SUR［静岡大学学術リポジトリ

Shizuoka University REpository

Design of potent ABA receptor antagonists based on a conformational restriction approach

メタデータ	言語：eng
	出版者：
	公開日：2020－07－28
	キーワード（Ja）：
	キーワード（En）：
	作成者：Takeuchi，Jun，Nagamiya，Hikaru，Moroi，
	Sayaka，Ohnishi，Toshiyuki，Todoroki，Yasushi メールアドレス： URL属： Untt：／／hdl．handle．net／10297／00027562

Design of potent ABA receptor antagonists based on a conformational restriction approach

Jun Takeuchi, Hikaru Nagamiya, Sayaka Moroi, Toshiyuki Ohnishi \& Yasushi Todoroki

Supporting Information

1) Supplementary Figures
2) General Experimental Section
3) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectrums of Synthesized Compounds
4) References

Supplementary Figure 1 Effects of AS6, (+)-PAO4 and PANMe on rice seed germination. Seed germination rate in the presence of $20 \mu \mathrm{M}$ ABA and $30 \mu \mathrm{M}$ AS6, (+)-PAO4 or PANMe at 60 h after sowing. Values marked with different letters were statistically significantly different between the treatments (P-value <0.05, Tukey's test).

Supplementary Figure 2 Experimental CD spectra of enantiomers of PAO4, PAC4, PAT3 and PATT1.

Supplementary Figure 3 Effects of (-)-PAC4, (-)-PAT3 and (-)-PATT1 on Arabidopsis seed germination. Seed germination rate in the presence of $1 \mu \mathrm{M}$ ABA and $10 \mu \mathrm{M}(-)$-PAO4 analogs.

Supplementary Figure 4 Effects of (+)-PAO4 analogs on Arabidopsis seed germination compared with that of PANMe. Seed germination rate in the presence of $1 \mu \mathrm{M}$ ABA and (+)-PAO4 analogs or PANMe at 36 h after stratification ($n=3$, error bars represent SEs).

Supplementary Figure 5 Effects of (+)-PAO4 analogs on early seedling growth of Arabidopsis. Seedlings grown on test media agar containing $1 \mu \mathrm{M}$ ABA and indicated concentrations of (+)-PAO4 analogs for 84 h . Similar results obtained from three independent experiments using different seed batches.

Supplementary Figure 6 Effect of (+)-PATT1 on total chlorophyll content. Arabidopsis seedlings grown on test media agar containing $1 \mu \mathrm{M}$ ABA and $30 \mu \mathrm{M}(+)$-PATT1 for $84 \mathrm{~h}(n=3$, error bars represent SDs). ${ }^{*} P<0.05$, significant difference between the 2 values with Student's t test.

[(+)-PAC4/PYL5]
$K_{d}=68 \pm 18 \mathrm{nM}$

[(+)-PAT3/PYL5]
$K_{d}=93 \pm 37 n M$

[(+)-PATT1/PYL5]
$K_{\mathrm{d}}=129 \pm 33 \mathrm{nM}$

Supplementary Figure 7 Isothermal titration calorimetry profiles and thermodynamic data for (+)-PAC4-, (+)-PAT3- and (+)-PATT1-PYL5 binding experiments. The data were corrected by subtraction the mixing enthalpies of (+)-PAC4, (+)-PAT3 and (+)-PATT1 solution into protein-free solution and fitted by Origin for ITC with $1: 1$ binding model.

Supplementary Figure 8 Effects of (+)-PAT3 and (+)-PATT1 on rice compared with that of (+)-PAO4. (A) Seed germination rate in the presence of $20 \mu \mathrm{M} \mathrm{ABA}$ and $3 \mu \mathrm{M}$ (left) or $10 \mu \mathrm{M}$ (right) of (+)-PAO4 analogs ($n=3$, error bars represent SDs). (B) Seedlings were grown on test media containing $3 \mu \mathrm{M}$ ABA and $30 \mu \mathrm{M}(+)$-PAO4 analogs for 7 days ($n=3$, error bars represent SDs).

Experimental

General procedures

ABA was a gift from Dr. Y. Kamuro and Toray Industries Inc., Tokyo, Japan. ${ }^{1} \mathrm{H}$ NMR spectra were recorded with tetramethylsilane as the internal standard using JEOLJNM-EX270 (270 MHz) NMR spectrometers (JEOL Ltd., Tokyo, Japan). All peak assignments refer to the numbering in structure (+)-PAO4 (Fig. 1). High resolution mass spectra were obtained with a JEOL JMS-T100LC AccuTOF mass spectrometer (ESI-TOF, positive mode; JEOL Ltd.). Optical rotations were recorded with a Jasco DIP-1000 digital polarimeter. Circular dichroism spectra were recorded with a Jasco J-820 spectrophotometer. Column chromatography was performed using silica gel (Wakosil C-200, Wako P22ure Chemical Industries Ltd.).

Synthesis of PAC4

6,6-dimethyl-5-oxo-5,6,7,8-tetrahydronaphthalen-2-yl trifluoromethanesulfonate (6)

To a stirred solution of $5(1.00 \mathrm{~g}, 5.26 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 2,6-lutidine $(0.92 \mathrm{~mL}$, 7.88 mmol) under an atmosphere of Ar. After stirring the mixture for 15 min at $0{ }^{\circ} \mathrm{C}$, trifluoromethanesulfonic anhydride ($1.29 \mathrm{~mL}, 7.88 \mathrm{mmol}$) was added dropsies to the mixture. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then the ice bath was removed. The reaction mixture was stirred at room temperature for 1 h . After quenching with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, it was extracted with EtOAc (20 $\mathrm{mL} \times 3$). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residual oil was purified by silica gel chromatography ($2 \% \mathrm{EtOAc} /$ hexane) to obtain $6(1.73 \mathrm{~g}$, quantitative yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 1.23\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.02(2 \mathrm{H}$, $\left.\mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{H}_{2}-5^{\prime}\right), 3.03\left(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{H}_{2}-4^{\prime}\right), 7.15\left(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, \mathrm{H}-12^{\prime}\right), 7.22(1 \mathrm{H}, \mathrm{dd}, J=8.6$ and $\left.2.3 \mathrm{~Hz}, \mathrm{H}-10^{\prime}\right), 8.14\left(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 24.1,24.1,25.8$, $36.2,41.6,116.3,119.6,121.2,130.8,131.3,146.0,152.2,201.1$. The data were consistent with the previous data ${ }^{1}$.

2,2-dimethyl-6-pentyl-3,4-dihydronaphthalen-1(2H)-one (7)

9-BBN (0.5 M solution in THF, $9.3 \mathrm{~mL}, 4.6 \mathrm{mmol}$) was added to 1 -penten ($0.54 \mathrm{~mL}, 4.6 \mathrm{mmol}$) at room temperature. The solution was stirred at room temperature overnight. After this time, $\mathrm{K}_{3} \mathrm{PO}_{4}$ (987 $\mathrm{mg}, 4.6 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(65 \mathrm{mg}, 0.056 \mathrm{mmol}), \mathrm{KBr}(433 \mathrm{mg}, 3.7 \mathrm{mmol})$ and degassed $\mathrm{H}_{2} \mathrm{O}(0.061$ $\mathrm{mL}, 3.4 \mathrm{mmol})$ were added. This was followed by a solution of $6(1.00 \mathrm{~g}, 3.1 \mathrm{mmol})$ in dry THF (3.5 mL). The reaction mixture was stirred for 2 h at $68^{\circ} \mathrm{C}$. After cooling, the solution was acidified to pH 2 and extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residual oil was purified by silica gel chromatography ($1.5 \% \mathrm{EtOAc} /$ hexane) to obtain 7 (765 mg , quantitative yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ_{H} $0.90\left(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{3}-5^{\prime \prime}\right), 1.21\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.30-1.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-3^{\prime \prime}\right.$ and $\left.4^{\prime \prime}\right), 1.62(2 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{H}_{2}-2^{\prime \prime}\right), 1.97\left(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{H}_{2}-5^{\prime}\right), 2.61\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}_{2}-1^{\prime \prime}\right), 2.95\left(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{H}_{2}-4^{\prime}\right), 7.02$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-12^{\prime}$), $7.11\left(1 \mathrm{H}, \mathrm{dd}, J=7.9\right.$ and $\left.1.3 \mathrm{~Hz}, \mathrm{H}-10^{\prime}\right), 7.95\left(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{H}-7^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR (68 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 14.0,22.5,24.4,24.4,25.7,30.8,31.5,36.0,36.7,41.5,127.0,128.1,128.4,129.3$, 143.3, 148.7, 202.7; HRMS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{ONa}$, 267.1725; found, 267.1730.

