired shows a quasi-spherical morphology of the S-gCNQDs. They appear to 269 

be monodispersed with sizes typically estimated within the range of 3–5 nm (Fig. 270 

1A). To supplement the information on the size determination from the TEM 271 

micrograph, the DLS experiment revealed that the average size distribution of the 272 

gCNQDs was ~5.5 nm (Fig. 1B). This result is in close agreement with the size 273 

distribution obtained using TEM images, and further indicates sizes typical of 274 

carbon-based QDs [7, 9, 10]. XRD pattern obtained for the S-gCNQDs displayed a 275 

broad diffraction peak at 2θ = 27
0
, which is indexed as (002) lattice typical of 276 

graphitic carbon nitrides (g-C3N4) (Fig. 2A) [7, 12, 13]. This diffraction peak 277 
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corresponds well in intensity and position with the known d-spacing and 278 

disordered nanostructure of g-C3N4, thus indicating their formation. Fourier 279 

transform infrared (FTIR) spectroscopy further revealed the base structure of the S-280 

doped gCNQDs derivative. As shown in Fig. 2B, the observed vibration at 662 281 

cm
-1
 is assigned to the formed heptazine units of the S-gCNQDs. Characteristic 282 

absorption bands of C=N/C-C and C-N stretching modes of the graphitic structure 283 

were observed at 1493, 1387, and 1097 cm
-1
, respectively. At 1628 cm

-1
, 284 

asymmetric vibrations referring to the carboxylic groups introduced by citric acid 285 

as co-precursor is conspicuously observed. Intense broad peak typical of the –N-H 286 

(resulting from the 2
0
 or 3

0
 amine moieties) and/or hydroxyl (OH) of the 287 

carboxylic group vibrations have been observed around 3715-2985 cm
-1
 as well as 288 

characteristic –CH2 peaks of the triazine rings at 2930 and 2897 cm
-1
. The presence 289 

of the S-atom was confirmed by the appearance of a strong C=S absorption at 290 

1248 cm
-1
, with an accompanying weak vibration of the C-S bond at 859 cm

-1
 (Fig. 291 

2B). The Raman spectra (Fig. 2C) of the solvothermally prepared S-gCNQDs 292 

displayed the characteristic bands indexed at ~1345 (D band) and ~1586 cm
-1
 (G 293 

band) due to the disordered sp
2
 as a result of the C-N linkage and graphitic sp

2
 294 

layer nanostructures, respectively [7–10, 12, 13]. These results confidently show 295 

that S-gCNQDs were successfully prepared using the novel precursor.  296 

The ground-state absorption recorded for the prepared S-gCNQDs is 297 

reminiscent of the electronic transition (π-π*) of the s-triazine units of the carbon 298 

nitride family [33–35]. An intense absorption occurred in the region <500 nm. 299 
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Therefore, the S-gCNQDs were subjected to different excitation wavelengths (350 300 

to 500 nm) to determine the optimum emission intensity and wavelength. At an 301 

excitation wavelength of 400 nm, the emission intensity was maximum and 302 

occurred at ~512 nm. Next, the evaluation of the relative fluorescence quantum 303 

yield (ΦF) of the material was calculated to be ~33 % using Rhodamine 6G as the 304 

reference standard (see Electronic Supporting Information for details). The value 305 

of ΦF for the prepared S-gCNQDs (using 4-amino-3-hydrazino-5-mercapto-1, 2, 4 306 

triazole as the source of S and N) is higher than that reported using other source 307 

precursors such as urea (17.9 %), melamine (5.5 %) or formamide (29 %) [7, 36, 308 

37]. It is demonstrated in this work that the use of 4-amino-3-hydrazino-5-309 

mercapto-1, 2, 4 triazole results in a graphitic QDs with FL emission extending into 310 

the green region of the visible spectrum which are desired for various applications.  311 

Further, fluorescence lifetime imaging microscopy (FLIM) experiments were 312 

conducted to determine the lifetime of the prepared S-gCNQDs. This 313 

measurement was carried out using the frequency-domain FL lifetime 314 

determination known as the Phasor approach [38, 39]. This approach, which 315 

differs from time-correlated single-photon counting method, is accomplished by 316 

analyzing the FLIM data in Phasor space by observing the clustering of pixel values 317 

