Heterologous expression of a cryptic gene cluster from Grimontia marina affords a novel tricyclic peptide grimoviridin

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2020-10-08
	キーワード (Ja):
	キーワード (En):
	作成者: Unno, Kohta, Kaweewan, Issara, Nakagawa,
	Hiroyuki, Kodani, Shinya
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/00027719

1	Title: Heterologous expression of a cryptic gene cluster from Grimontia marina affords
2	a novel tricyclic peptide grimoviridin
3	Running headline: Heterologous production of grimoviridin
4	Authors: Kohta Unno ¹ , Issara Kaweewan ² , Hiroyuki Nakagawa ^{3,4} and Shinya
5	Kodani ^{1,2,5*}
6	Affiliations: Graduate School of Integrated Science and Technology, Shizuoka
7	University, Shizuoka, Japan ¹ ; Graduate School of Science and Technology, Shizuoka
8	University, Shizuoka, Japan ² ; Food Research Institute, National Agriculture and Food
9	Research Organization (NARO), Ibaraki, Japan ³ ; Advanced Analysis Center, National
10	Agriculture and Food Research Organization (NARO), Ibaraki, Japan ⁴ ; College of
11	Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan ⁵
12	*To whom correspondence should be addressed: Shinya Kodani, College of Agriculture,
13	Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529
14	Japan, Tel/Fax; +81(54)238-5008, E-mail; kodani.shinya@shizuoka.ac.jp,
15	ORCID:0000-0002-6792-1184

17 Abstract

Microviridins are a class of ribosomally synthesized and posttranslationally modified 18peptides (RiPPs) that have been isolated from a wide variety of cyanobacterial strains. 19There are similar gene clusters of RiPPs distributed in the genomes of bacteria 20belonging to the phyla Proteobacteria and Bacteroidetes. A cryptic gene cluster for the 2122production of microviridin-type peptides was found in the genome of the marine γ -Proteobacterium Grimontia marina. Heterologous production of new microviridin-23type peptide named grimoviridin was accomplished in Escherichia coli using the 24biosynthetic gene cluster of G. marina. The structure of grimoviridin was determined 25by analysis of MS and NMR data. Grimoviridin contained one isopeptide and two 2627ester bonds, which had exactly the same bridging pattern as other microviridin-type The absolute stereochemistries of constituent amino acids were determined 28peptides. to be all L-forms by modified Marfey's analysis. Grimoviridin showed potent 2930 inhibitory activity against trypsin with an IC₅₀ value of 238 nM. This is the first report of heterologous production of microviridin-type peptide using a biosynthetic gene 3132cluster from a Proteobacterium.

33

 $\mathbf{2}$

34	Ke	eywords: heterologous production, biosynthesis, peptide, protease inhibitor,
35	mi	croviridin, Grimontia marina
36		
37	Ke	ey Points
38	-	Heterologous production afforded new microviridin-type peptide named
39		grimoviridin.
40	-	This is the first report of microviridin-type peptide from proteobacterial origin.
41	-	Grimoviridin showed potent inhibitory activity against trypsin.

43 Introduction

Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a 44class of naturally occurring peptides that includes more than twenty subclasses such as 4546 lantibiotics (Budisa 2013; Letzel et al. 2014; Li et al. 2016; Link 2015; Sardar and Schmidt 2016; Zhang et al. 2018a). Among the RiPPs, a group of cyanobacterial 47peptides called microviridins commonly possess a tricyclic structure with two ester 48bonds between the carboxyl group of Asp/Glu side chain and the hydroxyl group of 49 Thr/Ser and an amide bond between the carboxyl group of Asp/Glu side chain and an 50amine of Lys side chain (Fujii et al. 2000; Ishitsuka et al. 1990; Murakami et al. 1997; 51Okino et al. 1995; Reshef and Carmeli 2006; Rohrlack et al. 2003; Shin et al. 1996). 52Microviridins showed potent inhibitory activities against various serine proteases: 53microviridin B against elastase with an IC₅₀ value of 26 nM, (Okino et al. 1995); 54microviridin 1777 against chymotrypsin with an IC₅₀ value of 100 nM, (Sieber et al. 552020); and microviridin J against trypsin with an IC50 value of 20-90 nM (Rohrlack et 56al. 2003). Dysregulation of serine proteases may lead to many diseases, such as 57cancers, type 2 diabetes, and Alzheimer's disease (Schilling and Findeisen 2014); thus, 5859understanding the biosynthesis of protease inhibitors, such as microviridins, is very important to produce new selective protease inhibitors by genetic engineering. 60

61	In 2008, the biosynthetic gene clusters (BGCs) of microviridin B and microviridin K
62	were identified in the genomes of the Cyanobacteria Microcystis aeruginosa NIES-298
63	(Ziemert et al. 2008) and <i>Planktothrix agardhii</i> NIVA-CYA 126/8 (Philmus et al.
64	2008), respectively. The biosynthetic gene cluster of microviridin B contained five
65	genes, including the precursor peptide coding gene <i>mdnA</i> , two ligase coding genes
66	<i>mdnB</i> and <i>mdnC</i> , the acetyl transferase coding gene <i>mdnD</i> , and the ABC-transporter
67	coding gene <i>mdnE</i> (Ziemert et al. 2008). The two ligase enzymes, MdnB and MdnC,
68	possessed an ATP-grasp domain and were modification enzymes for the formation of
69	two ester bonds and one isopeptide bond in the molecule (Hemscheidt 2012). The
70	function of MdnC was determined to be the formation of two ester bonds, and the other
71	modification enzyme, MdnB, was shown to function as a ligase for isopeptide bond (Li
72	et al. 2016). The ABC transporter MdnE was shown to be essential for the cyclization
73	and processing of microviridins for stability of the biosynthesis complex (Weiz et al.
74	2011). The intramolecular macrocyclization of the core peptide with both ester and
75	isopeptide bonds indicated the importance of a unique macrocyclization strategy for
76	RiPP biosynthesis in terms of the application of this system for the generation of new
77	bioactive peptides (Ahmed et al. 2017; Reyna-Gonzalez et al. 2016; Weiz et al. 2011;
78	Zhang et al. 2018b; Ziemert et al. 2010). The potent trypsin inhibitor microviridin J

