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Abstract
To be keen learners, humans need both external and internal
rewards. To date, many studies on environmental learning
using intrinsic motivation for artificial agents have been con-
ducted. In this study, we aim to build a method to express
curiosity in new environments via the ACT-R (Adaptive Con-
trol of Thought-Rational) cognitive architecture. This model
focuses on the “production compilation” and “utility” mod-
ules, which are generic functions of ACT-R, and it regards pat-
tern matching with the environment as a source of intellectual
curiosity. We simulated a path-planning task in a maze envi-
ronment using the proposed model. The model with intellec-
tual curiosity revealed that understanding of the environment
was improved through the task of searching the environment.
Furthermore, we implemented the model using a standard re-
inforcement learning agent and compared it with the ACT-R
model.
Keywords: Cognitive modeling; intrinsic motivation; ACT-R

Introduction
Humans can learn in a wide range of environments to achieve
their goals using rewards generated internally and externally.
To simulate such keen learning through artificial agents, the
concept of intrinsic motivation, which is driven by rewards,
such as self-efficacy and curiosity, has been discussed by sev-
eral researchers (Manoury, Sao, & Cédric, 2019; Schmidhu-
ber, 2010; Singh, Barto, & Chentanez, 2005).

However, these researchers have not explained the con-
nection of intrinsic motivation with other primitive cognitive
functions based on the framework of reinforcement learning.
In contrast, recent studies of cognitive modeling have increas-
ingly relied on cognitive architectures, which integrate primi-
tive functions commonly used in various tasks (see Kotseruba
& Tsotsos, 2020, as a recent review). By sharing primitive
processes between different tasks, the overall structure of hu-
man cognition is defined.

Following these trends of studies, the current study aims to
present one of the possible cognitive mechanisms behind in-
trinsic motivation based on cognitive architecture. Among
several cognitive architectures, we use ACT-R (Adaptive
Control of Thought-Rational; Anderson 2007). This archi-
tecture has been widely used, and considerable research has
been conducted on it. Furthermore, ACT-R has a module
similar to that of reinforcement learning used in conventional
autonomous agents. Thus, we consider it useful to model in-
trinsic motivation in ACT-R by connecting the basic cognitive
functions that have already been validated by various psycho-
logical experiments.

Before presenting the model, we clarify our purpose by re-
viewing the previous studies relating to this topic. Following

this, we propose a mechanism of intrinsic motivation, which
especially focuses on pattern matching between the environ-
ment and internal knowledge, assuming a correlation to hu-
man intellectual curiosity. The proposed mechanism is im-
plemented to run simulations of a specific task. Finally, we
summarize the current status and indicate future directions of
research.

Related Works
This section presents two directions of studies about environ-
mental learning: studies based on reinforcement learning and
ACT-R.

Intrinsic Motivation in Reinforcement Learning
To date, several researchers have studied artificial agents with
intrinsic motivation (Manoury et al., 2019; Schmidhuber,
2010; Singh et al., 2005). These studies have modeled cu-
riosity, which is one type of intrinsic motivation, and have
investigated methods to make agents search the environment
widely. Such studies have primarily used statistical learning
frameworks, such as reinforcement learning. Usually, agents
created from reinforcement learning determine their actions
based on information received from the external environment.
The environment generates rewards depending on the result
of their actions, and they seek to maximize the rewards it over
time. Regarding this traditional framework, Sutton and Barto
(1998) pointed out that the boundaries between agents and
the environment are not the same as the physical boundaries
between the body and the environment. Following this claim,
Singh et al. (2005) proposed intrinsically motivated reinforce-
ment learning (IMRL). In contrast to conventional reinforce-
ment learning, in which one receives a reward directly from
the external environment, IMRL fluctuates depending on the
state of the internal environment and models the curiosity for
an unexpected response.