(from images) in some areas of the generated Phasor plots rather than by fitting 318 

the fluorescence decay using exponentials. As is shown in Fig. 3A, the second (
*
), 319 

and third (
#
) peaks from the measured waveform are due to crosstalk between 320 

different taps in the pixel of the acquired images. This is then deconvoluted to 321 
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obtain the result, Fig. 3B. The average value of the two-component decay lifetime 322 

of S-gCNQDs was determined to be 3.19 ns. The FLIM measurement results of S-323 

gCNQDs and their immunocomplexes in the presence of the target virus are 324 

shown in Fig. S3 in Electronic Supporting Information (ESM).  325 

Detailed Ag2S NCs characterization data, experimental results demonstrating their 326 

plasmonic/optical properties, and discussion are presented in Electronic Supporting 327 

Information (ESM).  328 

 329 

Sensitive fluoroimmunoassay  330 

Influenza A/New Caledonia virus (H1N1) was detected based on preliminary 331 

studies using Ab-conjugated S-gCNQDs in the presence of Ab-Ag2S NCs to form a 332 

nanosandwich complex leading to signal-amplified fluorescence cycles which are 333 

dependent on the concentrations of the target influenza virus A(H1N1) (Fig. 4A). 334 

The Influenza A virus (H1N1) detection was initially carried out in DI water, and 335 

the recorded FL intensities are shown in Fig. 4A. Also, since the human serum is a 336 

mixture of complex biological compounds as matrices, the influenza A/New 337 

Caledonian (H1N1) virus was assayed in human serum (40 %) to simulate the 338 

conditions close to actual clinical samples. Hence, it was observed that the S-339 

gCNQDs could respond to the presence of the influenza A virus (H1N1) within the 340 

linear concentration range of 10 fg/mL to 1 ng/mL (Fig. 4B). The detection 341 
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sensitivity of the probe towards the target virus (H1N1) was evaluated by the 342 

construction of a calibration plot using Eqn. 1 [40]. 343 

𝜟𝑭

𝑭𝟎
= 𝟎. 𝟏 + 𝐊[𝐕𝐢𝐫𝐮𝐬]       (1)  344 

where ΔF is the difference between FL intensity before (F0) and after (F) addition 345 

of virus, K is the fluorescence enhancement factor. [Virus] is the concentration of 346 

the target virus. The expression ΔF/F0 = (Fwith virus – F0)/F0 gives a ratio of the 347 

fluorescence enhancement to the fluorescence signal before virus addition (F0) [41].  348 

Overall, the increased concentrations of influenza A virus (H1N1) led to a 349 

proportional enhancement in the FL intensity of S-gCNQD measured in DI water 350 

and human serum, respectively. Interestingly, the sensitivity achieved in both 351 

media showed an only but slight difference, with similar linearity of their 352 

calibration plots (Fig. 4B). The analytical figures of merit of the assay were 353 

assessed by calculating the limits of detection (LODs) using the equation 354 

(LOD = 3δ/K) [42], where the standard deviation (δ) of 10 replicated 355 

measurements (n = 10) was taken. K is the value of the slopes of the linear 356 

calibration plots. The LOD was calculated to be 5.5 fg/ml in DI water and 357 

8.5 fg/ml in human serum, respectively (Table S1).  358 

Detailed results and discussion of optimization and control studies leading to the 359 

established detection of influenza virus in work are given in the Electronic 360 

Supporting Information (ESM).  361 
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 362 