 $\mathbf{5}$

79	was cocrystallized with trypsin and the mode of inhibition was described as competitive
80	inhibition (Weiz et al. 2014). A metagenomic approach was applied to generate new
81	microviridins using the fosmid library system (Gatte-Picchi et al. 2014). There are
82	many analogous BGCs of microviridin-type peptides distributed over Cyanobacteria
83	(Micallef et al. 2015), although they are mostly not explored. To upregulate the
84	biosynthetic genes, a culture control experiment of Nostoc punctiforme using RNA-seq
85	and fluorescence reporter analysis revealed new microviridins along with other
86	cyanobacterial peptides (Dehm et al. 2019).
87	The distribution of BGCs of microviridin-type peptides was revealed in the genome
88	sequences of bacteria belonging to the phyla Proteobacteria, Bacteroidetes, and
89	Cyanobacteria (Ahmed et al. 2017). Microviridin-type peptides have been isolated
90	from a wide variety of Cyanobacteria, and marinostatins (microviridin analogous
91	bicyclic peptides) were isolated from the marine Proteobacterium Algicola sagamiensis
92	(Imada et al. 1985; Kanaori et al. 2005; Miyamoto et al. 1998). To date, no tricyclic
93	microviridin-type peptide has been reported from Proteobacteria or Bacteroidetes.
94	Based on the genome mining report (Ahmed et al. 2017), we focused on the BGC of
95	microviridin-type peptides in the genome of the marine Proteobacterium Grimontia
96	marina (Choi et al. 2012). We performed heterologous production of a new peptide

97	named grimoviridin using the BGC of <i>G. marina</i> . To the best of our knowledge, this
98	is the first report of tricyclic microviridin-type peptide production using biosynthetic
99	genes of Proteobacteria. Here, we describe the production and structure determination
100	of the new peptide grimoviridin (Fig. 1A).
101	

102 Materials and Methods

103 Bacterial strain

- 104 The bacterium *Grimontia marina* NBRC 105794^T was obtained from the NBRC
- 105 culture collection (NITE Biological Resource Center, Chiba, Japan).

106 Construction of the expression vector pET-41a-105794G

- 107 The gene cluster of grimoviridin was integrated into the expression vector pET-
- 108 41a(+) by performing amplification and integration of the partial sequences twice. For
- 109 the template of PCR amplification, the crude genome DNA was extracted from the cells
- 110 of bacterium *G. marina* NBRC 105794^T using DNeasy Blood & Tissue (Qiagen, Venlo,
- 111 Netherlands). The partial sequence (2476 bp, grmA-C) of the gene cluster was
- amplified by PCR with the primer pair (105794-F1-XbaI: 5'-
- 113 CCGTCTAGAGGCTAATGTTCAAAAAATAACC -3' and 105794-R1-KpnI: 5'-
- 114 TGCGGTACCACAATAAACTTTTGGTTAGC -3') using EmeraldAmp PCR Master
- 115 Mix (Takara Bio Inc., Shiga, Japan) following the manufacturer's instructions. The
- 116 insert DNA fragment and the pET-41a(+) vector were double-digested with XbaI and
- 117 KpnI-HF (New England Biolabs, Ipswich, MA, USA), according to the manufacturer's
- 118 instructions. The DNA products were ligated using Ligation Convenience Kit (Nippon
- 119 gene Co., Ltd., Tokyo, Japan) to afford the vector pET-41a-105794S. Escherichia coli

120	DH5 α cells were transformed with 10 μ L of the ligation mixture by chemical
121	competence transformation, and the cells were plated on LB agar plates containing
122	kanamycin (final concentration of 30 μ g/mL). The vector pET-41a-105794S was
123	purified using FastGene Plasmid Mini Kit (Nippon Genetics Co., Ltd., Tokyo, Japan)
124	following the manufacturer's instructions. The remaining partial sequence (3387 bp,
125	grmT1 and grmT2) of the gene cluster was amplified by PCR with the primer pair
126	(105794-F2-KpnI: 5'- AATTAGGTACCATTGGAGATCACTAATGAGCCAGC -3' and
127	105794-R2-Sall: 5'- AATGAGTCGACTTGGTTTATAGATCCGCTAAGTTC -3')
128	using EmeraldAmp PCR Master Mix (Takara Bio Inc.). The insert DNA fragment and
129	the pET-41a-105794S were double-digested with KpnI-HF and SalI-HF (NEB). The
130	DNA products were ligated using Ligation Convenience Kit (Nippon gene Co. Ltd.) to
131	afford the vector pET-41a-105794G, which contained the whole gene cluster of
132	grimoviridin. E. coli DH5 α cells were transformed with 10 µL of the ligation mixture
133	by chemical competence transformation, and the cells were plated on LB agar plates
134	containing kanamycin (final concentration of 30 μ g/mL). The vector pET-41a-
135	105794G was purified using FastGene Plasmid Mini Kit (Nippon Genetics Co., Ltd.).
136	Finally, the vector pET-41a-105794G was transformed into the expression host E. coli

BL21(DE3) by chemical competence method, for the heterologous expression ofgrimoviridin.

139	Isolation	of grim	oviridin
100	130141011	VI SI III	lovii iuiii

140	The bacterium E	<i>coli</i> BL21(DE3)) harboring pET-41a	-105794G was	cultured	using
-----	-----------------	-----------------------	---------------------	--------------	----------	-------

141 2.0 L of modified basal agar medium containing kanamycin (30 µg/mL, final

142 concentration) and isopropyl-β-D-thiogalactopyranoside (0.1 mM, final concentration)

143 at 30 °C for 24 h. The modified basal agar medium was prepared by adding the

inorganic compounds (K₂SO₄, 2 g; K₂HPO₄, 3 g; NaCl, 1 g; NH₄Cl, 5 g; MgSO₄·7H₂O,

145 80 mg; CuCl₂, 0.5 mg; MnSO₄·H₂O, 0.35 mg; FeCl₃, 0.5 mg; CaCl₂·2H₂O, 0.5 mg) and

146 15 g agar in 1 L of distilled water with adjusting pH 7.3. After autoclaving, the

147 medium was supplemented with separately sterilized glucose and yeast extract solutions

148 at final concentrations of 0.25% and 0.4%, respectively. The bacterial cells were

- 149 harvested with a laboratory spatula and extracted with twice volume of MeOH. After
- 150 centrifugation, the MeOH extract was subjected to preparative HPLC using Wakopak
- 151 Navi C30-5 column (4.6 × 250 mm, FUJIFILM Wako Pure Chemical Co., Osaka,
- 152 Japan) with isocratic mode (flow rate: 1 mL/min, solvent: 17% MeCN containing
- 153 0.05% TFA). HPLC purification was performed repeatedly with the UV detector set at

154 220 nm to obtain grimoviridin (retention time: 16.0 min). The yield was 7.6 mg from155 2.0 L culture.

