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Abstract 10 

Plants interact with fungi in their natural growing environments, and relationships between 11 

plants and diverse fungal species impact plants in complex symbiotic, parasitic, and pathogenic 12 

ways. Over the past 10 years, we have intensively investigated plant growth regulators produced 13 

by mushrooms, and we succeeded in finding various regulators from mushroom-forming fungi: 14 

(1) fairy chemicals as a candidate family of new plant hormones from Lepista sordida, (2) 15 

agrocybynes A to E from fungus Agrocybe praecox that stimulate strawberry growth, (3) 16 

armillariols A to C and sesquiterpene aryl esters from genus Armillaria that are allelopathic and 17 

cause Arimillaria root disease, and (4) other plant growth regulators from other mushrooms, such 18 

as Stropharia rugosoannulata, Tricholoma flavovirens, Hericium erinaceus, Leccinum 19 

extremiorientale, Russula vinosa, Pholiota lubrica and Cortinarius caperatus. 20 

 21 

Introduction 22 

The fruiting body of basidiomycetes and ascomycetes is known as a “mushroom”. It produces 23 

spores, and the spores germinate and create mycelium. The mycelium eventually produces a 24 

primordium, which grows into a new whole mushroom, and the life cycle continues. Together with 25 

their long history as a food source, mushrooms are also important for their healing capacities and 26 

properties in traditional medicine. Additionally, the 14,000 species of mushrooms in the world 27 

serve as important sources of bioactive compounds. In order to develop new functional compounds 28 

from mushrooms, we have been screening various mushrooms for plant growth regulatory activity. 29 
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Interactions between plants and fungi are diverse and multileveled. Fungi can stimulate plant 30 

growth in various ways, including by increasing tolerance to abiotic stress or by suppressing plant 31 

diseases [1]. Plant growth regulators also serve as research tools for clarifying the mechanisms of 32 

plant growth. Thus, we are interested in secondary metabolites from mushrooms that have activity 33 

as plant growth regulators, and we have reported the isolation of various compounds that regulate 34 

the growth of bentgrass, lettuce, and/or rice. 35 

 36 

Fairy chemicals from Lepista sordida 37 

The natural phenomenon of “fairy rings”, or zones of stimulated grass growth, is due to the 38 

interaction between a fungus and a plant [2–5]. In the first scientific article on fairy rings in 1675 39 

and in subsequent studies reviewed in Nature in 1884, this phenomenon was attributed to an 40 

unknown “fairy” [6]. In 2010, we discovered two plant growth regulating compounds related to 41 

the formation of fairy rings, 2-azahypoxanthine (AHX, 1) and imidazole-4-carboxamide (ICA, 2) 42 

from the culture broth of Lepista sordida [7, 8]. We additionally isolated a metabolite of AHX, 43 

which is common in plants, 2-aza-8-oxohypoxanthine (AOH, 3) [9] (Fig. 1). We name these three 44 

compounds “fairy chemicals” (FCs) based on an article by the same title in Nature [10]. FCs 45 

exhibited growth regulatory activity against all of the plants tested regardless of the families they 46 

belong to, and conferred tolerance to various and continuous stresses (low or high temperature, 47 

salt, drought stress, etc.) on the plants [7–9]. For example, when bentgrass (Agrostis palustris 48 

Huds.) and rice (Oryza sativa L.) were cultivated with AHX or AOH solution, shoot and root 49 

elongation of the seedlings was accelerated [7, 9]. AHX treatment of rice recovered its germination 50 

rate under low-temperature stress (15°C) and shoot growth under salt stress (0.1 M NaCl). 51 

Additionally, rice seedlings developed tolerance to high-temperature stress (35°C) after AHX 52 

treatment. Furthermore, yields of rice, wheat (Triticum aestivum L.), and other crops were 53 

increased by treatment with each of the FCs in greenhouse and/or field experiments. In greenhouse 54 

experiments, when rice and potato (Solanum tuberosum L.) were cultivated with 5 or 50 µM AHX, 55 

the yield per plant increased by 25% (rice), 19.3% (potato, total yield), or 40.6% (potato, esculent 56 

size) [7]. When rice was cultivated with 2 µM ICA, grain yield per plant also increased by 25% 57 

[8]. In field experiments, treatment with FCs drastically increased grain yields up to 20.4% and 58 

9.6% (AHX), 10.6% and 10.2% (AOH), and 9.8% and 6.3% (ICA) for wheat and rice, respectively 59 