Assay of clinically isolated influenza virus (H3N2) 363 

To detect clinically isolated influenza A virus (H3N2), the S-gCNQDs 364 

modified with the H3N2 monoclonal antibody was employed (instead of H1N1 365 

monoclonal antibody) in the presence of the Ab-Ag2S NCs to form a sandwich 366 

nanocomplex. It was observed that the Ab (H3N2)-conjugated S-gCNQDs 367 

responded to the presence of the influenza A virus (H3N2) within the linear 368 

concentration range of 100–50000 PFU/mL (Fig. 5A). The detection sensitivity of 369 

the probe towards clinically isolated influenza A virus (H3N2) was evaluated by 370 

the construction of a calibration plot (Fig. 5A inset), using Eqn. (1) above. The 371 

calculated LOD was 100 PFU/mL. Also, human serum was spiked with a known 372 

concentration of the clinically isolated influenza A (H3N2). The assay was able to 373 

quantify ~98 % of the virus with good recoveries (Table S2).  Therefore, the 374 

performance of the developed detection platform for the influenza virus was 375 

further evaluated against a commercial rapid influenza diagnostic kit (RIDT) – 376 

QuikNavi-Flu 2 (Denka Seiken Co. Ltd, Tokyo, Japan). The clinical samples 377 

assayed using the RIDT showed that influenza virus A/Yokohama/110/2009 378 

(H3N2) samples with ≥1000 PFU/mL could only be detected. As shown in Fig. S4, 379 

influenza virus A/Yokohama/110/2009 (H3N2) is not detectable at <1000 380 

PFU/mL by the RIDT kit). Meanwhile, our developed biosensor for the influenza 381 

virus is responsive to the H3N2 viral RNA down to 45 PFU/mL. This result 382 

indicates that our detection system can achieve an upwards of ~10 times more 383 
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sensitivity when used in place of the commercial RIDT. It should be pointed out, 384 

however, that both detection strategies are, in theory, very different, and the 385 

production of a fast diagnostic kit with our designed system will enhance the 386 

sensitive detection of the influenza virus considerably. Furthermore, clinical 387 

samples containing target influenza virus can be assayed rapidly in ~ 15 min, 388 

which is quite preferable to the clinical used RT-PCR or rapid molecular assays 389 

capable of producing results in approximately 15-30 min, and other molecular 390 

assays capable of detecting RNA or nucleic acid influenza in around 45–80 min [2, 391 

3]. 392 

 393 

Selectivity 394 

The selectivity of the developed assay was probed in the presence of NoV-LPs, 395 

Zika virus, HEV-LPs, and Dengue DNA to establish the extent of the selective 396 

nature of the test. Expectedly, no interferences and/or changes occurred in the 397 

fluorescence signal of S-gCNQDs even to 1 ng/mL of the tested virus and VLPs (Fig 398 

5B). This observation can be attributed to the specific affinity of the influenza A 399 

virus to bind to the antibody functionalized nanoparticles (S-gCNQDs/Ag2S NCs). 400 

This affinity is as a result of the induced changes in the FL intensity of the S-401 

gCNQDs signals compared to when other non-specific viruses interact with S-402 

gCNQDs. It is pertinent to state here that this system may present a versatile 403 

detection approach for desired viruses by choosing the appropriate antigen-404 
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antibody pair for the sandwich immuno-reactions leading to the sensitive 405 

detection of the mediating virus.  406 

However, the proposed assay herein has some limitations. The sensitivity of 407 

this assay is majorly limited by the interference of heavy metals such as Hg
2+

 and 408 

Cd
2+

 ions, which can quench the FL of the S-gCNQDs. Also, the sizes of the S-409 

gCNQDs and Ag2S NCs may need to be carefully controlled to achieve the 410 

sandwich formation in the presence of the target virus. Clinical samples matrix 411 

interference may impair the sensitivity of detection. To address this, a magnetic 412 

separation protocol/virus enrichment should be considered. 413 

 414 

Detection mechanism  415 

In view of the observed FL enhancement in S-gCNQDs when immunocomplex 416 

with influenza virus in the presence of Ag2S NCs, it was speculated that 417 

aggregation-induced emission and/or metal-plasmonic enhancement effects might 418 

be responsible for the FL signal enhancement. However, results obtained from the 419 