156 Mass spectrometry experiments

157 The accurate mass measurement was conducted using an ESI Orbitrap mass

158 spectrometer (Orbitrap Velos ETD, Thermo Fisher Scientific, Waltham, MA, USA).

- 159 The peptide was appropriately diluted with 50% MeOH containing 0.1% formic acid,
- 160 and was supplied to ESI Orbitrap mass spectrometer by direct infusion with

161 electrospray ionization (ESI) in the positive polarity. MALDI-TOF MS and MS/MS

162 analysis was conducted using a MALDI-TOF/TOF mass spectrometer (4800 Plus

163 TOF/TOF analyzer, Sciex, Redwood City, CA, USA). Peptide was mixed with equal

164 volume of α-Cyano-4-hydroxycinnamic acid (4-CHCA) (Shimadzu GLC Ltd., Tokyo,

165 Japan) matrix solution (prepared as 10 mg/mL in 50% MeCN containing 0.1% TFA),

and aliquot of the mixture $(0.5 \,\mu\text{L})$ was spotted onto a standard stainless plate. After

167 dried up, MS and MS/MS spectra were measured in the positive-ion mode. The mass

- 168 spectrometer was tuned and calibrated using calibration standards of polytyrosine
- 169 (Thermo Fisher Scientific Pierce Biotechnology, Rockford, IL, USA) and the peptide
- 170 mixture (Peptide Calibration Standard II, Bruker Daltonics), respectively, prior to the

171 measurements.

172 NMR experiments

NMR sample was prepared by dissolving 3.0 mg of grimoviridin in 500 µL of DMSO-173d₆. 1D ¹H, ¹³C, DEPT-135, and all 2D NMR spectra were obtained on Bruker Avance800 174175spectrometer with quadrature detection following the previous report (Kodani et al. 2018). **Modified Marfey's method** 176 Grimoviridin (1.5 mg) was subjected to acid hydrolysis with 6 N HCl at 110 °C for 17716 h for detection of amino acids. The hydrolysates were completely evaporated using 178rotary evaporator, followed by adding 200 μ L of water. 10 μ L of Na-(5-Fluoro-2,4-179180 dinitrophenyl)-L-leucinamide (L-FDLA, Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) in acetone (10 µg/µL) and 100 µL of 1 M NaHCO3 181 solution were added to the hydrolysate and the mixture was incubated at 80 °C for 182183 3 min. The reaction mixture was cooled down at room temperature, followed by neutralization with 50 µL of 2 N HCl and dilution with 1 mL of 50% MeCN. For 184185standard amino acids, each amino acid was derivatized with L-FDLA and D-FDLA in the same method. Approximately 30 µL of each FDLA derivatives was subjected to 186HPLC analysis with Wakopak Handy ODS column (4.6 × 250 mm, FUJIFILM Wako 187188 Pure Chemical Co.). The DAD detector (MD-2018, JASCO Corporation, Tokyo, Japan) was used for detection of the amino acid derivatives accumulating the data of the 189

190	absorbance from 200 nm to 420 nm. The HPLC analysis for all amino acids was
191	performed at a flow rate of 1 mL/min using solvent A (distilled water containing 0.05%
192	TFA) and solvent B (MeCN containing 0.05% TFA) with a linear gradient mode from 0
193	min to 70 min, increasing percentage of solvent B from 25% to 60%. The retention
194	times (min) of L- or D-FDLA derivatized amino acids were as follows; L-Lys-D-FDLA
195	(17.75 min), L-Arg-D-FDLA (18.53 min), L-Lys-L-FDLA (22.06 min), L-Arg-L-FDLA
196	(22.60 min), L-Thr-L-FDLA (25.12 min), L-Ser-L-FDLA (27.09 min), L-allo-Thr-L-
197	FDLA (27.15 min), L-Asp-L-FDLA (27.19 min), L-Asp-D-FDLA (27.52 min), L-Ser-D-
198	FDLA (28.27 min), L-allo-Thr-D-FDLA (30.14 min), L-Glu-L-FDLA (30.44 min), L-
199	Glu-D-FDLA (32.84 min), L-Pro-L-FDLA (33.68 min), L-Ala-L-FDLA (34.07 min), L-
200	Thr-D-FDLA (34.40 min), L-Pro-D-FDLA (39.62 min), L-Ala-D-FDLA (41.07 min), L-
201	allo-Ile-L-FDLA (45.23 min), L-Ile-L-FDLA (45.58 min), L-Phe-L-FDLA (48.96 min),
202	L-Phe-D-FDLA (59.54 min), L-Ile-D-FDLA (61.37 min), L-allo-Ile-D-FDLA (61.71
203	min).
204	Protease inhibition assay

- 205 Serine protease inhibitory assay (trypsin, chymotrypsin, and elastase) was carried out
- by the modified method of previous report (Shin et al. 1996). Each assay mixture
- 207 containing 120 µL of 0.4 M Tris-HCl buffer (pH 7.6 for trypsin and chymotrypsin, pH