(Z)-1-(5-hydroxy-3-methylpent-3-en-1-yn-1-yl)-2,2-dimethyl-6-pentyl-1,2,3,4-tetrahydronaphthalen-1-ol (8)

(Z)-3-Mehylpent-2-en-4-yn-1-ol ($214 \mathrm{mg}, 2.22 \mathrm{mmol}$) in dry THF (7 mL) was cooled to $-80^{\circ} \mathrm{C}$ under an atmosphere of Ar. n-Butyllithium ($2.9 \mathrm{~mL}, 1.6 \mathrm{M}$) was then added slowly. After being stirred for 40 min at $-80^{\circ} \mathrm{C}$, a solution of compound $7(356 \mathrm{mg}, 1.43 \mathrm{mmol})$ in dry THF $(1.3 \mathrm{~mL})$ was added dropwise to the stirred mixture. The reaction mixture was stirred for a further 10 min at $-80^{\circ} \mathrm{C}$ and then the ice bath was removed. The reaction mixture was stirred at room temperature for 30 min . After quenching with sat. $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~mL})$, it was extracted with EtOAc $(20 \mathrm{~mL} \times 3)$. The organic layer was washed, dried and concentrated, as described above. The residual oil was purified by silica gel chromatography ($0-25 \% \mathrm{EtOAc}$ / hexane) to obtain 8 ($463 \mathrm{mg}, 93 \%$) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (270 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 0.90\left(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{3}-5^{\prime \prime}\right), 1.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right), 1.18$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}$ or 9^{\prime}), $1.30-1.36\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-3^{\prime \prime}\right.$ and $\left.4^{\prime \prime}\right), 1.54-1.68\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right.$ and $\left.\mathrm{H}_{2}-2^{\prime \prime}\right), 1.92\left(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}, \mathrm{H}_{3}-6\right)$, $2.04\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.55\left(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{H}_{2}-1^{\prime \prime}\right), 2.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-4^{\prime}\right), 4.32\left(2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{H}_{2}-1\right)$, $5.88(1 \mathrm{H}, \mathrm{tq}, J=6.3$ and $1.3 \mathrm{~Hz}, \mathrm{H}-2), 6.91\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-12^{\prime}\right), 7.05(1 \mathrm{H}, \mathrm{dd}, J=7.9$ and 2.0 Hz , $\left.\mathrm{H}-10^{\prime}\right), 7.69\left(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{c} 14.0,22.5,23.2,23.8,23.8,25.8$, $31.0,31.2,31.6,35.5,37.6,61.4,75.0,84.2,96.7,120.8,126.6,128.2,128.9,134.7,135.6,136.1$, 142.8; HRMS (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Na}, 363.2300$; found, 363.2297.

1-((1E,3Z)-5-hydroxy-3-methylpenta-1,3-dien-1-yl)-2,2-dimethyl-6-pentyl-1,2,3,4-tetrahydronaphthalen-1-ol (9)

To a stirred solution of $\mathbf{8}(463 \mathrm{mg}, 1.36 \mathrm{mmol})$ in dry THF $(12 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and added sodium bis (2-methoxyethoxy) aluminum hydride in toluene $65 \% \mathrm{w} / \mathrm{w}$ (SMEAH) ($2.3 \mathrm{~mL}, 8.16$ mmol) under an atmosphere of Ar. The mixture was stirred for 50 min at room temperature. After quenching with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. $(5 \mathrm{~mL})$, it was diluted with water $(20 \mathrm{~mL})$ and extracted with EtOAc $(25 \mathrm{~mL} \times 3)$. The organic layer was washed, dried, and concentrated as above. The residual oil was purified by silica gel chromatography ($25 \% \mathrm{EtOAc} /$ hexane) to obtain $9(419 \mathrm{mg}, 80 \%$) as a paleyellow oil. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 0.89\left(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{3}-5^{\prime \prime}\right), 0.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right)$, $0.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right), 1.29-1.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-3^{\prime \prime}\right.$ and $\left.4^{\prime \prime}\right), 1.53-1.63\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right.$ and $\left.\mathrm{H}_{2}-2^{\prime \prime}\right), 1.69$ $(1 \mathrm{H}, \mathrm{s},-\mathrm{HO}), 1.87\left(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, \mathrm{H}_{3}-6\right), 1.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.54\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}_{2}-1^{\prime \prime}\right), 2.83$ ($2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{H}_{2}-4^{\prime}$), $4.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-1\right), 5.56(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-2), 5.98$ (1H, d, $J=15.5 \mathrm{~Hz}, \mathrm{H}-$ 5), $6.73(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, \mathrm{H}-4), 6.92\left(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{H}-12^{\prime}\right), 6.98(1 \mathrm{H}, \mathrm{dd}, J=7.9$ and $1.6 \mathrm{~Hz}, \mathrm{H}-$
$\left.10^{\prime}\right), 7.25\left(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{H}-7^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 14.0,20.8,22.5,23.3,23.9,26.0$, $31.1,31.6,33.0,35.5,37.1,58.6,77.9,125.4,126.5,127.8,128.1,128.7,134.9,135.5,135.6,138.0$, 142.0; HRMS (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Na}, 365.2457$; found, 365.2456.
methyl (2Z,4E)-5-(1-hydroxy-2,2-dimethyl-6-pentyl-1,2,3,4-tetrahydronaphthalen-1-yl)-3-methylpenta-2,4-dienoate (10)
To a stirred solution of $9(200 \mathrm{mg}, 0.58 \mathrm{mmol})$ in dry acetone $(7.7 \mathrm{~mL})$ was added $\mathrm{MnO}_{2}(0.86 \mathrm{~g}, 9.9$ $\mathrm{mmol})$ at room temperature. After stirring at room temperature for 30 min , all the starting material had disappeared. The reaction mixture was then filtered through a pad of Celite ${ }^{\circledR}$ and concentrated in vacuo. The crude material (226 mg) was carried through to the next stage without further purification. The crude aldehyde (226 mg) was dissolved in $\mathrm{MeOH}(4.6 \mathrm{~mL})$ and stirred with $\mathrm{MnO}_{2}(0.86 \mathrm{~g}, 9.9 \mathrm{mmol})$, $\mathrm{NaCN}(86 \mathrm{mg}, 1.8 \mathrm{mmol})$ and $\mathrm{AcOH}(34 \mu \mathrm{~L}, 0.58 \mathrm{mmol})$ at room temperature. After 50 min , the reaction mixture was filtered through a pad of Celite ${ }^{\circledR}$ and concentrated in vacuo. The residue was brought up in distilled water and extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The organic layer was washed, dried, and concentrated as above. The residual oil was purified by silica gel chromatography (8% EtOAc/ hexane) to obtain $10(119 \mathrm{mg}, 55 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 0.89$ $\left(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{3}-5^{\prime \prime}\right), 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right), 1.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right), 1.32\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-3^{\prime \prime}\right.$ and $\left.4^{\prime \prime}\right)$, $1.54-1.71\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right.$ and $\left.\mathrm{H}_{2}-2^{\prime \prime}\right), 1.83(1 \mathrm{H}, \mathrm{s},-\mathrm{OH}), 1.92\left(1 \mathrm{H}, \mathrm{dt}, J=13.5\right.$ and $\left.6.6 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 1.99$ ($3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}, \mathrm{H}_{3}-6$), $2.54\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}_{2}-1^{\prime \prime}\right), 2.84\left(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{H}_{2}-4^{\prime}\right), 3.70(3 \mathrm{H}, \mathrm{s},-$ $\left.\mathrm{OCH}_{3}\right), 5.69(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 6.33(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}, \mathrm{H}-5), 6.92\left(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}, \mathrm{H}-12^{\prime}\right), 6.98(1 \mathrm{H}, \mathrm{dd}$, $J=7.9$ and $\left.1.9 \mathrm{~Hz}, \mathrm{H}-10^{\prime}\right), 7.26\left(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime}\right), 7.85(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}, \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR (68 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{c} 14.0,21.3,22.5,23.2,24.0,26.0,31.1,31.6,33.1,35.5,37.2,51.0,77.9,116.8$, 126.4, 126.6, 128.1, 128.7, 135.4, 137.6, 141.6, 142.0, 150.5, 166.7; HRMS $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}, 393.2406$; found, 393.2397.