TEM image of the immunocomplex (Fig. S5 in Electronic Supporting Information), 420 

showed no clear evidence of aggregation of nanoparticles of S-gCNQDs or Ag2S 421 

NCs in the presence of the target virus. This outcome diverted our attention to the 422 

possibility of an optical-based enhancement mechanism since the plasmonic 423 

properties of Ag2S NCs have been reported previously [43, 44]. Raman 424 

measurement and SERS analysis were carried out (detailed results and discussion 425 
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are presented in Electronic Supporting Information). To elucidate the detection 426 

mechanism of the developed immunoassay by evaluating the plasmonic and/or 427 

optoelectronic coupling effects of Ag2S NCs, the SERS experiments were carried 428 

out further complement the observed FL enhancement of S-gCNQDs (Fig. 6), the 429 

detailed SERS results and discussion of 4-MBA are shown in Fig. S6 of Electronic 430 

Supporting Information. The results plausibly demonstrated that the coupling 431 

interactions between S-gCNQDs and Ag2S NCs via plasmonic and/or chemical 432 

interaction resulted in the observed SERS signal enhancement of S-gCNQDs, 433 

similar to report for GQDs in the presence of plasmonic nanostructures [45]. 434 

Therefore, it is credible to state that the enhanced SERS signals from the S-435 

gCNQDs/Ag2S NCs virus-mediated immunocomplex are due to the local optical 436 

field created by electronic interaction between the S-gCNQDs and Ag2S NCs. This 437 

process might be responsible for the enhancement of the fluorescence signals of 438 

the S-gCNQDs resulting from their proximity to Ag2S NCs in a sandwiched 439 

network triggered by the target virus (Scheme 2).  Overall, these findings and the 440 

control experiments lead us to conclude that Ag2S NCs influenced the 441 

enhancement of the fluorescence of S-gCNQDs regulated by the target influenza 442 

virus, which resulted in the sensitive detection of the virus. 443 

Conclusion 444 

In this work, a functional and innovative combination of S-doped graphitic QDs 445 

and Ag2S nanocrystals are deployed for the fluoroimmunoassay of influenza A 446 

virus. The S-doped graphitic QDs, which were prepared using a novel precursor 447 
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via a rapid one-step solvothermal route, displayed excellent optical properties. 448 

Their functionalization with specific antibodies positive for the target virus, 449 

initiated a virus-regulated interaction between the S-doped graphitic QDs and Ag2S 450 

nanocrystals . This resulted in the fluorescence enhancement of S-gCNQDs upon 451 

forming an immunocomplex with the influenza virus in the presence of Ag2S 452 

nanocrystals. The fluorescence of S-gCNQDs increased consistently as the 453 

concentration of the virus increased, thus leading to the rapid detection of the 454 

target influenza virus in a highly sensitive and selective manner. The materials 455 

herein present an opportunity to fabricate a novel biosensing platform required 456 

for practical detection of the influenza virus and for testing other potentially 457 

harmful infectious diseases. This assay is rapid, convenient, and versatile as specific 458 

proteins and virus-like particles of clinical interests can conceivably be expanded 459 

when the materials are functionalized with capture antibody of interest. 460 
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 645 

Scheme 1. Synthesis pathway of S-gCNQDs. 646 

 647 

 648 

Scheme 2. Schematic representation of the S-gCNQDs and Ag2S modification with 649 

antibody and the detection protocol by sandwich nanostructure formation in the 650 

presence of target influenza A virus.  651 
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 653 

Fig. 1. (A) TEM image of S-gCNQDs (inset is the size distribution histogram). (B) 654 

DLS graph of S-gCNQDs. 655 
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 657 

 658 

Fig. 2. Characterization spectra of S-gCNQDs showing (A) XRD pattern (B) FTIR 659 

absorptions. (C) Raman spectra and (D) UV-vis, excitation, and emission spectra 660 

(Solvent – DI water). λex = 400 nm. 661 
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 663 

 664 

Fig. 3. (A) FL lifetime decay of pristine S-gCNQDs (B) Phasor plot showing the 665 

decay component for the analyzing frequency of 20MHz. 666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 