In recent years, this topic has remarkably progressed with
a framework of deep reinforcement learning (Burda et al.,
2018; Pathak, Agrawal, Efros, & Darrell, 2017). Burda et
al. (2018) examined environmental learning based solely on
intrinsic rewards. The screens of games, such as Atari and
Unity maze tasks, were used as input (Mnih et al., 2015), and
internal rewards were generated from novel experiences for
agents. As a result, agents learned a wide range of environ-
ments and improved their game scores. The authors indicated
that game environments are usually designed to stimulate the
users’ curiosity, and the game scores increase when they find



new information in the environment.

Environmental Search and Emotion in ACT-R
The studies presented in the previous section did not exam-
ine the association between humans and models but aimed
to propose learning algorithms that realize optimal searches.
In contrast, ACT-R is a cognitive architecture with modules
corresponding to brain regions. For example, the declarative
module retains experience and knowledge, and the goal mod-
ule manages states in tasks. The production rules in ACT-R
are selected based on the status of such modules, and they
send commands to the modules as actions (e.g., search for
knowledge that meets the conditions and update the current
state of the task). These rules include variables that real-
ize flexible correspondence (pattern matching) with module
states.

Concerning environmental learning, Fu and Anderson
(2006) used ACT-R to solve the repeated maze task by imple-
menting knowledge concerning direction, such as up, down,
left, and right. Their model used an ACT-R function called
the “utility module”, which is similar to Q-Learning, a model-
free reinforcement learning algorithm to optimize a policy of
determining action taken under a specific situation (Watkins,
1989). Using this module, the model received a positive re-
ward when performing an action leading to achieving the cur-
rent goal and a negative reward when performing an action
that not leading to achieving the current goal. By doing this,
the model learned to take optimal action by increasing the
number of trials.

Other research performed path planning of the maze task
using not only reinforcement learning but also learning of
declarative knowledge, which was implemented in ACT-R.
Reitter and Lebiere (2010) employed declarative knowledge
representing the structure of mazes as topological maps and
presented a backtracking algorithm searching the topological
maps to find a goal. Their model did not include implemen-
tations of acquiring such topological maps but assumed that
they were acquired through a general mechanism of instance-
based learning that uses experience to solve the current situa-
tion (Gonzalez, Lerch, & Lebiere, 2003).

Although the official ACT-R theory has so far not directly
included the topic of intrinsic motivation for environmental
learning, many researchers have been working on models of
emotion, which relate to intrinsic motivation. Dancy, Ritter,
Berry, and Klein (2015) explained the influence of emotions
by combining cognitive processes of ACT-R with physiolog-
ical mechanisms. van Vugt and van der Velde (2018) built a
cognitive model that describes depression by the proportion
of memories with positive and negative emotions. Further-
more, Juvina, Larue, and Hough (2018) constructed a model
of learning emotional memories using internally generated re-
ward functions. Each of these studies developed novel mod-
ules or functions of ACT-R to approach emotional processes.
In contrast, in this research, we aim to model intrinsic moti-
vation using the existing built-in functions of ACT-R. In par-
ticular, the current study proposes a mechanism of reward

fluctuation that naturally emerges from the learning process
of ACT-R instead of directly defining reward functions as a
formula.

Proposed Mechanism of Intrinsic Motivation
This section presents our proposed mechanism of intrinsic
motivation. The mechanism is based on the idea of con-
necting intellectual curiosity with pattern matching. After de-
scribing this idea, we present a general framework of intrinsic
motivation by combining the existing functions of ACT-R.

Intellectual Curiosity and Pattern Matching

Following Burda et al. (2018), we focus on curiosity as one
of the causes of intrinsic motivation. As shown in previous
studies, the agents’ curiosity facilitates the exploration of the
game environment, and the agents’ game performance im-
proves. In the book Theory of Fun for Game Design, game
designer Koster (2004) said that good games stimulate users’
curiosity. He also mentioned that the fun in the game is de-
fined as discovering patterns leading to continuous learning.
For example, in games where the optimal solution is found
from several patterns, there is nothing to be obtained from the
game after finding the optimal solution, and boredom occurs.

