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Abstract. Considering the environmental issues, the use of renewable energy 

sources is a far more sustainable solution to meeting the energy demand than 

fossil fuels. However, the limited availability of renewable energy is a growing 

problem to be solved. Solar energy has become a popular renewable energy 

source in several countries such as Indonesia because of their equatorial 

locations. In this study, limited meteorological measurement has been applied 

with the aim of forecasting solar power generation for planning photovoltaic 

(PV) power plants, especially in rural areas, which have limited access to fossil 

energy. We used limited measurements such as temperature, humidity, and 

solar radiation. The use of support vector regression (SVR) was applied to 

improve denoising capabilities and simplify computation. SVR has been 

evaluated using statistical metrics such as mean absolute percentage error 

(MAPE), relative root means square error (NRMSE), and coefficient of 

determination (R2). The results showed the MAPE value obtained 18.56% from 

the RBF_SVR. NRMSE value performed excellently with 8.02% from the SW-

SVR method. R2 also indicated good forecasting with 0.99. The results showed 

that promising short-term solar power generation forecasting can be applied to 

estimate the availability of solar power, plan for an extension, and assess the 

performance of hybrid power plants in Indonesia. 

1. Introduction 

Renewable energy is an important issue that is addressed in several international 

treaties such as the Kyoto Protocol and the Paris Agreement. Several points have been 

raised, such as the need for reducing global temperatures, increasing renewable 

energy use, reduction of greenhouse gas emissions, and financial support to 

implement these programs. The use of fossil fuels has increased the amount of 

harmful gases being released into the air; by increasing the use of renewable energy, 

this can be reduced. Solar energy is one of the most effective forms of renewable 

energy, with advantages such as low maintenance, high efficiency, and abundant 

natural availability. In addition, the power potential of solar radiation in Indonesia is 
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nearly 207.9 MW, and in the equatorial area, the availability of sunlight is almost 

constant throughout each year.  

Solar power generation data is important in order to estimate and evaluate the 

performance of solar energy resources. However, there are several challenges faced 

such as limited measurement of meteorological data and long installation times. 

Artificial intelligence predictions can be used to derive solar power generation data; 

there are several artificial intelligence methods that have successfully predicted solar 

power, one of which is SVR. SVR was chosen because this method has been widely 

used for classification and regression analysis. Meteorological data such as 

temperature, humidity, duration of solar radiation, and wind speed are used as input. 

Zeng and Qiao [1] proposed a least-square (LS) support vector machine (SVM)-based 

model for short-term solar power prediction (SPP) in the USA from atmospheric 

transmissivity, sky cover, relative humidity, and wind speed data. This study aims to 

predict global solar power generation using SVR with meteorological data. 

Yanting Li et al [2] has applied the regression object based on the complexity of 

variables that affect photovoltaic (PV) systems, such as weather systems and 

electrical installations in systems; regression with several input variables is used to 

predict solar energy. Some of the variables involved are related to the predictors. S. 

Kanwal et al [3] predicted the availability of power generation such that the generated 

power would be dispatched to the area requiring it. Energy can be stabilized by 

coordinating between the independent power generated at the plant and the main 

power generated by the system, such as the utility grid. M.Z. Hassan et al [4] 

compared multiple regression based on SVR methods such as linear SVR, SVR-RBF-

Kernel with linear regression to analyze the solar radiation prediction and yield 

feasible results for short-term solar power prediction. 

In this study, we used the physical measurements of the meteorological station as 

explanatory variables. The measurements were taken by the weather station system of 

the hybrid power plant in Baron Technopark, Yogyakarta, Indonesia. Support vector 

regression (SVR) was assessed by limited meteorological data measurement. The 

intermittent nature of solar radiation is a common problem in Indonesia; this 

forecasting method attempts to solve the heavy cloud and clear sky conditions. 

Implementation in rural areas, which have limited electrical connectivity, caused us to 

explore the possibility of integrating the forecasting method with the utility power 

management system; the model will be applied to open data for public services. 

Additionally, the purpose of this research is also to plan the extension area of the PV 

power plant and assess the quality of the system.  