 674 

Fig. 4. (A) Detection FL spectra of S-gCNQDs showing enhancement in intensity at 675 

various H1N1 virus concentrations. (B) The corresponding calibration plots 676 

generated in DI water and human serum.  λex = 400 nm. 677 
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 679 

 Fig. 5. (A) FL spectra for the detection of clinically isolated influenza A virus 680 

(H3N2). Inset: the corresponding calibration plot. (B) Plots showing H1N1 681 

selective assay in the presence of other viruses/V-LPS. (C) Stability test of S-682 

gCNQDs and Ag2S NCs with 1 ng/mL of H3N2 virus showing percentage change 683 

in FL signal response over 4 weeks. λex = 400 nm. 684 
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 689 
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 691 

 692 

 Fig. 6. (A) Fluorescence signal enhancement of S-gCNQDs as in the presence of 693 

Ag2S NCs (B) Corresponding SERS enhancement of S-gCNQDs at different 694 

concentrations of Ag2S NCs due to local optical coupling effects.  695 
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Synthesis of carboxylic acid-terminated Ag2S nanocrystals (NCs) 

Water-soluble Ag2S NCs were synthesized following reported procedures with 

some modifications [1]. In a typical procedure, 0.01 g of AgNO3 salt, 1.2 mL of 3-

mercaptopropionic acid and 10 mL of diethylene glycol (DEG) as the reaction 

solvent, were mixed together and heated up to 120 °C under stirring to form a 

cloudy mixture. The temperature was further increased to 145 °C for 10 min and 

the reaction mixture was darkened. The temperature was lowered and the 

resulting product was allowed to cool to room temperature. Ethanol (95%) was 

added to the crude product and solid Ag2S was collected by centrifugation. The 

product was purified by centrifugation using a mixture of ethanol and acetone to 

obtain purified Ag2S NCs. The collected solid product was redispersed in water 

and stored in the refrigerator for further use.   

 

Characterization Ag2S nanocrystals  

It is imperative to point out here that the use of 3-MPA was for capping and 

stabilization of Ag2S NCs, and to provide water-solubility with the rich carboxylic 

groups of 3-MPA.  Thus, morphological characterization using X-ray diffraction 

analysis was carried out for the prepared Ag2S NCs. The result verified that the 

Ag2S NCs are crystalline, Fig. S1A of ESM. The peaks of diffraction in the XRD 

pattern are very close to those of the monoclinic Ag2S library pattern (JCPDS Card 

No. 14-0072) [1]. The TEM image of the prepared Ag2S NCs revealed particles 



which appeared to be separated with non-uniform overall dimension and average 

size of ~2.5 ± 1.1 nm (Fig. S1B). The surface carboxylic acid/sulfide 

functionalizations were confirmed using FTIR (Fig. S1C). Asymmetric and 

symmetric stretching vibrations are observed for 3-MPA moiety on the Ag2S NCs. 

The C–H vibrations of 3-MPA are centered at 2978 cm-1 and 2894 cm-1. The -

COOH group stretching mode appeared as a prominent peak at 1725 cm-1 which 

is similar to what was observed previously [17]. The characteristic free thiol (SH) 

absorption (in the MPA) was not observed and this shows that the 3-MPA was 

bound by the Ag-S binding affinity to the surface of the nanocrystals, which show 

that the surface of the Ag2S NCs possesses carboxylic acid terminals due to the use 

of 3-MPA for capping. The UV-vis absorption spectrum of the Ag2S NCs displayed 

absorption band than spans the UV to the visible region, Fig. S1D. An intense 

absorption can be observed at 400 nm which is attributed to the presence of both 

direct and indirect band gaps in the Ag2S NCs [1, 2]. In Fig S1E, the overlap of the 

absorption spectra of Ag2S NCs and the excitation spectra of S-gCNQDs is shown 

to reflect the possibility of optoelectronic coupling of the nanoparticles. 

  



 

Fig. S1. Characterization results of Ag2S nanocrystals showing (A) Powder XRD 

pattern (B) TEM image (C) FTIR spectra and (D) Ground state UV-vis absorption 

spectra. (E) Overlap of the absorption spectra of Ag2S NCs and the excitation 

spectra of S-gCNQDs.  