In the current study, we focused on the pattern-matching
mechanism as a concept analogous to the discovery of pat-
terns by humans. Pattern matching is a primitive-purpose
mechanism. For a popular example, not limited to cognitive
modeling, even text searching uses pattern matching, which
is expressed as regular expressions. In ACT-R, as mentioned,
pattern matching is used to match production rules and mod-
ule states. Figure 1 explains pattern matching in ACT-R.
In this example, Variable 1 and Variable 2, which are in-
cluded in the then clause of the ACT-R production rule are
matched with the constants (i.e., numbers such as 1 and 2) of
the declarative knowledge.

Figure 1: Example of ACT-R pattern matching. The model
queries “declarative memory (DM)” with the “THEN” of the
previous rule and illustrates the flow in which variables are
bound by the “IF” of the next rule.



In this way, pattern matching discovers structures in the
environment according to the patterns of variables embedded
in the rules. Anderson (2007) claimed that a type of pat-
tern matching dealing with relational structure is essential to
achieving human-specific cognitive functions, such as cogni-
tive flexibility, linguistic processing, metacognition, and ana-
logical reasoning1. From this claim, we assume that the pat-
tern matching of the cognitive model might lead to a model
of human intellectual curiosity based on pattern discovery.

Decay of Intellectual Curiosity
To explain the role of intellectual curiosity in the primitive
cognitive process, we need to consider how such a motiva-
tion decays during the process of task execution. We assume
that such a decay process is the reverse of learning, namely
boredom. To consider this in detail, the following subsec-
tions present a summary of the learning functions of ACT-R:
the utility and production compilation modules.

Utility The ACT-R has two types of knowledge: declara-
tive (chunks) and procedural (production rules). Each has
learning mechanisms to acquire and to modulate the use of
knowledge. Among these approaches, we focus on the mod-
ulation of procedural knowledge to determine whether to con-
tinue performing the task (motivated state) or to quit the task
(bored state). As noted in the previous section, ACT-R has
a utility module that controls a conflict resolution (selecting
one of several rules that can fire (execute) in a specific situa-
tion) and updates the utilities through rewards (Fu & Ander-
son, 2006). Using this module, we solve a conflict between
the task continuation rule and task stopping rule and assume
that the number of rewards adjusting these utilities is influ-
enced by the execution of the production compilation.

Production Compilation The production compilation
module combines two successive production rules into one
production rule (Taatgen & Lee, 2003). By repeatedly firing
a series of rules for a certain task, the integration of rules oc-
curs, and the number of rules that fire is reduced until the task
is completed. Production rules that are the target of integra-
tion usually include variables in the conditional clauses (the
IF parts). In ACT-R, the flexible nature of human thought is
modeled by pattern matching of declarative knowledge with
the pattern of variables described in a production rule. The in-
tegration of rules by production compilation skips such flex-
ible pattern matching (i.e., avoiding retrievals of declarative
memory). In other words, variables contained in the rules
before integration are replaced by static values copied from
declarative knowledge, and routine automatic task execution
procedures are produced.

Figure 2 illustrates a trace of the ACT-R model that plans
the path from the current position to the goal position in a
maze environment, which is the task used in the simulation
presented in the later section. The vertical axis indicates time,

1Anderson (2007) made this claim at the introduction of the
ACT-R function called dynamic pattern matching.

and each column indicates a module event. The trace on the
left represents the initial state of the model using planning
declarative knowledge to plan the path. The trace on the right
is the process after the compilation when the model plans the
path without retrieving declarative knowledge.

Figure 2: Example before and after learning using the pro-
duction compilation module.

By applying this mechanism to the search of the maze envi-
ronment, at first, the model often performs memory retrieval
from the environmental map inside the declarative knowl-
edge. As the task progresses, those memory retrievals be-
comes unnecessary. As a result, the model runs the tasks effi-
ciently, and the frequency of pattern matching decreases due
to the exhaustion of patterns in the environment.