(2Z,4E)-5-(1-hydroxy-2,2-dimethyl-4-oxo-6-pentyl-1,2,3,4-tetrahydronaphthalen-1-yl)-3-

 methylpenta-2,4-dienoic acid, (\pm)-PAC4 (2)The methyl ester $10(98.8 \mathrm{mg}, 0.27 \mathrm{mmol})$ in dry benzene $(2.9 \mathrm{~mL})$ was added Celite ${ }^{\circledR}(0.6 \mathrm{~g})$ and pyridinium dichromate ($400 \mathrm{mg}, 1.07 \mathrm{mmol}$). After being stirred for $10 \mathrm{~min}, 70 \%$ tert-butyl hydroperoxide ($0.2 \mathrm{~mL}, 1.4 \mathrm{mmol}$) was added to the mixture. The reaction mixture was stirred for 2.5 h at room temperature, and then diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and filtered over a bed of Celite ${ }^{\circledR}$. Evaporation of solvent in vacuo and residual oil was purified by silica gel column chromatography ($0-15 \% \mathrm{EtOAc} /$ hexane) to obtain methyl PAC4 (33 mg) as a colorless oil. A solution of 2 M NaOH $(3.5 \mathrm{~mL})$ was added to a solution of methyl PAC4 $(33 \mathrm{mg})$ in $\mathrm{MeOH}(6 \mathrm{~mL})$, and reaction mixture was stirred for 2.5 h at room temperature. The pH of the reaction mixture was adjusted to 2 using 1 M HCl and extracted with EtOAc $(20 \mathrm{~mL} \times 3)$. The organic layer was washed, dried, and concentrated as
above. The residual oil was purified by silica gel chromatography ($35 \% \mathrm{EtOAc} /$ hexane containing $0.2 \% \mathrm{AcOH}$) to obtain (\pm)-PAC4 (31.9 mg, 32\%) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ_{H} $0.89\left(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{3}-5^{\prime \prime}\right), 1.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime \prime}\right.$ or $\left.9^{\prime \prime}\right), 1.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime \prime}\right.$ or $\left.9^{\prime \prime}\right), 1.62(2 \mathrm{H}, \mathrm{tt}, J=7.6$ and $\left.7.6 \mathrm{~Hz}, \mathrm{H}_{2}-2^{\prime \prime}\right), 2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-6\right), 2.56\left(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 2.63\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}_{2}-1^{\prime \prime}\right)$, 2.82 (1H, d, $J=17.1 \mathrm{~Hz}, \mathrm{H}-5$ '), 5.74 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$), 6.39 ($1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz}, \mathrm{H}-5$), 7.37 ($1 \mathrm{H}, \mathrm{dd}, J=8.2$ and $\left.1.6 \mathrm{~Hz}, \mathrm{H}-10^{\prime}\right), 7.41\left(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-7^{\prime}\right), 7.83(1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz}, \mathrm{H}-4), 7.86(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}$, $\left.\mathrm{H}-12{ }^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 14.0,21.4,22.5,23.5,24.4,30.8,31.5,35.4,41.1,49.8,78.2$, $117.9,126.3,127.4,128.0,130.8,134.7,139.1,143.0,143.2,151.3,170.3,197.7 ; \mathrm{UV} \lambda_{\max }(\mathrm{MeOH})$ $\mathrm{nm}(\varepsilon): 212.4$ (23300), 255.8 (25400); HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O} 4 \mathrm{Na}, 393.2042$; found, 393.2045.

A CHIRALART cellulose-SC HPLC column $(250 \times 10.0 \mathrm{~mm}$ i.d., YMC; solvent, $15 \% \mathrm{EtOAc}$ in hexane containing $0.1 \% \mathrm{AcOH}$; flow rate, $4.7 \mathrm{~mL} / \mathrm{min}$; detection, 254 nm) was injected with (\pm)-PAC4. The material at $t_{\mathrm{R}} 13.5$ and 16.8 min were collected to give $(-)-\mathrm{PAC} 4(3.2 \mathrm{mg})$ and the $(+)$-enantiomer $(3.2 \mathrm{mg})$ with an optical purity of 100% and 99.9 , respectively. $(+)-\mathrm{PAC} 4:[\alpha]_{\mathrm{D}}^{30}+185.0(\mathrm{MeOH} ; c$ $0.21) ; \mathrm{CD} \lambda_{\text {ext }}(\mathrm{MeOH}) \mathrm{nm}(\Delta \varepsilon): 258.0(12.1), 217.0(-22.2) .(-)-\mathrm{PAC} 4:[\alpha]_{\mathrm{D}}^{30}-198.4(\mathrm{MeOH} ; c 0.21)$; $\mathrm{CD} \lambda_{\mathrm{ext}}(\mathrm{MeOH}) \mathrm{nm}(\Delta \varepsilon): 258.0$ (-11.9), 216.0 (20.9).

Synthesis of PAT3

6-iodo-2,2-dimethyl-3,4-dihydronaphthalen-1(2H)-one (12)

To a suspension of $\mathrm{NaH}(4.03 \mathrm{~g}, 101 \mathrm{mmol})$ in dry THF $(30 \mathrm{~mL})$ was added 6-iodo-1-tetralone 11 (2) $(3.08 \mathrm{~g}, 11.3 \mathrm{mmol})$ dissolved in THF $(10 \mathrm{~mL})$. After stirring for 10 min at room temperature, methyl iodide ($2.1 \mathrm{~mL}, 34 \mathrm{mmol}$) was added dropwise to the mixture. The mixture was stirred for 2 h at room temperature. After quenching with water (30 mL), it was then extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The organic layer was washed, dried, and concentrated as above. The residual oil was purified by silica gel chromatography $\left(20 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ / hexane) to obtain $12(2.37 \mathrm{~g}, 67 \%)$ as pale-yellow solid. ${ }^{1} \mathrm{H}$ NMR (270 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 1.20\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.96\left(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{H}_{2}-5^{\prime}\right), 2.93\left(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{H}_{2}-4^{\prime}\right)$, 7.64-7.74 (3H, m, H-7', 10^{\prime} and 12^{\prime}); ${ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 24.2,24.2,25.3,36.3,41.5$, $101.3,129.5,130.8,136.0,137.7,144.9,202.3$.