Optimization and control studies for the developed immunoassay  

The immunoassay experiments were characterized with a series of 

optimization studies before the generation of calibration plots for optimized 

sensitivity results. The preliminary optimization included (a) the concentration of 

antibody conjugated S-gCNQDs or Ag2S NCs needed for maximum FL signal; (b) 

the concentration range of influenza virus that generate maximum FL signal; (c) 

the incubation/assay duration, and (d) the stability/reproducibility of the detection 

FL signal of developed system. The following experimental conditions gave 

optimum performance of the immunoassay detection of influenza virus: (a) 2 

mg/mL of Ab-S-gCNQDs and 1 mg/mL of Ab-Ag2S NCs in PBS (pH 7.6), 

respectively. (b) Optimal concentration range of influenza virus for the assay was 

obtained from 10 fg/mL to 10 ng/mL  (c) assay duration was 15 min (d) FL 

detection signals were stable for more than 15 days. These conditions were further 

deployed for influenza virus detection in clinical samples. 

In order to test the contributions of each species in the developed influenza 

virus immunoassay protocol, control experiments were conducted. BSA was 

deployed as a negative control in place of the target influenza virus. The effect of 

BSA as negative control was tested in the presence of the antibody-conjugated S-

gCNQDs or Ag2S NCs to demonstrate the specific affinity of the antibody 

conjugated S-gCNQDs or Ag2S NCs to bind to the target virus via antibody-

antigen immunoreactions. Another control experiment conducted was to test the 

interactions between the S-gCNQDs and Ag2S NCs with/without antibody 



conjugation in the presence or absence of the influenza virus.  All experiments 

were carried under similar conditions. The results obtained from all control 

experiments are represented in Fig. S2A and B. It can be seen from the results that 

the FL enhancement of S-gCNQDs was only guaranteed in the presence of the 

target influenza virus only when the S-gCNQDs and Ag2S NCs are conjugated to 

anti influenza virus A antibody (Fig. S2i). To test the influence of Ag2S NCs in the 

FL enhancement scheme, Ag2S NCs (without antibody) and antibody-conjugated 

Ag2S NCs were tested. Only the antibody modified Ag2S NCs was involved in the 

FL enhancement of S-gCNQDs. This is expectedly due to the immunoreactions 

between the antibody-conjugated nanostructures and the target influenza virus 

which bring the S-gCNQDs and Ag2S NCs close enough to trigger a metal-

enhanced fluorescence interaction in the S-gCNQDs. This was also confirmed 

when no obvious FL change was observed when antibody conjugated Ag2S NCs 

was interacted with S-gCNQDs alone (without antibody) in the presence of the 

target influenza virus (Fig. S2Aiii). Further, the use of BSA as a control did not 

result in any change in the FL intensity of S-gCNQDs (Fig. S2Biii) as compared to 

when the target virus was employed (Fig. S2Bii). These results are proof of the 

specific contribution of the deployed species to the feasibility of the target virus 

immunoassay. 

  



 

Fig. S2. (A) Percent change in FL intensity of (i) antibody-S-gCNQDs/antibody-Ag2S NCs. 

(ii) S-gCNQDs/Ag2S NCs. (iii) S-gCNQDs/antibody-Ag2S NCs. (iv) antibody-S-

gCNQDs/Ag2S NCs. (B) the FL response of S-gCNQDs with antibody in the presence of 

Ag2S NCS with antibody. (i) Without virus.  (ii) With virus and (iii) with BSA.  
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Fluorescence quantum yield 𝚽𝐅  deteremination 

The fluorescence quantum yield of the S-gCNQDs was determined by the 

comparative method using eqn. 1 [3]. 

 

               Φ  Φ .
.

.  .

          (1)                                

Where A and AStd
 are the absorbances of the sample and the standard at the 

excitation wavelength, respectively. F and F Std are the areas under the fluorescence 

curves of the GQDs and the standard, respectively and n and nStd are the refractive 

indices of the solvent used for the sample and standard, respectively. Rhodamine 

6G in ethanol (ΦF = 0.94 [4]) was used as the standard.  