[11, 12]. These results suggest the possible application of FCs in agriculture. We have also reported 60 
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the presence of endogenous FCs in plants and mushrooms, as well as the discovery of a new route 61 

in the purine metabolic pathway through which FCs are biosynthesized [9, 13]. In addition, we 62 

discovered three N-glucosides of AOH (4–6), an N-glucoside of AHX (7), and two ribosides (8, 63 

9) and a ribotide (10) of ICA, as FC metabolites in rice [14, 15]. Compounds 4–7 exhibited no 64 

significant activity against rice, indicating that rice regulates the activity of AHX (1) and AOH (3) 65 

by converting them into their constituent glucosides. On the other hand, compounds 8 and 9 66 

showed inhibition activity against the shoots of rice only at high concentration (0.1 mM) and 67 

showed no significant effect on roots. Cytokinins are interconvertible to their constituent ribosides 68 

and ribotides, and those glycosides are the inactive forms of the corresponding free base forms 69 

[16–18]. The free base forms are usually more active than the corresponding ribosides and 70 

ribotides in various bioassays, which may be related to their rapid uptake and high intrinsic activity 71 

[19–21]. The inhibitory activity of 8 and 9 might be due to ICA (2), which was converted from 8 72 

and 9 in rice. Many enzymes involved in cytokinin biosynthesis, interconversion, inactivation, and 73 

degradation have been identified and play very important roles in the regulation of endogenous 74 

cytokinin homeostasis. These findings suggest that the interconversion among ICA (2), 8 and 9 75 

regulates homeostasis of ICA (2) in rice. All of these findings allow us to conclude that FCs are a 76 

new family of plant hormones [22–25], and our group is currently conducting research to put FCs 77 

into practical use in agriculture. We also isolated three diketopiperazines (11 to 13) from the 78 

culture broth of L. sordida (Fig. 1) and showed that these compounds inhibited the root growth of 79 

bentgrass at 0.1 and 1 µmol/paper [26]. In our previous report, we showed that ICA (2) strongly 80 

inhibited the growth of bentgrass shoot and root [8], which corroborates the finding that grass is 81 

occasionally killed or damaged in fairy rings [2]. In addition to ICA (2), these diketopiperazines 82 

(11 to 13) might contribute to growth inhibition by the fungus in the rings. 83 

 84 

Plant growth regulators from the fungus Agrocybe praecox that stimulate strawberry growth 85 

In 2007, abnormal enlargement of strawberries was observed along with a kind of mushroom 86 

growing near the stimulated fruit in a greenhouse in Niigata Prefecture, Japan. The mushroom was 87 

identified as Agrocybe praecox (English name, Spring Fieldcap; Japanese name, Fumizukitake), 88 

which is edible and widespread in the northern temperate zone throughout the world. An earlier 89 

report provided evidence of Agrocybe species causing stunt syndrome of strawberries [27]. These 90 

widely varying phenomena related to growth stimulation and suppression suggest that Agrocybe 91 
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genus produces plant growth regulator(s). A. praecox is a litter degrading fungus that is able to 92 

grow in forest soil and produces non-specific extracellular enzymes, which depolymerize soil 93 

detritus, including cellulose, hemicellulose, and sulfur-containing compounds, to monomers and 94 

oligomers, which then become available to microbes and plants [28]. The fungus has been in focus 95 

for various application according to the hydrolytic and ligninolytic enzymatic activities for 96 

bioremediation, however it has not yet been reported as environmental adaptation by coexisting 97 

with plant [29–36]. Thus, we focused on plant growth regulators from the fungus A. praecox. 98 

In our study to isolate the active compounds, the culture broth of A. praecox was partitioned 99 

between EtOAc and water, followed by n-BuOH and water. The EtOAc-soluble part was 100 

fractionated by repeated chromatography. We discovered five novel compounds (14 to 16, 18, 19) 101 

and two known ones (17, 20) based on observation of the growth-regulating activity on lettuce 102 

[37] (Fig. 2). Compounds 14 to 18 were named agrocybynes A to E and have triple bonds. 103 

Compound 19 was a new compound and determined to be 2-formyl-3,5-dihydroxybenzyl acetate. 104 