(Z)-1-(5-hydroxy-3-methylpent-3-en-1-yn-1-yl)-6-iodo-2,2-dimethyl-1,2,3,4-tetrahydronaphthalen-1-ol (13)

(Z)-3-Mehylpent-2-en-4-yn-1-ol ($1.21 \mathrm{~g}, 12.6 \mathrm{mmol}$) in dry THF (25 mL) was cooled to $-80^{\circ} \mathrm{C}$ under an atmosphere of Ar. n-Butyllithium $(16.1 \mathrm{~mL}, 1.57 \mathrm{M})$ was then added slowly. After being stirred for 45 min at $-80^{\circ} \mathrm{C}$, a solution of compound $12(2.37 \mathrm{~g}, 7.90 \mathrm{mmol})$ in dry THF (16 mL) was added dropwise to the stirred mixture. The reaction mixture was stirred for a further 10 min at $-80^{\circ} \mathrm{C}$ and then the ice bath was removed. The reaction mixture was stirred at room temperature for 60 min . After
quenching with sat. $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$, it was then diluted with water $(10 \mathrm{~mL})$ and extracted with EtOAc $(200 \mathrm{~mL} \times 3)$. The organic layer was washed, dried, and concentrated as above. The residual oil was purified by silica gel chromatography ($25 \% \mathrm{EtOAc} /$ hexane) to obtain $\mathbf{1 3}(3.10 \mathrm{~g}, 99 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 1.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right)$, 1.14 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}$ or 9^{\prime}), $1.45(1 \mathrm{H}, \mathrm{d}$, $J=5.6 \mathrm{~Hz},-\mathrm{OH}), 1.68\left(1 \mathrm{H}, \mathrm{dt}, J=13.5 \mathrm{and} 6.2 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 1.90\left(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}, \mathrm{H}_{3}-6\right), 1.97(1 \mathrm{H}$, dt, $J=13.5$ and $\left.6.2 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 2.24(1 \mathrm{H}, \mathrm{s},-\mathrm{HO}), 2.80\left(2 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}, \mathrm{H}_{2}-4^{\prime}\right), 4.30\left(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{H}_{2}-\right.$ 1), $5.89(1 \mathrm{H}, \mathrm{tq}, J=6.5$ and $1.3 \mathrm{~Hz}, \mathrm{H}-2), 7.48-7.57\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7^{\prime}, 10^{\prime}\right.$ and $\left.12^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR (68 MHz , CDCl_{3}): $\delta_{\mathrm{C}} 23.1,23.2,23.9,25.4,31.1,37.5,61.4,74.8,84.8,93.9,95.9,120.4,130.1,135.5,136.0$, 137.5, 137.8, 138.7; HRMS (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{INa}, 419.0484$; found, 419.0492 .

(Z)-1-(5-hydroxy-3-methylpent-3-en-1-yn-1-yl)-2,2-dimethyl-6-(pent-1-yn-1-yl)-1,2,3,4-tetrahydronaphthalen-1-ol (14)

To a stirred solution of $\mathbf{1 6}(1.00 \mathrm{~g}, 2.52 \mathrm{mmol})$ in triethylamine $(15 \mathrm{~mL})$ was added $\operatorname{CuI}(40.5 \mathrm{mg}, 0.21$ mmol), bis(triphenylphosphine) palladium(II) dichloride ($36 \mathrm{mg}, 0.05 \mathrm{mmol}$) and 1-pentyne (0.35 mL , 3.63 mmol) under an atmosphere of Ar. The reaction mixture was stirred for 2 h at room temperature, and then it was filtered through silica gel (EtOAc). The filtrate was successively washed with 1 M HCl and brine, and then dried and concentrated as above. The same reaction was performed again. The total residual oil was purified by silica gel chromatography ($30 \% \mathrm{EtOAc} /$ hexane) to obtain 14 (1.48 g, 87%) as a brown oil. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 1.04\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{3}-5^{\prime \prime}\right), 1.08(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}_{3}-8^{\prime}$ or $\left.9^{\prime}\right), 1.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right), 1.62\left(2 \mathrm{H}, \mathrm{tq}, J=7.3\right.$ and $\left.7.3 \mathrm{~Hz}, \mathrm{H}_{2}-4^{\prime \prime}\right), 1.68(1 \mathrm{H}, \mathrm{dt}, J=13.5$ and $\left.6.3 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 1.90\left(3 \mathrm{H}, \mathrm{dt}, J=1.3\right.$ and $\left.1.3 \mathrm{~Hz}, \mathrm{H}_{3}-6\right), 1.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.26(1 \mathrm{H}, \mathrm{s},-\mathrm{HO}), 2.37(2 \mathrm{H}$, $\left.\mathrm{t}, J=7.3 \mathrm{H}, \mathrm{H}_{2}-3^{\prime \prime}\right), 2.80\left(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{H}_{2}-4^{\prime}\right), 4.30\left(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{H}_{2}-1\right), 5.87(1 \mathrm{H}, \mathrm{tq}, J=6.6$ and $1.3 \mathrm{~Hz}, \mathrm{H}-2), 7.16$ ($1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{H}-12^{\prime}$), 7.25 ($1 \mathrm{H}, \mathrm{dd}, J=8.2$ and $1.6 \mathrm{~Hz}, \mathrm{H}-10^{\prime}$), $7.70(1 \mathrm{H}, \mathrm{d}, J=8.2$ $\left.\mathrm{Hz}, \mathrm{H}-7^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 13.5,21.4,22.2,23.1,23.3,23.9,25.5,31.2,37.5,61.4$, $74.9,80.4,84.7,90.5,96.2,120.6,123.6,128.0,129.5,132.1,134.9,135.8,138.2 ;$ HRMS (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Na}$, 359.1987; found, 359.1994.

1-((1E,3Z)-5-hydroxy-3-methylpenta-1,3-dien-1-yl)-2,2-dimethyl-6-(pent-1-yn-1-yl)-1,2,3,4-tetrahydronaphthalen-1-ol (15)

To a stirred solution of $\mathbf{1 4}(1.48 \mathrm{~g}, 4.40 \mathrm{mmol})$ in dry THF (33 mL) was cooled to $0^{\circ} \mathrm{C}$ and added SMEAH ($4.2 \mathrm{~mL}, 15.1 \mathrm{mmol}$). The mixture was allowed to warm up slowly to room temperature and was stirred for 1 h . After quenching with sat. aq. Rochelle salt (30 mL), it was extracted with EtOAc $(40 \mathrm{~mL} \times 3)$. The organic layer was washed, dried, and concentrated as above. The residual oil was purified by silica gel chromatography ($30 \% \mathrm{EtOAc} /$ hexane) to obtain $\mathbf{1 5}(1.42 \mathrm{~g}, 95 \%$) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 0.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right), 0.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8{ }^{\prime}\right.$ or $9{ }^{\prime}$), $1.04(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.3 \mathrm{~Hz}, \mathrm{H}_{3}-5^{\prime \prime}\right), 1.62\left(2 \mathrm{H}, \mathrm{tq}, J=7.3\right.$ and $\left.7.3 \mathrm{~Hz}, \mathrm{H}_{2}-4^{\prime \prime}\right), 1.67$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}$), 1.84 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}$), 1.85
($3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, \mathrm{H}_{3}-6$), $2.37\left(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{H}, \mathrm{H}_{2}-3^{\prime \prime}\right), 2.81\left(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}_{2} \mathrm{H}_{2}-4^{\prime}\right), 4.29(2 \mathrm{H}, \mathrm{d}, J=6.9$ $\left.\mathrm{Hz}, \mathrm{H}_{2}-1\right), 5.56(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H}-2), 5.94(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}, \mathrm{H}-5), 6.65(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}, \mathrm{H}-4)$, 7.17 (1 H br s, $\mathrm{H}-12^{\prime}$), $7.18\left(1 \mathrm{H}, \mathrm{dd}, J=8.2\right.$ and $\left.1.6 \mathrm{~Hz}, \mathrm{H}-10^{\prime}\right), 7.30\left(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 13.5,20.7,21.4,22.2,22.9,24.0,25.7,32.8,37.0,58.5,78.0,80.5,90.2,122.9$, 125.7, 128.0, 128.1, 129.4, 131.9, 134.7, 135.2, 135.7, 140.2; $\operatorname{HRMS}(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}, 361.2143$; found, 361.2146 .