  



Fluorescence lifetime imaging microscopy (FLIM) experimental setup and Phasor 

plot generation 

The FLIM images were acquired by the FLIM CMOS camera via the Framelink 

PCIe card (VCE-CLEX02). The CMOS camera has a pixel array of 128 x 128 pixels; 

each has a four-tap pixel with a pitch of 22.4 μm x 22.4 μm. The sensor response 

time is 170ps, measured with 472nm laser diode. The Phasor approach was 

utilized to determine the fluorescence lifetime of the samples [5], instead of the 

time delay curve method. The graphical view of the Phasor approach simplifies 

the analysis of the FLIM images. The base frequency for the measurement was 20 

MHz, with 32 phase steps. The FPGA in the FLIM CMOS camera scans 32 phases 

in a period, which was synchronized with the camera exposure operation. The 

four non-overlap taps of the pixel resulted in four sets of images over 32 phases in 

one period of scanning. All four sets of images were rearranged and the images 

from the same phase were summed to increase the signal to noise ratio. The final 

single set of 32 phases of images was used for the Phasor analysis. Each point in 

the Phasor plot corresponds to a pixel in the image. The fluorophore/hybrid 

nanostructure exhibiting a single component will result in the plot on the 

semicircle. The plot of a multiple-component fluorophore/nanostructure will be 

situated inside the semicircle. On the semicircle, a very long lifetime corresponds 

to the Phasor near the origin, while a very short lifetime corresponds to the 

Phasor at right side of the semicircle.   



Fluorescence lifetime imaging microscopy (FLIM) of S-gCNQDs in the presence of 

target virus 

The changes in the lifetime of S-gCNQDs as function of the virus amount were 

studied using FLIM experiment. The frequency-domain FL lifetimes of S-gCNQDs 

when conjugated to the antibody and in the virus-induced nanosandwich system 

was examined. The FL lifetime of S-gCNQDs alone exhibits two-component decay 

with an average value of 3.19 ns. Meanwhile, in the presence of the H1N1 

antibody, the antibody conjugated S-gCNQDs reveals a shortening of their 

average lifetime to 2.66 ns with a Phasor plot, Fig. S3B, indicating a multi-

component decay. This indicates an interaction between the S-gCNQDs and the 

antibody. The S-gCNQDs in the presence of different concentrations of the H1N1 

virus at 100 fg/mL, 1.0 pg/mL and 1.0 ng/mL displayed average lifetime values of 

4.03, 4.1 and 4.26 ns, respectively (Fig. S3A, C–E).  

  



  

Fig. S3. (A) Changes in fluorescence lifetime of S-gCNQDs as a function of H1N1 

virus concentrations. (B–E) Phasor plots for lifetime of S-gCNQDs in the presence 

(B) Ab (C) 1 ng/mL (D) 1 pg/mL and (E) 1 fg/mL of H1N1 virus.  

  



 

 

Fig. S4. Commercial RIDT kit for the detection of H3N2 at (A) 50 x 103 PFU/mL* 

(B) 10 x 103 PFU/mL* (C) 1 x 103 PFU/mL* and (D) 50 PFU/mL. Where A, B, and 

C denote influenza A virus, influenza B virus, and control, respectively. * Positive 

result. 

  



  

 

  

 

 

 

 

Fig. S5.  TEM image of immunocomplex of S-gCNQDs/virus/Ag2S NCs. 

  



Preparation of sample for surface-enhanced Raman scattering (SERS) measurement  

To record the Raman spectra (SERS) of 4-mercaptobenzoic acid (4-MBA) adsorbed 

on Ag2S nanocrystals, 10 μL of 4-MBA (1.0 × 10−3 M) in methanol mixed with 20 

μL of different concentration of Ag2S NCs (0.5, 1, 1.5, 2, 2.5 and 3 mg/mL) were 

dropped onto a silicon substrate, respectively. After air-drying of the solvent, the 

Raman spectra of the samples were measured. Different laser excitation SERS 

experiments were conducted using 532 nm laser source. The Raman spectra of S-

gCNQDs in the presence of increasing influenza virus concentration and Ag2S NCs 

were also measured using the 532 nm laser source.  