The effects of the compounds on plant growth were tested for three kinds of plants belonging to 105 

different families: lettuce (Asteraceae), rice (Poaceae), and strawberry (Rosaceae). As a result, 106 

agrocybynes A–D (14 to 17) inhibited hypocotyl growth, and agrocybynes A, C, and D (14, 16, 107 

and 17) inhibited root growth of lettuce at 1 µmol. Agrocybynes A and C (14 and 16) inhibited 108 

root growth of rice at 0.1 and 1 µM, respectively. Agrocybynes A to E (14 to 17) produced 109 

strawberries that were dwarfed and had altered color at 1 nmol/soil-mL. 110 

 111 

Plant/mycelial growth regulators from the genus Armillaria that cause Arimillaria root 112 

disease 113 

Genus Armillaria (English name, Honey fungus; Japanese name, Naratake) belonging to 114 

family Physalacriaseae is a well-known group of edible mushrooms found throughout the world. 115 

The mushrooms belonging to Armillaria spp. display a wide array of biological activities, 116 

including anticancer [38, 39], anti-inflammatory [40–42], and antioxidant properties [43], and they 117 

have been used in traditional Chinese medicine to treat hypertension, insomnia, and dizziness [44, 118 

45]. Additionally, members of this genus have been known to be serious plant pathogens that cause 119 

root rot in various plant species, which is called Arimillaria root disease [46–48]. Root rot is one 120 

of the most serious diseases of plants and occurs in many broadleaf trees and conifers and several 121 

herbaceous plants [49]. Furthermore, it is known that penetration of Armillaria mycelia to the fungi 122 
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Entoloma abortivum and Wynnea americana induces spherical deformity of the fruiting bodies of 123 

those mushrooms [50]. These observations indicate that Armillaria produces allelopathic 124 

substance(s). Protoilludane sesquiterpene aryl esters have been isolated from Armillaria 125 

mushrooms and Clitocybe illudens [51–58]. However, there is no evidence that the compounds are 126 

the principle toxic factors for Armillaria root disease, and the inducers of deformity in other fungi. 127 

Therefore, we sought to isolate compounds with plant and mycelial growth regulatory activity 128 

from the culture broth of strains of the genus. 129 

Isolation of the active compounds was guided by plant growth regulatory activity on lettuce. 130 

The active fractions, the hexane and EtOAc soluble parts were subjected to repeated 131 

chromatography respectively to afford armillariols A to C (21 to 23), and nine sesquiterpene aryl 132 

esters (24 to 32) from the culture broth of Armilaria sp. (Fig.3) [59, 60]. (+)- and (–)-Armillariol 133 

C (23) and their analogues were synthesized on a gram scale using Suzuki-Miyaura cross-coupling 134 

and Sharpless asymmetric dihydroxylation by Watkins’s group [61]. Compounds 24 and 25 were 135 

new compounds, which were named 10-dehydroxymelleolide (24) and 13-hydroxymelleolide K 136 

(25). Compounds 26 to 32 were identified as 5’-O-methylmelledonal (26), melleolide D (27), 13-137 

hydroxydihydromelleolide (28), melleolide (29), armillarinin (30), armillaridin (31), and 138 

armillarikin (32). These known compounds had been isolated from the same genus Armillaria as 139 

antimicrobial compounds [52–55, 62–64]. The plant growth regulatory activity of the isolated 140 

compounds was measured using lettuce, and all compounds (21 to 32) showed statistically 141 

significant inhibition of growth of lettuce at 1 µmol/paper, indicating that the protoilludane 142 

skeleton itself was important for growth inhibition activity against lettuce. In addition, compounds 143 

24 to 32 were subjected to the mycelial growth assay against Coprinopsis cinerea (English name, 144 

Gray shag; Japanese name, Ushigusotake) and Flammulina velutipes (English name, Enoki; 145 

Japanese name, Enokitake). Melleolide (29) inhibited the mycelial growth of C. cinerea and F. 146 

velutipes, and armillarikin (32) inhibited the mycelial growth of C. cinerea, each producing a 147 

radially shaped clear zone. The activity of melleolide (29) was stronger than positive control 148 

amphotericin B. The formyl group at C-1 and the absence of a hydroxy at C-13 in the molecule 149 

were important for the antifungal activities. 150 

 151 

Plant growth regulators in other mushrooms  152 



 

 6 

The edible and cultivated mushroom Stropharia rugosoannulata (Saketsubatake in Japanese, 153 

and wine-cap stropharia in English) belongs to family Strophariaceae and is widespread in northern 154 

temperate zones throughout the world. We reported the isolation of three steroids (33 to 35) from 155 

the fruiting bodies of S. rugosoannulata (Fig. 4). Examination of the effects of compounds 33 to 156 