208	8.6 for elastase), 200 μL of enzyme solution and 80 μL of solution of grimoviridin
209	(prepared in distilled water) were pre-incubated at 37 °C for 5 min. Each reaction was
210	started with addition of 400 μL of substrate solution and the absorbance at 405 nm was
211	immediately measured. The absorbance at 405 nm was measured after 30 min
212	incubation at 37 °C. The inhibition rate was calculated based on data of absorbance.
213	Trypsin from Porcine Pancreas (35544-94, Nacalai Tesque, Inc., Kyoto, Japan) and
214	chymotrypsin from Bovine Pancreas (09041-84, Nacalai Tesque, Inc.) were dissolved in
215	50 mM Tris-HCl buffer (pH 7.6) to prepare 150 U/mL and 15 U/mL enzyme solutions,
216	respectively. Elastase from Porcine Pancreas (E1250, Sigma-Aldrich, Inc., St. Louis,
217	MO, USA) was dissolved in 50 mM Tris-HCl buffer (pH 8.6) to prepare 0.6 U/mL
218	enzyme solution. Regarding substrate solution for trypsin, 43.3 mg of $N\alpha$ -Benzoyl-
219	DL-arginine 4-nitroanilide hydrochloride (B4875, Sigma-Aldrich, Inc.) was dissolved in
220	1 mL of dimethyl sulfoxide (DMSO), followed by addition of 99 mL of 50 mM Tris-
221	HCl buffer (pH 7.6). Regarding substrate solution for chymotrypsin, N-Succinyl-L-
222	phenylalanine-p-nitroanilide (S2628, Sigma-Aldrich, Inc.) was dissolved in 50 mM
223	Tris-HCl buffer (pH 7.6) to adjust to the final concentration of 1 mg/mL. Regarding
224	substrate solution for elastase, N-Succinyl-Ala-Ala-Ala-p-nitroanilide (S4760, Sigma-
225	Aldrich, Inc.) was dissolved in 50 mM Tris-HCl buffer (pH 8.6) to adjust to the final

226	concentration of 1 mg/mL. The subtilisin inhibitory assay was performed according to
227	the methods described previously (Weiz et al. 2014). Subtilisin from Bacillus
228	licheniformis (P5380, Sigma-Aldrich, Inc.) was used for the subtilisin inhibitory assay.
229	
230	Results
231	Assignment of the biosynthetic gene cluster of grimoviridin
232	The BGCs of microviridin groups were previously described to distribute broadly
233	over genomes of bacteria belonging to the phyla Proteobacteria, Bacteroidetes, and
234	Cyanobacteria (Ahmed et al. 2017). The precursor peptide coding genes were
235	classified into three classes according to structural characteristics (Ahmed et al. 2017).
236	Class I precursor peptides contained N-terminal leader peptides with a single core
237	peptide. Class II precursor peptides contained a single leader peptide with up to five
238	consecutive core peptides. Class III precursor peptides contained a single core peptide
239	with leader peptide and multiple precursors existed in the gene cluster. Among these
240	classes, we focused on the typical BGCs of microviridin-type peptides in the genome of
241	marine bacteria including Grimontia marina (Choi et al. 2012), G. celer (Pujalte et al.
242	2016), Vibrio penaeicida, (Kawato et al. 2018) and V. caribbeanicus (Hoffmann et al.
243	2012). The BGCs of G. marina, G. celer, and V. caribbeanicus had one precursor

244	peptide gene (grmA, grcA, and vcaA, respectively) in each BGC. On the other hand,
245	the BGC of V. penaeicida contained two precursor peptide genes (vpeA1 and vpeA2).
246	The sequences of precursor peptides of marine bacteria were aligned with those of other
247	cyanobacterial precursor peptides (MdnA, MdnA2 and MdnA3, Fig. 2). At the leader
248	sequence at the N-terminus, the motif sequence K-X-X-P-F-F-X-X-F (bold letters in
249	Fig. 2) was conserved in all precursor peptides. This motif sequence forms an α -helix,
250	which is recognized by the modification enzyme MdnC (Li et al. 2016). As indicated
251	by the underline in Fig. 2, the precursor peptides possessed the microviridin peptide
252	motif -T-X1-K-X2-P-S-D-X3-(D or E)-(D or E)- in the core peptides. This region has
253	a tricyclic structure with two ester bonds and one isopeptide bond. The precursor
254	peptide genes of V. penaeicida contained two microviridin peptide motifs in each
255	sequence. The sequences of the peptides of marine Proteobacteria possessed a GG
256	motif before the core peptide, which is possibly exposed to bacteriocin processing
257	peptidases. As shown in Fig.3, the BGC in G. marina consisted of five genes
258	including genes coding for precursor (grmA, accession number CZF84009.1), two
259	modification enzymes (grmB, CZF84007.1, grmC, CZF84004.1), HlyD family secretion
260	protein (grmT1, CZF84002.1) and ABC-transporter (grmT2, CZF83999.1). The two
261	modification enzymes, GrmB and GrmC, encoded ATP-grasp domain-containing

262 proteins. The amino acid sequences of GrmB and GrmC showed high similarity to

263	those of MdnB (CAQ16117.1) (56% similarity, 38% identity) and MdnC
264	(CAQ16118.1) (65% similarity, 45% identity), respectively. The amino acid sequence
265	of GrmT1 showed similarity to the colicin V secretion protein Cva of E. coli
266	(GDA71566.1) (48% similarity and 27% identity). Regarding ABC transporters, the
267	amino acid sequence of GrmT2 showed similarity to that of MdnE (CAQ16120.1) (45%
268	similarity, 27% identity). The proteins GrmT1 and GrmT2 may function cooperatively
269	to export mature peptides to the outside of the cell. Interestingly, the biosynthetic gene
270	cluster in G. marina lacks an acetyl transferase coding gene corresponding to mdnD.
271	Overall, we expected that an "unacetylated" microviridin-type peptide would be derived
272	from the precursor GrmA by modification of GrmB and GrmC. We checked the
273	production of the expected microviridin-type peptide in G. marina. Briefly, G. marina
274	was cultured using 2216 marine liquid medium. The culture of G. marina was
275	extracted by MeOH, and the extract was analyzed by HPLC and ESI-MS (data not
276	shown). As a result, the expected peptide was not detected in the MeOH extract of G .
277	<i>marina</i> . Thus, we accomplished heterologous production of a new microviridin-type
278	peptide named grimoviridin in Escherichia coli.
279	Heterologous production