 

 

2 Methodology 

 

2.1. Data Analysis 

 

We proposed a method to process the training and testing data, monitoring data of 

the hybrid power plant in Baron Technopark. The system consists of a 5 kW wind 

energy generator, 10 kW wind energy generator, 36 kW photo-voltaic plant, 20 kW 

diesel engine generator, and a 20 kW lead acid battery system. The system monitoring 

was also included in the plant. From the monitoring data, it obtained the physical 



values from sensors on each power generator. Measured data for a 1 month period 

(June 2017) was collected from the plant, with an average of 10–11 h of bright 

sunlight per day. The dataset consisted of ambient temperature, humidity, and wind 

speed, with a total of 30 days of summer data which is divided into 27 days of 

training data, 3 days of validation data, and 1 day of testing data.  

A 15-minute resolution time was applied in the system to prevent time shifting and 

unreasonable data in this period [5]. It was provided after averaging the data from 

each variable. Fig 1. has indicated a correlation between solar power and other 

predictors. The solar radiation, ambient temperature and ambient humidity are the 

parameters which show close relationships to the solar power, with solar radiation 

being the solar variable showing the closest relationship. From the scatter, the plot 

looks at the linear relationship between solar power and solar radiation, ambient 

temperature, and humidity environment. The three explanatory variables showed a 

significant linear correlation with solar power. From the graph presented, there are 

several data outliers between the variables. The outliers can be attributed to several 

factors such as errors in sensor readings, lost data, and loss of power in the sensor. 

Data distribution on the histogram also shows that solar power has a centralized 

distribution of data at 0 and 19 kW. This indicates that there is no solar radiation at 

 

 

 

 

Fig 1. Scatter plot of explanatory variable and response variable for solar power prediction  

 



night, while the 19 kW value is the value of solar radiation in the maximum radiation 

time period from 10.00 to 14.00 hours. The solar power generation histogram also 

describes data distribution in solar power generation. This data illustrates the 75% 

data distribution in the range of 0–10 kW. Meanwhile, 25% of the data is in the >10 

kW range. The median training data is at 5 kW. There are no data outliers in the 

dataset. The matrix correlation is shown in Fig 2. The correlation matrix graph 

describes the correlation between parameters with a square matrix using Pearson's 

coefficient relation, which connects the explanatory variables and the response 

variable in the range of -1 to 1. Solar radiation shows a significant correlation to solar 

power generation, with an index of 0.98. Other significant variables are temperature 

and humidity, with correlation values of 0.78 and -0.72. This graph shows that 

explanatory variables and response variables are closely related to the production of 

accurate predictive values.  

 

2.2. Support Vector Regression 

 

SVR finds a function of the predicted value and actual value. Then, the function 

with the highest deviation from the target value is identified. Making the line was 

regarded as a hyperplane considering the linearity and separation between the actual 

and predicted values. The graph did not take errors into account as long as they were 

less than the error boundary on the hyperplane. The fundamental working principle of 

SVR is to perform data mapping in certain spaces through non-linear mapping and 

perform direct calculation in the peculiarity space. On the off-chance that a method 

for registering the internal item in a feature space is accessible specifically as an issue 

to the first includes focuses, it is conceivable to construct a non-direct learning 

machine, which is known as an issue processing technique of a kernel function, 

denoted by K. The flexibility of SVR is attributed to the kernel that represents the 

Fig 2. Matrix correlation between variables  
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information in a higher-dimensional peculiarity space. A linear solution in the feature 

space corresponds to a non-linear solution in the original input space.  

There are methods that employ non-linear kernels to regression problems and 

correspondingly apply SVR. One such kernel function is the radial basis function 

(RBF). The main advantage of the RBF is that it is computationally more efficient 

than the ordinary SVR method because the RBF needs only a solution of linear 

equations rather than the computationally demanding quadratic programming 

requirement in standard SVR. The RBF is a more compressed, supported kernel than 

other kernel functions. In this study, the parameter σ is adapted for the RBF, which is 

defined as 

 

              (1) 

 

Where is kernel function, and x and y are vectors of features computed 

from training or test samples [6]. In this study, there are several SVR 

methods has been applied for the dataset to predict the solar power generation. The 

following are the equations of some of these SVR methods: 

 

Linear SVR =             (2)                                                    

 

Polynomial SVR = 

 

RBF SVR =

  

Where x and y are vectors of features computed from training or test samples, and 

c is a constant intended to balance influence of higher-order versus lower-order terms 

in the polynomial. γ and σ are the kernel function parameters of the RBF kernel [7]. 