35 on lettuce growth showed that compounds 34 and 35 showed statistically significant inhibition 157 

of hypocotyl growth of lettuce at 1, 10, 100, 1000 nmol/paper and promoted root growth at 1, 10, 158 

100 nmol/paper with statistically significant differences. Compound 33 exhibited no activity. 159 

Comparison of the structures of compounds 33 to 35 indicated that the double bond between C-8 160 

and C-9 or C-8 and C-14 in the sterol skeleton is the key structural component for regulating lettuce 161 

growth [65]. 162 

Since ancient times, Tricholoma flavovirens (English name, Yellow knight; Japanese name, 163 

Kishimeji) belonging to the family Tricholomataceae has been known throughout the world as an 164 

edible mushroom. Two novel indole derivatives (36, 38) and three known compounds (37, 39, 40) 165 

were isolated from the fruiting bodies (Fig. 4). Compound 36 showed the promotion effect on the 166 

growth of root of lettuce at 10 nmol/paper with significant differences, and compound 37 showed 167 

a similar tendency to promote growth. Compounds 38 and 39 promoted root growth of lettuce and 168 

inhibited hypocotyl growth at 1 µmol/paper. Compound 40 inhibited hypocotyl and root growth 169 

in a dose-dependent manner. In a comparison of 38 and 39, 39 showed stronger promotion activity 170 

than 38, suggesting that the methoxy group at C-7 weakened the activity [66, 67]. 171 

Hericium erinaceus is an edible and medicinal mushroom belonging to family Hericiaceae. It 172 

is called Yamabushitake in Japanese, Houtougu (monkey head) in Chinese, and Lion’s mane in 173 

English after its shape. In the past 30 years, we have isolated phenols (hericenones A and B), a 174 

series of benzyl alcohol derivatives (hericenones C to H, 3-hydroxyhericenone F), and other 175 

hericenone analogues (hericenones I and J) from fruiting bodies [68–72]. Chlorinated orcinol 176 

derivatives and a series of diterpenoid derivatives (erinacines A to K) have been isolated from 177 

mycelia of the fungus [73–79]. Hericenones C to H and erinacines A to I significantly induced the 178 

synthesis of nerve growth factor (NGF) in vitro and/or in vivo. Erinacine K showed anti-MRSA 179 

activity. 3-Hydroxyhericenone F showed protective activity against endoplasmic reticulum (ER) 180 

stress-dependent cell death [80, 81]. Several ER stress-suppressive compounds were also isolated 181 

from scrap cultivation beds of this mushroom [82]. Erinapyrones A and B have been isolated from 182 

the culture broth of the fungus [83], and they were shown to have cytotoxicity toward HeLa cells. 183 
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In our continuing search for bioactive compounds from culture broth, we identified nineteen 184 

compounds (41–59) that are plant growth regulators (Fig. 4). Novel compounds 41–45 were named 185 

erinaceolactone A (41), B (42), erinachromane A (43), B (44), and erinaphenol A (45). While 186 

compounds 48, 49, and 58 had been synthesized, this is the first report of them as natural products 187 

[84, 85]. In the bioassay examining plant growth regulatory activity, all of the compounds 188 

suppressed the growth of lettuce.  189 

The edible mushroom Leccinum extremiorientale (Japanese name, Akayamadori) belongs to 190 

genus Leccinum in family Boletaceae, and it can be found from summer to autumn. The mushroom 191 

has a red brown areolate cap and has a distribution mainly in the northern temperate zone. In our 192 

previous research on bioactive compounds from the mushroom, two sterols showed the ability to 193 

suppress formation of osteoclasts, and leccinine A showed protective activity against ER stress-194 

dependent cell death [86, 87]. In order to find plant growth regulatory compounds from the 195 

mushroom, we obtained two compounds (60, 61) (Fig. 4). Compound 60 dose-dependently 196 

promoted root growth at levels as low as 100 nmol/paper and inhibited hypocotyl growth at 1 197 

µmol/paper. Compound 61 inhibited root and hypocotyl growth of lettuce [88]. 198 

Russula vinosa is an edible wild mushroom with high medicinal value. Extracts of R. vinosa 199 

have an inhibitive effect on bacteria, yeasts and molds. Our group reported that five compounds 200 

(62 to 66) that were isolated from the fruiting bodies regulated the growth of plants (Fig. 4). 201 