Methyl (2Z,4E)-5-(1-hydroxy-2,2-dimethyl-6-(pent-1-yn-1-yl)-1,2,3,4-tetrahydronaphthalen-1-

yl)-3-methylpenta-2,4-dienoate (16)

To a stirred solution of $\mathbf{1 5}(1.41 \mathrm{~g}, 4.17 \mathrm{mmol})$ in dry acetone $(45 \mathrm{~mL})$ was added $\mathrm{MnO}_{2}(7.24 \mathrm{~g}, 83.3$ mmol) at room temperature. After stirring at room temperature for 30 min , all the starting material had disappeared. The reaction mixture was then filtered through a pad of Celite ${ }^{\circledR}$ and concentrated in vacuo. The crude aldehyde $(1.36 \mathrm{~g})$ was dissolved in $\mathrm{MeOH}(35 \mathrm{~mL})$ and stirred with $\mathrm{MnO}_{2}(7.24 \mathrm{~g}, 83.3$ $\mathrm{mmol}), \mathrm{NaCN}(612 \mathrm{mg}, 12.5 \mathrm{mmol})$ and $\mathrm{AcOH}(0.24 \mathrm{~mL}, 4.17 \mathrm{mmol})$ at room temperature. After 60 \min, the reaction mixture was filtered through a pad of Celite ${ }^{\circledR}$ and concentrated in vacuo. The residue was brought up in distilled water and extracted with $\operatorname{EtOAc}(30 \mathrm{~mL} \times 3)$. The organic layer was washed, dried, and concentrated as above. The residual oil was purified by silica gel chromatography (12% EtOAc/ hexane) to obtain 16 ($745 \mathrm{mg}, 49 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 0.96$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right), 1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right), 1.04\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{3}-5^{\prime \prime}\right), 1.55-1.74\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-4^{\prime \prime}\right.$ and H-5'), $1.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 1.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-6\right), 2.37\left(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{2}-3^{\prime \prime}\right), 2.83(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}$, $\left.\mathrm{H}_{2}-4^{\prime}\right), 3.69\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 5.69(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 6.28(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-5), 7.17\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-12^{\prime}\right), 7.19$ $\left(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-10^{\prime}\right), 7.30\left(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime}\right), 7.79(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-4) ;{ }^{13} \mathrm{C}$ NMR (68 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 13.5,21.2,21.4,22.2,22.9,24.1,25.6,32.9,37.2,51.0,77.9,80.5,90.2,117.1$, 123.0, 126.7, 128.1, 129.5, 131.9, 135.6, 139.8, 141.0, 150.2, 166.6; HRMS $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}$, 389.2092; found, 389.2096.

(2Z,4E)-5-(1-hydroxy-2,2-dimethyl-4-oxo-6-(pent-1-yn-1-yl)-1,2,3,4-tetrahydronaphthalen-1-yl)-3-methylpenta-2,4-dienoic acid, (\pm)-PAT3 (3)

The methyl ester 19 ($899 \mathrm{mg}, 2.45 \mathrm{mmol}$) in dry benzene (20 mL) was added Celite ${ }^{\circledR}(4.5 \mathrm{~g})$ and pyridinium dichromate $(3.75 \mathrm{~g}, 10.0 \mathrm{mmol})$. After being stirred for $10 \mathrm{~min}, 70 \%$ tert-butyl hydroperoxide ($1.65 \mathrm{~mL}, 12.9 \mathrm{mmol}$) was added to the mixture. The reaction mixture was stirred for 2.5 h at room temperature, and then filtered over a bed of Celite ${ }^{\circledR}$. Evaporation of solvent in vacuo and residual oil was purified by silica gel column chromatography ($0-20 \% \mathrm{EtOAc} /$ hexane) to obtain methyl PAT3 (378 mg) as a yellow oil. A solution of $1 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ was added to a solution of methyl PAT3 (378 mg) in $\mathrm{MeOH}(20 \mathrm{~mL})$, and reaction mixture was stirred for 7.5 h at room temperature. The pH of the reaction mixture was adjusted to 2 using 1 M HCl and extracted with

EtOAc ($50 \mathrm{~mL} \times 3$). The organic layer was washed, dried, and concentrated as above. The residual oil was purified by silica gel chromatography ($0-35 \% \mathrm{EtOAc} /$ hexane containing $0.2 \% \mathrm{AcOH}$) to obtain (\pm)-PAT3 ($124 \mathrm{mg}, 14 \%$) as a pale-yellow oil, which was further purified for bioassays by HPLC (YMC ODS-AQ, $150 \times 20.0 \mathrm{~mm}$ i.d.; solvent, $80 \% \mathrm{MeOH}$ in water containing $0.05 \% \mathrm{AcOH}$; flow rate, $8 \mathrm{ml} \mathrm{min}{ }^{-1}$; detection, 254 nm) to obtain a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right): \delta_{\mathrm{H}} 1.04$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{3}-5^{\prime \prime}\right), 1.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right), 1.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right), 1.62(2 \mathrm{H}, \mathrm{tq}, J=7.3$ and 7.3 $\left.\mathrm{Hz}, \mathrm{H}_{2}-4^{\prime \prime}\right), 2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-6\right), 2.37\left(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{2}-3^{\prime \prime}\right), 2.59\left(1 \mathrm{H}, \mathrm{d}, J=17.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 2.81(1 \mathrm{H}$, d, $\left.J=17.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 5.74(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 6.36$ ($1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-5$), 7.47 ($1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime}$), $7.57\left(1 \mathrm{H}, \mathrm{dd}, J=7.9\right.$ and $\left.1.6 \mathrm{~Hz}, \mathrm{H}-10^{\prime}\right), 7.80(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-4), 8.06\left(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{H}-12^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right): \delta_{\mathrm{C}} 13.5,21.4,21.4,22.1,23.4,24.3,41.0,49.7,78.2,79.6,91.9,117.9$, $124.4,127.3,128.4,129.8,130.8,137.1,138.7,144.6,151.5,170.7,196.8 ; U V \lambda_{\max }(\mathrm{MeOH}) \mathrm{nm}(\varepsilon)$ $236.7(41,100), 255.1(30,600), 316.6(3,400)$; (HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}$, 389.1728; found, 389.1732.

A CHIRALART cellulose-SC HPLC column ($250 \times 10.0 \mathrm{~mm}$ i.d., YMC; solvent, $5 \% \mathrm{EtOAc}^{2}$ in CHCl_{3} containing $0.1 \% \mathrm{AcOH}$; flow rate, $4.7 \mathrm{~mL} / \mathrm{min}$; detection, 254 nm) was injected with (\pm)-PAT3. The material at $t_{\mathrm{R}} 8.8$ and 10.7 min were collected to give $(-)$-PAT3 $(7.2 \mathrm{mg})$ and the $(+)$-enantiomer (6.6 mg) with an optical purity of 99.8% and 98.9 , respectively. (+)-PAT3: $[\alpha]_{\mathrm{D}}^{25}+138.6(\mathrm{MeOH} ; c 0.23)$; CD $\lambda_{\text {ext }}(\mathrm{MeOH}) \mathrm{nm}(\Delta \varepsilon): 266.0(16.4), 236.0(-14.0) .(-)-\mathrm{PAT} 3:[\alpha]_{\mathrm{D}}^{25}-132.4(\mathrm{MeOH} ; c 0.27) ; \mathrm{CD}$ $\lambda_{\text {ext }}(\mathrm{MeOH}) \mathrm{nm}(\Delta \varepsilon): 265.0(-15.0), 236.0(12.9)$.

Synthesis of PATT1

(Z)-1-(5-hydroxy-3-methylpent-3-en-1-yn-1-yl)-2,2-dimethyl-6-((trimethylsilyl)ethynyl)-1,2,3,4-tetrahydronaphthalen-1-ol (17)

To a stirred solution of $\mathbf{1 3}(4.49 \mathrm{~g}, 11.33 \mathrm{mmol})$ in triethylamine $(40 \mathrm{~mL})$ was added $\mathrm{CuI}(151 \mathrm{mg}$, 0.80 mmol), bis(triphenylphosphine)palladium(II) dichloride ($168 \mathrm{mg}, 0.24 \mathrm{mmol}$) and trimethylsilylacetylene $(2.35 \mathrm{~mL}, 17.0 \mathrm{mmol})$ under an atmosphere of Ar. The reaction mixture was stirred for 40 min at room temperature, and then it was filtered through silica gel (EtOAc). The filtrate was successively washed with 1 M HCl and brine, and then dried and concentrated as above. The residual oil was purified by silica gel chromatography ($30 \% \mathrm{EtOAc} /$ hexane) to obtain 17 (3.75 g , 90%) as an orange oil. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 0.25\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}-\mathrm{Si}\right), 1.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8{ }^{\prime}\right.$ or $\left.9^{\prime}\right), 1.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right), 1.70\left(1 \mathrm{H}, \mathrm{dt}, J=13.6\right.$ and $\left.6.3 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 1.89\left(3 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}_{3}-6\right), 1.97$ ($1 \mathrm{H}, \mathrm{dt}, J=13.6$ and $\left.6.3 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 2.80\left(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{H}_{2}-4{ }^{\prime}\right), 4.28\left(2 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}_{2}-1\right), 5.88$ $(1 \mathrm{H}, \mathrm{tq}, J=6.4$ and $1.5 \mathrm{~Hz}, \mathrm{H}-2), 7.23\left(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}, \mathrm{H}-12^{\prime}\right), 7.32\left(1 \mathrm{H}, \mathrm{dd}, J=8.0\right.$ and $\left.1.4 \mathrm{~Hz}, \mathrm{H}-10^{\prime}\right)$, $7.72\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}^{2} 7^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 0.41,0.41,0.41,23.6,23.6,24.4,25.9$, $31.7,38.0,61.9,75.3,85.3,94.8,95.6,105.3,120.9,123.0,128.4,130.3,133.0,135.4,136.4,139.8$; HRMS $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}_{1} \mathrm{Na}, 389.1913$; found, 389.1910 .