Mechanism of the Task Continuation
Using the primitive functions presented so far, we propose
our original mechanism of intellectual curiosity to determine
whether to continue or to stop the task. Figure 3 illustrates a
proposed mechanism of the continuation of a task in a gen-
eral environment. At the start of each round, the model de-
cides whether to continue or stop the task (conflict resolution
between two rules). After it decides to continue the task, the
model proceeds with the round by firing various rules (search-
ing the map, etc.). When the model encounters a condition
that ends the round, a new round is started, and the model
decides whether to continue or stop the task again.

In the above process, the initial value of the utility of the
continue rule is considered higher than that of the stop rule.
At the beginning of the task, it can be assumed that humans
intend to continue the task. The process of becoming bored
from this initial state can be modeled by assigning a trigger
of a negative reward to the rule that recognizes the end of
each round. By triggering a negative reward at the end of the
round, the utility of the continue rule, which have fired as a
result of the previous conflict resolution, decreases, and the
probability of firing the stop rule increases.

To prevent boredom and to consider the conditions for con-
tinuing environmental learning, a model of intellectual cu-
riosity, namely fun, is required. If the model finds fun dur-
ing the task, a positive reward is triggered, and the utility of



Figure 3: Flowchart of the task continuation model. Using
“pattern matching” leads to a positive reward.

the continue rule maintains a high value. In this study, rules
that trigger positive rewards are defined as rules that fire as
a result of the successful retrieval of declarative knowledge
in the task, such as remembering the map. The search for
declarative knowledge requires pattern matching between the
conditional clauses of the rule (the current situation) and the
memory in declarative knowledge, and its success is consis-
tent with Koster’s definition of fun (finding patterns). How-
ever, this rule gradually becomes used to repeated execution;
that is, the integration of rules occurs. After integration oc-
curs, it becomes routine and cannot receive a reward. Then,
the utility value of the continue rule decreases, and the stop
rule fires. In short, long-term task continuation is achieved by
keeping the model engaged in pattern matching between con-
ditional clauses of production rules and declarative knowl-
edge.

Implementation
The purpose of this study is to model intrinsic motivation by
collecting primitive functions provided by ACT-R. For this
purpose, it is necessary to implement the mechanism shown
in the previous section on a specific task and observe its be-
havior. In this study, we select a path-planning maze task that
has been used in many previous studies.

The Model of Maze Task
Our implementation of the ACT-R model for the maze search
extends the memory-based strategy described in Reitter and
Lebiere (2010) to include the mechanisms of task continua-
tion (Figure 3).

Environment Figure 4 illustrates the maze in the present
research. Reitter and Lebiere (2010) represented the maze
environment as a topological map, consisting of a collection
of cell IDs and links between cell IDs. In ACT-R, such a
topological map is represented by a collection of chunks, and
the model searches the environment, retrieving these chunks
in the declarative memory.

Figure 4: Maze environment

Searching Behaviours During the task, the model stores
the current cell ID in the goal buffer. The model is initially
located in #16 in Figure 4, and the model changes this state
to #1 by retrieving a chunk stored in the declarative module.
The chunk associated with the current position is requested,
and the goal buffer is updated if the model retrieves such a
chunk. This procedure is repeated until the model reaches the
goal (#1).

Each time the goal is reached, the model labels all the
chunks used in the current round as the correct path and stores
these in the declarative module. From the next rounds, the
model runs the task efficiently using these labeled chunks,
following the method of the instance-based learning theory
(Gonzalez et al., 2003).

If the model fails to retrieve the correct chunks, the model
plans the path from the current position to the goal position
using a heuristic search, namely a stochastic depth-first search
(DFS). To realize backtracking used in a DFS, we imple-
mented a stack structure using the imaginal module of ACT-
R. Figure 5 depicts the stack function using chunks generated
by this module. The push function in the stack is realized by
generating a chunk that stores the name of the past chunk in
the ARG1 slot. In addition, the pop function in the stack is re-
alized by returning the ARG1 slot value to the past slot value.
These generated chunks are stored in the declarative knowl-
edge and can be retrieved later to realize the pop function. We
implemented all these processes only through ACT-R produc-
tion rules without defining any external functions written in
other programming languages, such as LISP.