Compound 65 weakly inhibited the root and hypocotyl growth of lettuce at 1 µmol/paper, while 202 

compound 64 showed an inhibition at as low as 100 nmol/paper. As for the root growth of lettuce, 203 

compound 63 showed promotion at 10 and 100 nmol/paper but showed inhibition at 1 nmol/paper 204 

and 1 µmol/paper. As for hypocotyl growth of lettuce, compound 62 showed inhibition at 10 and 205 

100 nmol/paper and promotion at 1 nmol/paper, and compound 63 showed promotion at 100 206 

nmol/paper, while compound 66 showed promotion at lower doses (1 and 10 nmol/paper) [89]. 207 

Pholiota lubrica (Japanese name, Chanametsumutake) belongs to genus Pholiota of family 208 

Strophatiaceae and has a widespread distribution, especially in temperate regions, and it frequently 209 

grows on wood or at the base of trees. This mushroom exhibited an allelopathic activity against 210 

lettuce. Recently, a new cinnamamide (67) and four compounds (68 to 71) were isolated from the 211 

fruiting bodies (Fig. 4). Compound 71 was first isolated from natural sources. All the compounds 212 

were subjected to plant regulatory assays against lettuce. Toward the hypocotyl, compounds 67, 213 

70, and 71 showed significant inhibition of growth at 0.1 and 1 µmol/paper, while the other 214 
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compounds had no activity. For the root, we observed growth inhibitory activity of 67 at 1 215 

µmol/paper and 70 at 0.1 and 1 µmol/paper. Compounds 68 and 69 exhibited promotion activity 216 

at 0.1 and 1 µmol/paper, respectively, and (22E,24S)-5a,8a-epodioxy-24-methyl-cholesta-217 

6,9,(11)22-trien-3b-ol] that was also isolated from this mushroom showed no activity. This finding 218 

indicates that the carbonyl group at C-7 of 68 and 69 plays an important role in plant growth 219 

promotion activity. Cinnamamide and its derivative, betaine cinnamamide, have been reported to 220 

promote and stimulate the length of the root and shoot of wheat [90]. In order to investigate the 221 

structure activity relationship of 67, commercially available compounds, cinnamamide and 222 

cinnamic acid, were used in the lettuce growth regulatory assay. These results showed that 223 

compound 67 and cinnamic acid inhibited growth of the hypocotyl at 0.01, 0.1, and 1 µmol/paper. 224 

Meanwhile, cinnamamide inhibited growth at all concentrations. As for the root, compound 67 225 

inhibited growth at 1 µmol/paper, while cinnamamide and cinnamic acid showed inhibition 226 

activity at 0.1 and 1 µmol/paper. These results suggest that the cinnamoyl moiety in tested 227 

compounds was essential for plant growth inhibition activity [91].  228 

Cortinarius caperatus (English name, Gypsy mushroom; Japanese name, Shogenji) is an 229 

edible mushroom and grows widely in the temperate zone of the northern hemisphere. This species 230 

has been reported to produce an antiviral compound, RC-183, toward herpes simplex virus. We 231 

isolated four compounds (72 to 75) from the fruiting bodies (Fig. 4). For growth regulatory 232 

activities toward rice seedlings, compounds 72 and 75 promoted growth of the root at 1 mM. 233 

Compound 73 promoted root growth at 100 µM, but inhibited root and shoot growth at 1 mM. 234 

Compound 75 showed the strongest promoting activity against the root among compounds tested. 235 

For the shoot, compound 74 inhibited growth of the shoot at 1 mM. In the lettuce growth 236 

experiment, compounds 74 and 75 inhibited growth of the root at 1 µmol/paper. For the hypocotyl, 237 

compounds 73 and 74 showed inhibition at 1 and 1000 nmol/paper, respectively. Compounds 74 238 

and 75 promoted the plant at 10 and 100 nmol/paper, respectively [92]. 239 

 240 

Conclusion 241 

Mushrooms remain a largely unexplored biological resource. Plant growth regulators from 242 

mushrooms play important roles in the development of fungus-plant interactions, and/or the life 243 

cycle of mushrooms themselves. Our study findings provide useful information not only for 244 
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understanding those roles but also regarding utilization of these compounds in agriculture and 245 

other fields. 246 
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Titles and legends to figures 469 

Fig. 1 Fairy chemicals (1 to 10) and diketopiperazines (11 to 13) isolated from Lepista sordida. 470 

Fig. 2 Agrocybynes A to E (14 to 18) and two compounds (19, 20) isolated from Agrocybe praecox. 471 

Fig. 3 Plant growth regulators isolated from Armilaria sp. 472 

Fig. 4 Plant growth regulators from various mushrooms. 473 
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