6-ethynyl-1-((1E,3Z)-5-hydroxy-3-methylpenta-1,3-dien-1-yl)-2,2-dimethyl-1,2,3,4-

 tetrahydronaphthalen-1-ol (18)To a stirred solution of $\mathbf{1 7}(3.75 \mathrm{~g}, 10.23 \mathrm{mmol})$ in dry THF $(50 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and added SMEAH ($10.0 \mathrm{~mL}, 35.8 \mathrm{mmol}$). The mixture was allowed to warm up slowly to room temperature and was stirred for 1 h . After quenching with sat. aq. Rochelle salt (30 mL), it was extracted with EtOAc ($60 \mathrm{~mL} \times 3$). The organic layer was washed, dried, and concentrated as above. The crude material (4.56 g) was carried through to the next stage without purification. The crude material was dissolved in $\mathrm{MeOH}(55 \mathrm{~mL})$ and stirred with $\mathrm{K}_{2} \mathrm{CO}_{3}(2.68 \mathrm{~g}, 19.4 \mathrm{mmol})$ for 30 min at room temperature. After quenching with water $(70 \mathrm{~mL})$, it was concentrated in vacuo to remove MeOH . The resulting mixture was extracted with $\mathrm{EtOAc}(80 \mathrm{~mL} \times 3)$, washed with brine, dried, and concentrated as above. The residual oil was purified by silica gel chromatography ($40 \% \mathrm{EtOAc} /$ hexane) to obtain $18(2.54 \mathrm{~g}, 84 \%)$ as an orange oil. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 3-8^{\prime}\right.$ or $\left.9^{\prime}\right), 0.98(3 \mathrm{H}$, s, H3-8' or 9^{\prime}), $1.69\left(1 \mathrm{H}, \mathrm{dt}, J=13.8\right.$ and $\left.6.9 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 1.85\left(1 \mathrm{H}, \mathrm{dt}, J=13.8\right.$ and $\left.6.9 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 1.85$ $\left(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, \mathrm{H}_{3}-6\right), 2.83\left(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{2}-4^{\prime}\right), 3.04(1 \mathrm{H}, \mathrm{s}$, alkyne $), 4.29\left(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{2}-\right.$ 1), 5.57 ($1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H}-2$), 5.94 ($1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, \mathrm{H}-5$), 6.65 ($1 \mathrm{H}, \mathrm{dd}, J=15.5$ and $1.0 \mathrm{~Hz}, \mathrm{H}-4$), 7.26-7.37 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7^{\prime}, 10^{\prime}$ and 12^{\prime}); ${ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 20.7,22.9,24.0,25.6,32.8,37.0$, $58.5,77.2,78.0,83.5,120.9,125.8,128.2,128.3,130.0,132.5,134.6,134.9,135.9,141.7$; HRMS $(\mathrm{m} / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}, 319.1674$; found, 319.1679.

methyl (2Z,4E)-5-(6-ethynyl-1-hydroxy-2,2-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl)-3-methylpenta-2,4-dienoate (19)

To a stirred solution of $\mathbf{1 8}(2.54 \mathrm{~g}, 8.57 \mathrm{mmol})$ in dry acetone $(80 \mathrm{~mL})$ was added $\mathrm{MnO}_{2}(14.8 \mathrm{~g}, 171$ mmol) at room temperature. After stirring at room temperature for 30 min , all the starting material had disappeared. The reaction mixture was then filtered through a pad of Celite ${ }^{\circledR}$ and concentrated in vacuo. The crude aldehyde was dissolved in $\mathrm{MeOH}(80 \mathrm{~mL})$ and stirred with $\mathrm{MnO}_{2}(14.8 \mathrm{~g}, 171 \mathrm{mmol})$, $\mathrm{NaCN}(1.26 \mathrm{~g}, 25.7 \mathrm{mmol})$ and $\mathrm{AcOH}(0.49 \mathrm{~mL}, 8.6 \mathrm{mmol})$ at room temperature. After 60 min , the reaction mixture was filtered through a pad of Celite ${ }^{\circledR}$ and concentrated in vacuo. The residue was brought up in distilled water and extracted with EtOAc $(100 \mathrm{~mL} \times 3)$. The organic layer was washed with brine, dried, and concentrated as above. The residual oil was purified by silica gel chromatography ($10 \% \mathrm{EtOAc} /$ hexane) to obtain 19 (1.70 g, 61\%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (270 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta_{\mathrm{H}} 0.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right), 1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right), 1.72(1 \mathrm{H}, \mathrm{dt}, J=13.8$ and 6.9 Hz , H-5'), $1.87\left(1 \mathrm{H}, \mathrm{dt}, J=13.8\right.$ and $\left.6.9 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 1.98\left(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}, \mathrm{H}_{3}-6\right), 2.85\left(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{2}-\right.$ $\left.4^{\prime}\right), 3.03\left(1 \mathrm{H}, \mathrm{s}\right.$, alkyne), $3.69\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 5.70(1 \mathrm{H}, \mathrm{br}$ s, H-2), $6.28(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-5), 7.27-$ $7.38\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7^{\prime}, 10^{\prime}\right.$ and $\left.12^{\prime}\right), 7.78(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-4) ;{ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 21.2$, $22.8,24.1,25.6,32.8,37.1,51.0,77.2,78.0,83.6,117.3,120.9,126.8,128.2,130.0,132.6,135.8$,
140.8, 141.3, 150.1, 166.6; HRMS $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}, 347.1623$; found, 347.1631.
methyl (2Z,4E)-5-(6-(bromoethynyl)-1-hydroxy-2,2-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl)-3-methylpenta-2,4-dienoate (20)

To a stirred solution of $19(1.69 \mathrm{~g}, 5.21 \mathrm{mmol})$ in acetone $(30 \mathrm{~mL})$ was added N-bromosuccinimide $(1.12 \mathrm{~g}, 6.28 \mathrm{mmol})$ and silver nitrate $(88 \mathrm{mg}, 0.52 \mathrm{mmol})$ at room temperature. After being stirred for 60 min at room temperature, it was concentrated in vacuo to remove acetone. The residue was brought up in water and extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} \times 3)$. The organic layer was washed with brine, dried, and concentrated as above. The residual oil was purified by silica gel chromatography ($10 \% \mathrm{EtOAc} /$ hexane) to obtain $20(1.28 \mathrm{~g}, 61 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-\right.$ 8^{\prime} or $\left.9^{\prime}\right), 1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right), 1.71\left(1 \mathrm{H}, \mathrm{dt}, J=13.8\right.$ and $\left.6.9 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 1.86(1 \mathrm{H}, J=13.8$ and 6.9 Hz , H-5'), $1.98\left(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, \mathrm{H}_{3}-6\right), 2.84\left(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{2}-4^{\prime}\right), 3.69\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 5.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{H}-2), 6.28(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}, \mathrm{H}-5), 7.22-7.37\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7^{\prime}, 10^{\prime}\right.$ and $\left.12^{\prime}\right), 7.78(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}, \mathrm{H}-$ 4); ${ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 21.2,22.8,24.1,25.6,32.8,37.1,49.5,51.1,78.0,79.9,117.3$, $121.5,126.8,128.3,129.9,132.4,135.8,140.7,141.2,150.1,166.6 ; \operatorname{HRMS}(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{BrNa}, 425.0728$; found, 425.0729 .