280	To perform heterologous production of grimoviridin, the full gene cluster was cloned.
281	The gene cluster was amplified by PCR and integrated into the expression vector pET-
282	41a(+) to afford pET-41a-105794G (containing the grmA-T2 genes, Fig. S1). The
283	plasmid was cloned into <i>E. coli</i> DH5a, and then transformed into <i>E. coli</i> BL21(DE3).
284	The bacterium <i>E. coli</i> BL21(DE3) possessing the plasmid pET-41a-105794G was
285	cultured on modified basal agar medium containing kanamycin and isopropyl- β -D-
286	thiogalactopyranoside (IPTG) at 30 °C for 24 h. The bacterial cells were harvested
287	from solid agar medium efficiently to completely separate cells. Compared with
288	culture using liquid medium, agar medium culture had the advantages of avoiding
289	contamination of nutrient substances such as glucose at the following extraction step.
290	The peptide production yield using modified basal medium was higher than the yield
291	with commonly used LB medium (data not shown). The cells were harvested with a
292	laboratory spatula and extracted with double volume of MeOH; the resulting MeOH
293	extract was analyzed by HPLC and ESI-MS. The transformant produced a new
294	peptide named grimoviridin (Fig. S2). To obtain enough grimoviridin for structure
295	determination and biological tests, the transformant (E. coli BL21(DE3) possessing
296	pET41a-105794G) was cultured using modified basal agar medium. After HPLC

purification (Fig. S3), approximately 7.6 mg of grimoviridin was obtained from cultured
cells using 2 L of media.

299 Structure determination

300	The molecular formula of grimoviridin was determined to be $C_{67}H_{99}N_{19}O_{24}$ by
301	accurate MS (Fig. S4) since the ion corresponding to $[M+2H]^{2+}$ was observed at m/z
302	777.8625 (the calculated m/z value was 777.8628). Compared with the molecular
303	formula of the core peptide, dehydration seemed to occur with the removal of three
304	units of H ₂ O from the core peptide. To confirm the amino acid sequence, an MS/MS
305	experiment was performed on grimoviridin to obtain the amino acid sequence. As a
306	result, limited fragmentation ion peaks (y13, y14, b12, b13, b14) were observed,
307	indicating the N-terminal sequence (Ile1-Ala2) and C-terminal sequence (Gly13-Phe14-
308	Ser15), since the cyclic structure in grimoviridin hampered fragmentation in the MS/MS
309	experiment (Table S1). To further determine the chemical structure, the analyses of
310	NMR spectra (¹ H, ¹³ C, DEPT-135, DQF-COSY, TOCSY, NOESY, HMBC, and HSQC)
311	were performed on grimoviridin dissolved in 0.5 mL of DMSO- d_6 (Fig. S5 - S30). In
312	the ¹ H NMR spectrum, α -protons of amino acid residues at 3.60 - 4.73 ppm and amine
313	protons at 6.84 - 9.11 ppm were observed. The assignments of the constituent 15
314	amino acids in grimoviridin were completed using spin-system identification (Fig. 1B

315	and Table S2). The sequential analysis of amino acids was performed by NOESY
316	correlations between amino protons and α -protons in adjacent amino acids (double-end
317	arrows in Fig. 1B). The two sequences (Ile1-Ala2-Thr3-Arg4-Lys5-Ala6 and Pro7-
318	Ser8-Asp9-Asp10-Asp11-Glu12-Gly13-Phe14-Ser15) were obtained by sequential
319	NOESY walk. The connection between Ala6 and Pro7 was established by HMBC
320	correlation from the α -proton of Pro7 (δ H 4.17) to the carbonyl of Ala6 (δ C 171.7).
321	The isopeptide bond between Lys5 and Glu12 was determined by the HMBC
322	correlation from the ϵ -amine proton of Lys5 (δ H 7.21) to the γ -carbonyl of Glu12 (δ C
323	171.9). The two ester bonds were elucidated by HMBC correlations from the β -proton
324	of Thr3 (δ H 5.46) to the β -carbonyl of Asp9 (δ C 170.0) and from the β -proton of Ser8
325	$(\delta H 4.10)$ to the β -carbonyl of Asp11 ($\delta C 169.9$). The bridging pattern of grimoviridin
326	(one isopeptide and two ester bonds) had the same topology as those of other
327	microviridins. The stereochemistries of constituent amino acids were determined by
328	modified Marfey's method. After hydrolysis of grimoviridin, the hydrolysate was
329	derivatized by $N\alpha$ -(5-Fluoro-2,4-dinitrophenyl)-L-leucinamide (L-FDLA).
330	Comparative HPLC analysis was performed with standard amino acids with L-FDLA or
331	D-FDLA (Fig. S31 - S43). As a result, all constituent amino acids in grimoviridin

332	were determined to be L-form. Thus, the chemical structure including absolute
333	chemistry was determined as shown in Fig. 1A.
334	Protease inhibition assay
335	To determine the inhibitory activities of grimoviridin against proteases, including
336	trypsin, chymotrypsin, elastase, and subtilisin, inhibition tests were performed
337	according to previous reports. As a result, grimoviridin inhibited chymotrypsin,
338	trypsin, and subtilisin with IC $_{50}$ values of 5.2 $\mu M,$ 238 nM, and 55 $\mu M,$ respectively
339	(Table 1). However, grimoviridin did not show inhibitory activity against elastase at a
340	concentration of 64 µM.
341	
342	Discussion
343	Biosynthetic gene cluster of grimoviridin
344	As shown in Fig. 3, the BGC of grimoviridin comprised five genes (grmA-T2). The
345	precursor peptide GrmA contains a leader peptide (dotted underline in Fig. 3), double
346	Gly sequence (no underline in Fig. 3), and core peptide (underline in Fig. 3). The
347	precursor peptide is modified by the modification enzymes GrmB and GrmC, giving
348	one isopeptide and two ester bonds in the molecule. The protein GrmT1 is analogous
349	to protein the colicin V excretion protein CvaA (Gilson et al. 1987). CvaA was