Figure 5: Stack structure of chunks implemented using the
“imaginal module” of the ACT-R. During the search, the state
of the model is dynamically stored (pushed) in the declarative
module. The stored chunks are retrieved (popped) by follow-
ing the dependencies noted in the slots of the chunks (dashed
arrows).

Intrinsic Motivation in the Task In this simple maze task,
we tried to observe how fun and boredom occur. In this
model, fun, which is attached to pattern matching, is defined
as remembering the correct path from the current situation to
the goal. Specifically, the success of the DFS is defined as
the attenuation of the motivation for continuing the task (pos-
itive rewards). In contrast, regardless of the success or failure
of the goal search, a rule that fires at the end of the round is
used as a trigger for a negative reward. The utility value of
the continue rule decreases, as the negative trigger associated
with the end of the round continues to occur without the rule
expressing fun firing during the round. When the utility value
of the continue rule falls below the utility value of the stop
rule, the stop rule fires, and the task is terminated.

Simulation

Settings To confirm the behavior of our model of intrinsic
motivation, we performed a simulation where the initial util-
ity value of the continue rule was set to 10, and the initial
utility value of the stop rule was set to 5. We also assigned
the triggers of the negative reward (r = 0) to rules that recog-
nized the end of the round (reaching goal #1 or recognizing
that the time limit of each round has passed) and assigned the
triggers of the positive reward to rules that included pattern
matching. In this research, we select the path finding rule
rule (DFS success) as the trigger of the positive reward, vary-
ing the value from 1 to 20 as the simulation conditions. For
each condition of the positive reward value, the model runs
the task 1000 times. In addition, we set the time limit of each
round from 100 to 300 s. When the time limit was reached,

the model resolved the conflict between the continue and stop
rules.

The model also has rules that stochastically determine the
directions to proceed (up, down, left, and right). The ini-
tial values of these utilities were also set to 10. Following
Anderson et al. (2004), noise parameters were set as follows:
ans (activation noise level) = 0.4 and, egs (production noise
level) = 0.5.

Figure 6: Results of the ACT-R model. Top: number of con-
tinued rounds; Middle: new rules generated by the production
compilation; Bottom: goal rates of the model. The error bars
in each graph represent the standard error.

Results Figure 6 displays the results of the simulation.
From this figure, we observe that the reward generated by the
pattern matching increased the number of continued rounds,



number of rules generated by the compilation module, and
goal achievement rate. These results indicate that the imple-
mented intrinsic motivation, which makes the model have a
longer task continuation, leads to acquiring richer knowledge,
resulting in better performance.

Comparison with Conventional Method
To further clarify the behavior of the proposed ACT-R model
of intrinsic motivation, we compared it with a reinforcement
learning agent that searched the maze environment in Figure
4. In this simulation, we used the algorithm of IMRL (Singh
et al., 2005). At each time point, the reinforcement learning
model is located on one of the numbered positions in the map,
and it moves to up, left, down, or right. The selection of
the direction is controlled with IMRL with ε-greedy (ε = 0.2,
γ = 0.9, α = 0.2):

Q(s,a)← Q(s,a)+α[ŕi + ŕe + γmaxQ(ś, á)−Q(s,a)] (1)

Equation 1 indicates the updating of the Q value of the present
model, where re represents a reward from the external envi-
ronment, and ri represents a reward from the internal environ-
ment. The model receives re =−1 when it fails to remember
the path, whereas it receives re = 0 when it successfully re-
members the path. The model also obtains re = 10 when it
reaches the goal. Contrary to re, ri is determined with Equa-
tion 2.

ri =−τ(1− p) log(1− p) (2)

where p represents the transition probability with the Q value.
From this equation, the internal reward ri is determined as the
entropy of the probability of the complementary event with
respect to p. In addition, τ is the coefficient for the reward
value used in the simulation. A larger τ indicates a greater in-
trinsic motivation. In this study, we manipulated this value
from 0.34 to 0.74. For each condition of the τ value, the
model runs the task 1000 times. We manipulated the num-
ber of steps of movement in each round (100, 125, and 150
steps). When the step limit was reached, the model chose to
quit the task or to continue the task by comparing the summa-
tion of the obtained internal reward (ri) with the given thresh-
old (th = 5).