methyl (2Z,4E)-5-(1-hydroxy-2,2-dimethyl-6-(penta-1,3-diyn-1-yl)-1,2,3,4-

tetrahydronaphthalen-1-yl)-3-methylpenta-2,4-dienoate (21)
To a stirred solution of $20(0.73 \mathrm{~g}, 1.81 \mathrm{mmol})$ in THF $(11 \mathrm{~mL})$ was added propyne in THF $5 \% \mathrm{w} / \mathrm{w}$ ($3.6 \mathrm{~mL}, 3.6 \mathrm{mmol}$), $\mathrm{CuI}(17 \mathrm{mg}, 0.09 \mathrm{mmol}$), bis(triphenylphosphine) palladium(II) dichloride (32 mg , $0.05 \mathrm{mmol})$ and diisopropylamine $(0.51 \mathrm{~mL}, 3.6 \mathrm{mmol})$ under an atmosphere of N_{2}. After stirring for 60 min at room temperature, it was quenched with $1 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$ and extracted with EtOAc (30 $\mathrm{mL} \times 3$). The organic layer was washed, dried and concentrated, as described above. The residual oil was purified by silica gel chromatography ($10 \% \mathrm{EtOAc} /$ hexane) to obtain 21 ($295 \mathrm{mg}, 45 \%$) as a brown oil. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or 9 '), $1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or 9 '), $1.71(1 \mathrm{H}$, dt, $J=13.8$ and $\left.6.9 \mathrm{~Hz}, \mathrm{H}^{\prime} 5^{\prime}\right), 1.86\left(1 \mathrm{H}, \mathrm{dt}, J=13.8\right.$ and $\left.6.9 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 1.88(1 \mathrm{H}, \mathrm{s},-\mathrm{OH}), 1.98(3 \mathrm{H}, \mathrm{d}$, $\left.J=1.3 \mathrm{~Hz}, \mathrm{H}_{3}-6\right), 2.01\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CCH}_{3}\right), 2.83\left(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{2}-4^{\prime}\right), 3.69\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 5.70(1 \mathrm{H}, \mathrm{br}$ s, H-2), $6.27(1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz}, \mathrm{H}-5), 7.25\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-12^{\prime}\right), 7.26\left(1 \mathrm{H}, \mathrm{dd}, J=8.2\right.$ and $\left.1.6 \mathrm{~Hz}, \mathrm{H}-10^{\prime}\right)$, $7.35\left(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}^{\prime} 7^{\prime}\right), 7.78(1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz}, \mathrm{H}-4) ;{ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 4.6,21.2$, $22.8,24.1,25.6,32.8,37.1,51.1,64.4,74.1,74.2,78.0,80.2,117.3,120.9,126.8,128.3,130.4,132.9$, $135.8,140.7,141.4,150.1,166.6 ; \operatorname{HRMS}(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}_{1}, 385.1779$; found, 385.1778 .
(2Z,4E)-5-(1-hydroxy-2,2-dimethyl-4-oxo-6-(penta-1,3-diyn-1-yl)-1,2,3,4-tetrahydronaphthalen-1-yl)-3-methylpenta-2,4-dienoic acid, (土)-PATT1 (4)

To a stirred solution of $\mathbf{2 1}(348 \mathrm{mg}, 0.96 \mathrm{mmol})$ in acetone $(5 \mathrm{~mL})$ was added $\mathrm{Co}(\mathrm{acac})_{2}(25 \mathrm{mg}, 0.096$ mmol) and 70% tert-butyl hydroperoxide ($0.15 \mathrm{~mL}, 1.15 \mathrm{mmol}$), and then the mixture stirred for 48 h at room temperature. After quenching with water $(20 \mathrm{~mL})$, the resulting mixture was extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The organic layer was washed, dried, and concentrated as above. The residual oil was purified by silica gel chromatography ($0-25 \% \mathrm{EtOAc} /$ hexane $)$ to obtain methyl PATT1 (85 mg) as a yellow oil. A solution of $2 \mathrm{M} \mathrm{NaOH}(4 \mathrm{~mL})$ was added to a solution of methyl PATT1 $(77 \mathrm{mg})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$, and reaction mixture was stirred for 3.5 h at room temperature. The pH of the reaction mixture was adjusted to 2 using 1 M HCl ; it was diluted with water $(10 \mathrm{~mL})$ and extracted with EtOAc $(15 \mathrm{~mL} \times 3)$. The organic layer was washed, dried, and concentrated as above. The residual oil was purified by silica gel chromatography ($0-35 \% \mathrm{EtOAc} /$ hexane containing $0.2 \% \mathrm{AcOH}$) to obtain (\pm) PATT1 ($58.7 \mathrm{mg}, 17 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 1.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right)$, $1.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-8^{\prime}\right.$ or $\left.9^{\prime}\right), 2.02\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CCH}_{3}\right), 2.03\left(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, \mathrm{H}_{3}-6\right), 2.63(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz}$, H-5'), 2.78 ($1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz}, \mathrm{H}-5)^{\prime}$), 5.75 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-2$), $6.37(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-5), 7.54(1 \mathrm{H}, \mathrm{d}$, $\left.J=7.9 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime}\right), 7.67\left(1 \mathrm{H}, \mathrm{dd}, J=7.9\right.$ and $\left.1.6 \mathrm{~Hz}, \mathrm{H}-10^{\prime}\right), 7.74(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-4), 8.15(1 \mathrm{H}, \mathrm{d}$, $J=1.6 \mathrm{~Hz}, \mathrm{H}-12{ }^{\prime}$); ${ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta_{\mathrm{C}} 3.9,21.2,23.8,24.6,42.2,50.7,64.6,73.4,76.2$, $79.0,81.9,119.6,123.0,129.7,130.0,130.8,132.6,138.5,140.1,148.6,151.0,169.4,198.5 ; \mathrm{UV} \lambda_{\max }$ $(\mathrm{MeOH}) \mathrm{nm}(\varepsilon): 221.4$ (40000), 251.2 (33300), 274.2 (29100), 289.6 (25200); HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}, 385.1416$; found, 385.1417 .

A CHIRALART cellulose-SC HPLC column ($250 \times 10.0 \mathrm{~mm}$ i.d., YMC; solvent, 4% isopropanol in CHCl_{3} containing $0.1 \% \mathrm{AcOH}$; flow rate, $4.7 \mathrm{~mL} / \mathrm{min}$; detection, 254 nm) was injected with (\pm)PATT1. The material at $t_{\mathrm{R}} 7.7$ and 9.5 min were collected to give $(-)-\operatorname{PATT} 1(8.7 \mathrm{mg})$ and the $(+)-$ enantiomer $(8.6 \mathrm{mg})$ with an optical purity of 100% and 99.9 , respectively. (+)-PATT1: $[\alpha]_{D}^{25}+233$ $(\mathrm{MeOH} ; c 0.098) ; \mathrm{CD} \lambda_{\mathrm{ext}}(\mathrm{MeOH}) \mathrm{nm}(\Delta \varepsilon): 278.0(14.8), 223.0(-18.0) .(-)$-PATT1: $[\alpha]_{\mathrm{D}}^{25}-239$ $(\mathrm{MeOH} ; c 0.098) ; \mathrm{CD} \lambda_{\mathrm{ext}}(\mathrm{MeOH}) \mathrm{nm}(\Delta \varepsilon): 279.0(-18.5), 222.0(17.0)$.

Seed germination assays

The classic definition of radical emergence was used for seed germination assays. All assays were performed at least three times. For Arabidopsis, 30-50 seeds (Columbia accession) were sterilized by soaking in 70% aqueous ethanol (EtOH , v/v) for 30 min and reagent-grade EtOH for 1 min . Seeds were then soaked in distilled water and incubated in the dark at $4^{\circ} \mathrm{C}$ for 3 days. The stratified seeds were then soaked in 0.1 mL of a test medium liquid agar containing $1 / 2$ Murashige and Skoog (MS) in 96-well plates and allowed to germinate under continuous illumination at $22^{\circ} \mathrm{C}$.
For rice, 30 seeds (Oryza sativa L. cv. Nipponbare) were sterilized with reagent-grade EtOH for 5 min and washed with running tap water. They were placed in a dish on two sheets of filter paper soaked in 4 mL of a test solution and allowed to germinate under continuous illumination at $30^{\circ} \mathrm{C}$.