350	described as a membrane fusion protein that possibly forms a bridge that connects the
351	inner and outer membranes via interaction with CvaB, an ABC transporter, and TolC, an
352	outer membrane channel protein (Hwang et al. 1997). The protein GrmT1 may
353	interact with the ABC transporter GrmT2, possibly functioning to coordinate the export
354	of mature peptide to the outside of the cell. The <i>N</i> -terminal sequence of GrmT2
355	contains a double-glycine peptidase domain that possibly cleaves off the leader peptide
356	at the double Gly position in the precursor peptide GrmA. Although the host
357	bacterium E. coli BL21(DE3) lacks proteases (Lan and OmpT), other endogenous
358	proteases of E. coli may truncate C-terminal and N-terminal peptide sequences from the
359	core peptide to afford grimoviridin (Fig. 3). The structural peptide of 15 amino acids
360	in length has intermolecular bonds that give the molecule resistance to endogenous
361	proteases of E. coli.
362	Structure-activity relationship in the microviridin-type peptides

363 Previously, the structure-activity relationship of the microviridin-type peptides was

- 364 summarized (Ziemert et al. 2010). The consensus sequence (T-<u>X</u>-K-Y-S-P-D-<u>X</u>-E-
- 365 D/E) in microviridins was reported by comparison of microviridin variants (Table. 1).
- 366 We added the sequence and protease inhibitiory activities of grimoviridin to the
- 367 sequences of microviridin variants (Table. 1). As a result, the consensus sequence T-

368	<u>X1-K-X2</u> -P-S-D- <u>X3</u> -E/D-E/D was observed in grimoviridin (Fig. 1C and Table 1).
369	Tyr at the X2 position was conserved in all microviridin variants; on the other hand,
370	grimoviridin uniquely possessed Ala at the X2 position. Philmus et al. indicated that
371	ester and amide bonds formation was caused by MvdD (MdnC) and MvdC (MdnB) by
372	in vitro experiments. They reported that the ester formation activity of MvdD (MdnC)
373	was lost by substitution of Tyr to Ala at the X2 position of the core peptide (Philmus et
374	al. 2009). The analogous enzyme GrmC seemed to be different from MdnC in terms
375	of substrate specificity. Position X3 should have aromatic amino acids in all
376	microviridin variants. On the other hand, grimoviridin possessed the hydrophilic
377	amino acid Asp at the X3 position. Microviridin molecules normally contain two ester
378	bonds and one isopeptide bond. However, some microviridin variants such as
379	microviridins C-F, seem to be incomplete products that have one ester bond or no ester
380	bond with the isopeptide bond in the molecule. In this study, such incomplete peptides
381	were not detected by HPLC and ESI-MS analysis (data not shown). The inhibitory
382	mechanism was clarified by X-ray crystallographic analysis on cocrystals of trypsin and
383	microviridin J (Weiz et al. 2014). In the cocrystal, the methyl group of the Thr side
384	chain in microviridin J points towards Leu99 in the S2 pocket of trypsin, whereas the
385	Arg side chain in microviridin J is coordinated by the carboxyl group of Asp189 at the

386	bottom of the S1 pocket, resulting in rigid complex formation (Weiz et al. 2014). The
387	motif of grimoviridin contains -Thr-Arg- similar to microviridin J, so it is reasonable
388	that grimoviridin has potent inhibitory activity against trypsin.
389	In the genomes of Proteobacteria and Bacteroidetes, there are many BGCs of
390	microviridin-type peptides (Ahmed et al. 2017). We revealed that heterologous
391	production using <i>E. coli</i> was applicable to obtain microviridin-type peptides. The
392	combination of genome mining and heterologous production will lead to the discovery
393	of new microviridin-type peptides, such as grimoviridin, by exploring other unexploited
394	BGCs.
395	

396 Author contribution

397 SK designed the research and wrote the manuscript. KU and IK conducted experiments

- 398 of cloning and structure determination. HN conducted MS experiments. All authors read
- 399 and approved the manuscript.
- 400 Acknowledgment
- 401 We thank Ms. Tomoko Sato for measurement of MS data.

402 Funding information

403	This study was supported by Grants-in-aids (grant number 16K01913) of the Japan
404	Society for the Promotion of Science and Grant for Basic Science Research Projects of
405	Sumitomo Foundation.
406	Compliance with ethical standards
407	Conflict of interest
408	The authors declare that they have no conflict of interest.
409	Ethical approval
410	This article does not contain any studies with human participants or animals performed
411	by any of the authors.
412	
413	References
414	Ahmed MN, Reyna-Gonzalez E, Schmid B, Wiebach V, Sussmuth RD, Dittmann E,
415	Fewer DP (2017) Phylogenomic analysis of the microviridin biosynthetic
416	pathway coupled with targeted chemo-enzymatic synthesis yields potent
417	protease inhibitors. ACS Chem Biol 12(6):1538-1546
417 418	protease inhibitors. ACS Chem Biol 12(6):1538-1546 doi:10.1021/acschembio.7b00124
417418419	protease inhibitors. ACS Chem Biol 12(6):1538-1546 doi:10.1021/acschembio.7b00124 Budisa N (2013) Expanded genetic code for the engineering of ribosomally synthetized

421	Biotechnol 24(4):591-8 doi:10.1016/j.copbio.2013.02.026
422	Choi A, Kim KM, Kang I, Youn SH, Suh YS, Lee Y, Cho JC (2012) Grimontia marina
423	sp. nov., a marine bacterium isolated from the Yellow Sea. J Microbiol
424	50(1):170-4 doi:10.1007/s12275-012-1615-6
425	Dehm D, Krumbholz J, Baunach M, Wiebach V, Hinrichs K, Guljamow A, Tabuchi T,
426	Jenke-Kodama H, Sussmuth RD, Dittmann E (2019) Unlocking the spatial
427	control of secondary metabolism uncovers hidden natural product diversity in
428	Nostoc punctiforme. ACS Chem Biol 14(6):1271-1279
429	doi:10.1021/acschembio.9b00240
430	Fujii K, Sivonen K, Naganawa E, Harada K-i (2000) Non-toxic peptides from toxic
431	cyanobacteria, Oscillatoria agardhii. Tetrahedron 56(5):725-733
432	doi:10.1016/S0040-4020(99)01017-0
433	Gatte-Picchi D, Weiz A, Ishida K, Hertweck C, Dittmann E (2014) Functional analysis
434	of environmental DNA-derived microviridins provides new insights into the
435	diversity of the tricyclic peptide family. Appl Environ Microbiol 80(4):1380-7
436	doi:10.1128/AEM.03502-13
437	Gilson L, Mahanty HK, Kolter R (1987) Four plasmid genes are required for colicin V
438	synthesis, export, and immunity. J Bacteriol 169(6):2466-70