 

Demonstration of plasmonic properties of Ag2S NCs  

SERS analysis and results have been used as measure of the plasmonic 

coupling effects of metallic nanostructures by their ability to enhance the optical 

Raman scattering signals of a Raman reporter in close proximity. In this work and 

to demonstrate the plasmonic properties of Ag2S NCs, SERS analysis was adopted 

to probe the optical enhancement of the Raman signals of 4-MBA, a classical 

Raman reporter, in the presence of Ag2S NCs. As shown in Fig. S6, different 

concentrations of Ag2S NCs were incubated with 4-MBA and the recorded SERS 

spectra showed significant increase in the Raman peaks at 1097 and 1596 cm-1, 

respectively. The Raman signals of 4-MBA were proportionately enhanced with 

an enhancement factor in the order of 105 compared to 4-MBA alone.  



In another SERS experiment, the immunocomplexes formed between the 

antibody-conjugated-S-gCNQDs and antibody-conjugated-Ag2S NCs incubated 

with 0.1 and 1 ng/mL of influenza virus were also subjected to Raman 

measurement to test the SERS enhancement of the S-gCNQDs. In Fig. 6B, the 

spectra contain the characteristic D band at 1349 cm−1 that arises due to the 

presence of local structural defects known as sp3 defects. The other peak at 

1599 cm−1, called the G-band, a signature of sp2-containing graphitic structure of 

S-gCNQDs. The SERS intensity showed appreciable enhancements of the Raman 

peaks at 1347 and 1599 cm-1, respectively, compared to the antibody-conjugated 

S-gCNQDs alone (Fig. 6Bi). The SERS analysis results (of S-gCNQDs within the 

immunocomplex) therefore demonstrates the possibility of metal (plasmonic) 

coupling effects of Ag2S NCs as similarly observed for 4-MBA, but with a lower 

enhancement factor in the order of 102. The SERS enhancement of S-gCNQDs 

within the immunocomplex may have been weakened by the intense fluorescence 

enhancement of S-gCNQDs in the presence of Ag2S NCs (Fig. 6A). Meanwhile, no 

fluorescence signal change or enhancement was observed in the absence of Ag2S 

NCs (Fig. 6A) which further confirms the contribution of Ag2S NCs in the 

detection process.  

  



 

 

 

 

 

 

 

Fig. S6.  Raman spectra showing SERS enhancement of 4-MBA in the presence of 

different concentrations of Ag2S NCs.   
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Table S1. A comparison of some recent reports/results on influenza virus detection 

systems. 

Method of detection Target virus LOD Ref. 

Fluorescence fiber-optic biosensor H1N1 13.9 pg/mL [6] 

Magnetofluoro-immunoassay H1N1 6.07 pg/mL [7] 

Ag-S covalent labelling H1N1 0.1 pg/mL [8] 

Electrochemical immunosensor H5N1 2.1 pg/mL [9] 

Metal-enhanced fluoroimmunoassay H1N1 1 ng/mL [10] 
Peroxidase mimic H1N1 10 pg/mL [11]  

S-gCNQDs/Ag2S NCs assay 
H1N1 

5.5 fg/mL (DI water ) 
and 8.48 fg/mL (in 
serum) 

This work 

   



Table S2.  The recovery/immunoassay of clinically isolated influenza A/Yokohama 

H3N2 virus using the S-gCNQDs probe. (Detection was carried out in human 

serum). 

Sample Added 

(PFU/mL) 

Found 

(PFU/mL) 

Recovery  

(%, n = 3) 

*RSD (%) 

 

H3N2 
Virus 
 

 

20 x 103 

50 x 103 

100 x 103 

 

 

19.5 x 103 

49 x 103 

98 x 103 

 

 

97.6±0.15 

98 ±0.20 

98 ±0.27 

 

1.5 

2.3 

3.1 

*Relative standard deviation 
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