Figure 7 indicates the result of the simulation of the rein-
forcement learning model. Similar to the ACT-R model, the
internal reward increases the number of rounds. However, in
contrast to the ACT-R model, it slightly decreases the goal
rate. That is, the reinforcement learning model with high in-
trinsic motivation does not learn to achieve the goal but learns
to explore the environment. This behavior might be changed
by modulating the balance between ri and re in Equation 1
or by designing the maze environment carefully to stimulate
curiosity, as suggested by Burda et al. (2018). However, our
ACT-R model could learn the environment without such care-
ful parameter modulations or environmental design. There-
fore, from this simulation, we can claim the advantage of our
model in representing intrinsic motivation.

Figure 7: Results of the reinforcement learning model. Top:
number of continued rounds; Bottom: goal rates. The error
in each graph is the standard error.

Conclusion
The purpose of this study was to construct a model of intrin-
sic motivation by accumulating primitive cognitive processes
provided by ACT-R. To achieve this goal, we assumed that
the mechanism of pattern matching represents the source of
intellectual curiosity, namely fun. Thus, with the success of
pattern matching, the model maintains high intrinsic motiva-
tion for task continuation. In contrast, by skipping the pattern
matching with compilation mechanisms, the model ‘tires’ of
the task and eventually stops.

From the simulation results presented in Figures 6 and 7,
we consider that our model has an advantage in learning new
environments. The model uses both the utility module and
instance-based learning (memorizing the correct path to the
goal; Gonzalez et al., 2007). Such a combination of several
learning algorithms might help balance the intrinsic and ex-
trinsic rewards in the current maze task.

However, the result in the previous section does not in-
dicate that the conventional reinforcement learning cannot
achieve the same learning as ACT-R. The model presented
by Singh et al. (2005) included the mechanism called op-
tion, which summarizes low-level actions into abstract-level
units (Sutton, Precup, & Singh, 1999) and indicated the pro-
cess of moving up using abstract option as the model learned
the environment. This mechanism has a commonality with



the compilation module in ACT-R. Schmidhuber (2010) also
pointed out that such a compression mechanism is the same
as the prediction mechanism, which leads to the emotional
process of fun and boredom. We need to further explore the
relationship between such models of reinforcement learning
and the proposed model.

In addition to the efficacy of environmental learning, the
expression of the internal reward of our model has an ad-
vantage compared to previous studies. In our model, we did
not explicitly divide the internal and external rewards in the
equation, but the effect of intrinsic motivation is represented
in the existing mechanism of ACT-R. We consider that this
approach has an advantage because it is based on the theory
of human cognition, it is related to the existing learning re-
search, and it saves unnecessary factors in the theory.

In future studies, we need to compare the model of intrinsic
motivation with human data. As a model of human cognition,
behavior presented by conventional reinforcement learning
might not be wrong. During search tasks, people often forget
the goals and decrease in performance. Such irrational be-
havior might also relate to computational psychiatry (Huys,
Maia, & Frank, 2016).

We also need to model the optimal level of motivation
(Yerkes & Dodson, 1908). In this study, the model statisti-
cally determines the initial utility value of the continue rule
to focus on the decay process of intellectual curiosity. The
process up to the optimal level, obtaining intrinsic motivation
for the target environmental learning, is not modeled. There-
fore, by constructing a model representing such a process, we
can explore more detailed conditions of task continuation, es-
pecially those before the model reaches optimal levels.
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