doi:10.1128/jb.169.6.2466-2470.1987

- 440 Hemscheidt TK (2012) Microviridin biosynthesis. Methods Enzymol 516:25-35
- 441 doi:10.1016/B978-0-12-394291-3.00023-X
- 442 Hoffmann M, Monday SR, Allard MW, Strain EA, Whittaker P, Naum M, McCarthy PJ,
- 443 Lopez JV, Fischer M, Brown EW (2012) Vibrio caribbeanicus sp. nov., isolated
- from the marine sponge *Scleritoderma cyanea*. Int J Syst Evol Microbiol 62(Pt
- 445 8):1736-43 doi:10.1099/ijs.0.032375-0
- 446 Hwang J, Zhong X, Tai PC (1997) Interactions of dedicated export membrane proteins
- 447 of the colicin V secretion system: CvaA, a member of the membrane fusion
- 448 protein family, interacts with CvaB and TolC. J Bacteriol 179(20):6264-70
- 449 doi:10.1128/jb.179.20.6264-6270.1997
- 450 Imada C, Simidu U, Taga N (1985) Isolation and Characterization of Marine Bacteria
- 451 Producing Alkaline Protease Inhibitor. Bull Jpn Soc Sci Fish 51(5):799-803
- 452 doi:10.2331/suisan.51.799
- 453 Ishitsuka MO, Kusumi T, Kakisawa H, Kaya K, Watanabe MM (1990) Microviridin. A
- 454 novel tricyclic depsipeptide from the toxic cyanobacterium *Microcystis viridis*. J
- 455 Am Chem Soc 112(22):8180-8182 doi:10.1021/ja00178a060
- 456 Kanaori K, Kamei K, Taniguchi M, Koyama T, Yasui T, Takano R, Imada C, Tajima K,

457	Hara S (2005) Solution structure of marinostatin, a natural ester-linked protein
458	protease inhibitor. Biochemistry 44(7):2462-8 doi:10.1021/bi048034x
459	Kawato S, Nozaki R, Kondo H, Hirono I (2018) Draft Genome Sequence of Vibrio
460	penaeicida Strain TUMSAT-NU1, Isolated from Diseased Shrimp in Japan.
461	Genome Announc 6(11) doi:10.1128/genomeA.00153-18
462	Kodani S, Hemmi H, Miyake Y, Kaweewan I, Nakagawa H (2018) Heterologous
463	production of a new lasso peptide brevunsin in Sphingomonas subterranea. J Ind
464	Microbiol & Biotechnol 45(11):983-992 doi:10.1007/s10295-018-2077-6
465	Letzel AC, Pidot SJ, Hertweck C (2014) Genome mining for ribosomally synthesized
466	and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC
467	Genomics 15:983 doi:10.1186/1471-2164-15-983
468	Li K, Condurso HL, Li G, Ding Y, Bruner SD (2016) Structural basis for precursor
469	protein-directed ribosomal peptide macrocyclization. Nat Chem Biol
470	12(11):973-979 doi:10.1038/nchembio.2200
471	Link AJ (2015) Biosynthesis: Leading the way to RiPPs. Nat Chem Biol 11(8):551-2
472	doi:10.1038/nchembio.1862
473	Micallef ML, D'Agostino PM, Sharma D, Viswanathan R, Moffitt MC (2015) Genome
474	mining for natural product biosynthetic gene clusters in the Subsection V

475	cyanobacteria. BMC Genomics 16:669 doi:10.1186/s12864-015-1855-z
476	Miyamoto K, Tsujibo H, Hikita Y, Tanaka K, Miyamoto S, Hishimoto M, Imada C,
477	Kamei K, Hara S, Inamori Y (1998) Cloning and nucleotide sequence of the
478	gene encoding a serine proteinase inhibitor named marinostatin from a marine
479	bacterium, Alteromonas sp. strain B-10-31. Biosci Biotechnol Biochem
480	62(12):2446-9 doi:10.1271/bbb.62.2446
481	Murakami M, Sun Q, Ishida K, Matsuda H, Okino T, Yamaguchi K (1997)
482	Microviridins, elastase inhibitors from the cyanobacterium Nostoc minutum
483	(NIES-26). Phytochemistry 45(6):1197-1202 doi:10.1016/S0031-
484	9422(97)00131-3
485	Okino T, Matsuda H, Murakami M, Yamaguchi K (1995) New microviridins, elastase
486	inhibitors from the blue-green alga Microcystis aeruginosa. Tetrahedron
487	51(39):10679-10686 doi:10.1016/0040-4020(95)00645-O
488	Philmus B, Christiansen G, Yoshida WY, Hemscheidt TK (2008) Post-translational
489	modification in microviridin biosynthesis. Chembiochem 9(18):3066-73
490	doi:10.1002/cbic.200800560
491	Philmus B, Guerrette JP, Hemscheidt TK (2009) Substrate specificity and scope of
492	MvdD, a GRASP-like ligase from the microviridin biosynthetic gene cluster.

493	ACS Chem Biol 4(6):429-34 doi:10.1021/cb900088r
494	Pujalte MJ, Lucena T, Rodrigo-Torres L, La Mura A, Ruvira MA, Arahal DR (2016)
495	Grimontia celer sp. nov., from sea water. Int J Syst Evol Microbiol 66(8):2906-
496	2909 doi:10.1099/ijsem.0.001119
497	Reshef V, Carmeli S (2006) New microviridins from a water bloom of the
498	cyanobacterium Microcystis aeruginosa. Tetrahedron 62(31):7361-7369
499	doi:10.1016/j.tet.2006.05.028
500	Reyna-Gonzalez E, Schmid B, Petras D, Sussmuth RD, Dittmann E (2016) Leader
501	peptide-free in vitro reconstitution of microviridin biosynthesis enables design of
502	synthetic protease-targeted libraries. Angew Chem Int Ed Engl 55(32):9398-401
503	doi:10.1002/anie.201604345
504	Rohrlack T, Christoffersen K, Hansen PE, Zhang W, Czarnecki O, Henning M, Fastner
505	J, Erhard M, Neilan BA, Kaebernick M (2003) Isolation, characterization, and
506	quantitative analysis of microviridin J, a new Microcystis metabolite toxic to
507	Daphnia. J Chem Ecol 29(8):1757-70 doi:10.1023/a:1024889925732
508	Sardar D, Schmidt EW (2016) Combinatorial biosynthesis of RiPPs: docking with
509	marine life. Curr Opin Chem Biol 31:15-21 doi:10.1016/j.cbpa.2015.11.016
510	Schilling O, Findeisen P (2014) Proteases and disease. Proteomics Clin Appl 8(5-