Rice seedling elongation assay

Seven seeds (Oryza sativa L. cv. Nipponbare) were sterilized with reagent-grade EtOH for 5 min and washed with running tap water. They were then soaked in distilled water and incubated under continuous illumination at $30^{\circ} \mathrm{C}$ for 2 days to germinate. The germinated seeds were then soaked in 2 mL of a test medium in a glass tube and grown under continuous illumination at $30^{\circ} \mathrm{C}$. When the seedlings were 7 days old, the length of the second leaf sheath was measured. All assays were performed at least three times.

PP2C phosphatase assays

The PP2C phosphatase assays were performed as described previously ${ }^{3}$ with some modification. Briefly, PYLs (AtPYLs and OsPYL2) and PP2Cs (HAB1 and OsPP2C06) were expressed in E. coli and purified by affinity column chromatography. Purified proteins were preincubated in $80 \mu \mathrm{~L}$ of a buffer containing $1.25 \mathrm{mM} \mathrm{MnCl} 2_{2}$ and test compound at $22^{\circ} \mathrm{C}$ for 20 min . After adding $20 \mu \mathrm{~L}$ of substrate buffer (165 mM Tris-acetate, $\mathrm{pH} 7.9,330 \mathrm{mM}$ potassium acetate, 0.1% BSA, and 25 mM $p \mathrm{NPP}$), reactions were immediately monitored for hydrolysis of $p \mathrm{NPP}$ at 405 nm using a microplate reader (Multiskan Sky, Thermo Fisher Scientific, USA). For AtPYL, reactions contained 600 nM HAB1 and 1200 nM AtPYL (PYR1, PYL1-6, and PYL8-9) proteins. For OsPYL, reactions contained 600 nM OsPP2C06 and 3000 nM OsPYL2.

Pull-down assay

The protocol of the pull-down assay was described elsewhere ${ }^{4}$. Briefly, purified GST-HAB1 and 6xHis-tagged PYL2 were used $50 \mu \mathrm{~g}$ and $10 \mu \mathrm{~g}$, respectively, and were incubated in $300 \mu \mathrm{~L}$ of Trisbuffered saline (TBS) containing $100 \mu \mathrm{~g}$ BAS, 0.025% 2-mercaptoethanol, $10 \mathrm{mM} \mathrm{MnCl}_{2}$ and $20 \mu \mathrm{~L}$ Anti-His tag Beads (MBL, Co., Ltd.) in the presence or absence of test compounds with gentle shaking at $4{ }^{\circ} \mathrm{C}$ for 60 min . After washing the beads, bound proteins were eluted using a His-tagged protein purification kit (MBL, Co., Ltd.) according to the manufacturer's instructions. The eluted proteins were denatured with SDS-sample buffer at $95^{\circ} \mathrm{C}$ for 5 min . Then, $5 \mu \mathrm{~L}$ of the denatured proteins were loaded on a 10% SDS-PAGE gel, and proteins were detected after development by EzStain AQua (ATTO, Co., Ltd.) staining.

Isothermal titration calorimetry

The ITC experiments were performed with an iTC_{200} calorimeter (Microcal, GE Healthcare BioSciences AB) as described previously ${ }^{3}$. Briefly, His6-tagged PYL5 was assayed at a concentration of 25 or $30 \mu \mathrm{M}$, with (+)-PAO4 analogs stock solutions in the injection syringe at a concentration of 500 $\mu \mathrm{M}$. All titrations were carried out via a series of 25 injections of $1.25 \mu \mathrm{~L}$ or $1.5 \mu \mathrm{~L}$ each. The data were corrected by subtracting the mixing enthalpies for the (+)-PAO4 analogs solutions into protein-
3) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectrums of Synthesized Compounds
${ }^{1} \mathrm{H}$ NMR spectrum of Compound 6

2-9-1

${ }^{13} \mathrm{C}$ NMR spectrum of Compound 6
合
2-9-1

$\xrightarrow{Z 5^{\prime \prime} \mathrm{Cl}}$

${ }^{1}$ H NMR spectrum of Compound 7

${ }^{13} \mathrm{C}$ NMR spectrum of Compound 7

${ }^{1} \mathrm{H}$ NMR spectrum of Compound 8

${ }^{13} \mathrm{C}$ NMR spectrum of Compound 8

${ }^{1} \mathrm{H}$ NMR spectrum of Compound 9

${ }^{13} \mathrm{C}$ NMR spectrum of Compound 9

${ }^{1} \mathrm{H}$ NMR spectrum of Compound 10

${ }^{13} \mathrm{C}$ NMR spectrum of Compound 10

${ }^{1} \mathrm{H}$ NMR spectrum of Compound 2, (\pm)-PAC4

${ }^{13} \mathrm{C}$ NMR spectrum of Compound 2

${ }^{1} \mathrm{H}$ NMR spectrum of Compound 12

${ }^{13} \mathrm{C}$ NMR spectrum of Compound 12

${ }^{1} \mathrm{H}$ NMR spectrum of Compound 13

${ }^{13} \mathrm{C}$ NMR spectrum of Compound 13

${ }^{1} \mathrm{H}$ NMR spectrum of Compound 14

${ }^{13} \mathrm{C}$ NMR spectrum of Compound 14

${ }^{1} \mathrm{H}$ NMR spectrum of Compound 15

${ }^{13} \mathrm{C}$ NMR spectrum of Compound 15

${ }^{1} \mathrm{H}$ NMR spectrum of Compound 16

${ }^{13} \mathrm{C}$ NMR spectrum of Compound 16

14

${ }^{1} \mathrm{H}$ NMR spectrum of Compound 3, (\pm)-PAT3

${ }^{13} \mathrm{C}$ NMR spectrum of Compound 3

545-85-1

(20)

${ }^{1} \mathrm{H}$ NMR spectrum of Compound \#17

${ }^{13} \mathrm{C}$ NMR spectrum of Compound \#17

${ }^{1} \mathrm{H}$ NMR spectrum of Compound \#18

${ }^{13} \mathrm{C}$ NMR spectrum of Compound \#18

 swik!

${ }^{1}$ H NMR spectrum of Compound \#19

${ }^{13}$ C NMR spectrum of Compound \#19

${ }^{1} \mathrm{H}$ NMR spectrum of Compound \#20

${ }^{13}$ C NMR spectrum of Compound \#20

${ }^{1} \mathrm{H}$ NMR spectrum of Compound 21

${ }^{13} \mathrm{C}$ NMR spectrum of Compound 21

${ }^{1} \mathrm{H}$ NMR spectrum of Compound 4, (\pm)-PATT1

${ }^{13} \mathrm{C}$ NMR spectrum of Compound 4

free solutions and fitted by Origin for ITC (GE Healthcare Bio-Sciences AB) with a 1/1 binding model.

References

(1) C. Almansa, E. Carceller, J. Bartroli and J. Fom, Synth. Commun., 1993, 23, 2965-2971.
(2) M. B. Nielsen, A. Kadziola, S. L. Broman, M. Rosenberg, J. Daub and O. Kushnir, European J. Org. Chem., 2015, 2015, 4119-4130.
(3) J. Takeuchi, M. Okamoto, T. Akiyama, T. Muto, S. Yajima, M. Sue, M. Seo, Y. Kanno, T. Kamo, A. Endo, E. Nambara, N. Hirai, T. Ohnishi, S. R. Cutler and Y. Todoroki, Nat. Chem. Biol., 2014, 10, 477-82.
(4) J. Takeuchi, N. Mimura, M. Okamoto, S. Yajima, M. Sue, T. Akiyama, K. Monda, K. Iba, T. Ohnishi and Y. Todoroki, ACS Chem. Biol., 2018, 13, 1313-1321.