6):296-8 doi:10.1002/prca.201470035

512	Shin HJ, Murakami M, Matsuda H, Yamaguchi K (1996) Microviridins D-F, serine
513	protease inhibitors from the cyanobacterium Oscillatoria agardhii (NIES-204).
514	Tetrahedron 52(24):8159-8168 doi:10.1016/0040-4020(96)00377-8
515	Sieber S, Grendelmeier SM, Harris LA, Mitchell DA, Gademann K (2020) Microviridin
516	1777: A Toxic Chymotrypsin Inhibitor Discovered by a Metabologenomic
517	Approach. J Nat Prod doi:10.1021/acs.jnatprod.9b00986
518	Weiz AR, Ishida K, Makower K, Ziemert N, Hertweck C, Dittmann E (2011) Leader
519	peptide and a membrane protein scaffold guide the biosynthesis of the tricyclic
520	peptide microviridin. Chem Biol 18(11):1413-21
521	doi:10.1016/j.chembiol.2011.09.011
522	Weiz AR, Ishida K, Quitterer F, Meyer S, Kehr JC, Muller KM, Groll M, Hertweck C,
523	Dittmann E (2014) Harnessing the evolvability of tricyclic microviridins to
524	dissect protease-inhibitor interactions. Angew Chem Int Ed Engl 53(14):3735-8
525	doi:10.1002/anie.201309721
526	Zhang Y, Chen M, Bruner SD, Ding Y (2018a) Heterologous production of microbial
527	ribosomally synthesized and post-translationally modified peptides. Frontiers in
528	microbiology 9:1801 doi:10.3389/fmicb.2018.01801

529	Zhang Y, Li K, Yang G, McBride JL, Bruner SD, Ding Y (2018b) A distributive peptide
530	cyclase processes multiple microviridin core peptides within a single
531	polypeptide substrate. Nat Commun 9(1):1780 doi:10.1038/s41467-018-04154-3
532	Ziemert N, Ishida K, Liaimer A, Hertweck C, Dittmann E (2008) Ribosomal synthesis
533	of tricyclic depsipeptides in bloom-forming cyanobacteria. Angew Chem Int Ed
534	Engl 47(40):7756-9 doi:10.1002/anie.200802730
535	Ziemert N, Ishida K, Weiz A, Hertweck C, Dittmann E (2010) Exploiting the natural
536	diversity of microviridin gene clusters for discovery of novel tricyclic
537	depsipeptides. Appl Environ Microbiol 76(11):3568-74
538	doi:10.1128/AEM.02858-09

540 Figure legends

- 541 Fig. 1 A) Chemical structure of grimoviridin, B) Key 2D NMR correlations on
- 542 grimoviridin (HMBC, TOCSY, and NOESY), C) Amino acid sequence of tricyclic
- 543 region in microviridin analogues
- 544 Fig. 2 Alignment of amino acid sequences of precursor peptides of grimoviridin related
- 545 peptides; GrmA from BGC of grimoviridin in *Grimontia marina* CECT 8713 (accession
- 546 number: CZF84009.1); GrcA from G. celer CECT 9029 (WP_062661690.1); VpeA1
- and VpeA2 from Vibrio penaeicida TUMSAT-NU1 (WP_104398650.1 and
- 548 WP_104398651.1); VcaA from V. caribbeanicus ATCC BAA-2122
- 549 (WP_081454958.1); MdnA from BGC of microviridin B in Microcystis aeruginosa
- 550 NIES-298 (CAQ16116.1); MdnA1 from *M. aeruginosa* NIES-87 (GBE73820.1);
- 551 MdnA2 from *Planktothrix agardhii* NIES-204 (BBD53454.1)
- 552 Fig. 3 Proposed biosynthetic pathway of grimoviridin in Escherichia coli
- 553
- 554

Figure 1 555

561

Fig. 1. Unno et al.

563 Figure 2

564

GrmA	MDKNTPFFSNFIEADTITKEEANQISGGWNFPNEIA <u>TRKAPSD</u> D <u>DE</u> GFSSSAIVFPTDELPALPELS
GrcA	MSKNTPFFSNFMEAQTLTKEETKQATGGLDFVKPGDLP-GGFDPSKEPIYV <u>TMKHPSD</u> D <u>DE</u> GFDAPAFLR
VpeA1	MNKNTPFFSNFIESQIEELSAQETKQCAGGIVGDFDVV <u>TMKAPSD</u> D <u>E</u> GLEFVLKPGDLV <u>TMKHPSD</u> S <u>D</u> EGNDFQSF
VpeA2	MSKNT PFF NN F IEADTLTEEEANQISGGTINFGGISTRKAPSDDDEGFAIA <u>TRKAPSDDDE</u> GFEIA <u>TRKAPSD</u> D <u>DE</u> GTAIVFPTW
VcaA	MNKNTPFFNNFIEAETLTEEEANQIAGGCANFSTSSFSASDLTRKYPSDDDEGNSSISGVNFPGSASGVNFPGSSSKVNFPS
MdnA	MAYPNDQQG- K AL PFF ARFLSVSKEESIIKSPSPEPTFGT <u>T</u> LKY <u>PSDWEE</u> Y
MdnA2	MSKNVKVSAP K AV PFF AR F LAEQAVEANNSNSAPYGN <u>TMKYPSDWEE</u> Y
MdnA3	MSENNN K AL PFF AR F LEEQQSEPEEDAPKPFPF <u>TYKF<u>PSD</u>WED</u> R

Fig. 2 Unno et al.

Fig. 3 Unno et al.