 

2.3. Sliding Window-based Support Vector Regression 

 

The sliding window-based support vector regression (SW-SVR) was used to 

effectively predict solar radiation [8]. The SW-SVR resolves the computational 

complexity of the biased data, which is a result of errors, noise, and incomplete 

datapoints. As it is based on SVR, the above-mentioned regression model effectively 

handles the multidimensionality problem of the dataset. The model finds a function of 

the predicted value and actual value. Subsequently, the function with the largest 

deviation from the desired value is considered. After creating training data based on 

the matrix correlation. SW-SVR extracts effective training data depends on the 

movement r meaning the change of a specialized object during prediction horizons. 

Movements of training data can be calculated by referring to the time when each 

training data is observed. The estimated movement rt is given as follows: 

 

   (5) 

 

 

(3) 

 

(4) 

 



N is the number of training data, w is weight vector, and p is a weighted parameter. 

Subsequently, we obtained the extracted training data, represented by St. In the 

equation below, xi is the explanatory variable, and yi is response variable.  

 

            (6) 

 

The number of weak learners is adjusted, and the weight parameters were 

determined from relation between the dataset as specialized data. Thereafter, the fit 

kernel trick and partial least square method were utilized to resolve the 

multidimensionality problem of the dataset. The deviations in the predicted values 

were also calculated by extracting the deviations in the specialized data, as shown in 

the equation below. The deviations occurred when the training data was obtained.  

 

                  (7) 

 

Here, G is specialized data before prediction, and G’ is specialized data after 

prediction. H(P) is a hypothesis of each model, and q is a weighted parameter. 

Despite characteristic variation with time in the test data, SW-SVR always gives 

priority to specialized models that are more suitable for predicting test data. Owing to 

the results being comparable, we built hypothesis as trained by linear SVR and 

thereafter applied the other SVR method for comparison. Finally, the predicted values 

were obtained.  

 

2.4. Evaluation 

 

SVR methods are commonly evaluated using statistical metrics such as the mean 

absolute percentage error (MAPE) and relative root mean square error (NRMSE) [9]. 

Additionally, the coefficient of determination, R2, is also utilized for evaluation by 

some researchers. All the above-mentioned evaluation methods are used to derive the 

correlation between the output and input. Explanatory data has some dataset which 

multidimensional data. It predicted response variable. R2 is calculated by subtracting 

the residual sum of squares from 1, and then dividing the result by the total sum of 

squares. 

MAPE is used as the index of prediction error, and the building time is calculated 

based on the CPU clock time as the index of computational complexity. It is 

calculated using yi,  and  as shown in the equation below. 

 

           (8) 

 

 

Where yi and  are the actual and predicted values, respectively.  is the number 

of test data. The absolute value obtained by dividing the difference between yi and 

 by the actual value yi is summed for every predicted point in time and divided by 

the number of fitted points n. Multiplying the resulting value by 100 gives us the 

percentage error. 

R2 is often used in statistics for estimating model performances. It provides the 

fraction of the calculated values that are the closest to the measurement data. While 



ideal values of all other statistical indicators used in this study are 0, the R2 values are 

close to 1, as shown in the equation below: 

 

                    (9) 

 

 

Where SSRES represents the residual sum of squares; SSTOT (proportional to 

the variance of the data) represents the total sum of squares; yi is the actual value, 

and; ŷi is the predicted value.  

 

NRMSE is the percentage value of the type of statistical metric, i.e., the RMSE. 

RMSE, which is also a method of evaluating metrics, gives the standard deviation of 

residuals or prediction errors. A residual is the difference between the predicted value 

and actual value. NRMSE is obtained by dividing the RMSE value by the average 

measurement value, and then multiplying the result by 100. In our study, we used a 

notebook computer having the following specifications: Intel i5 7200U CPU, 16GB 

RAM, 500GB HDD, and Intel HD Graphics 620, and the scikit-learn module with 

Python 2.7 version for running the SW-SVR model, and subsequently, performance 

evaluation was conducted, and the statistical metrics were obtained [10]. 

 

3 Results and Discussion 
 

For building the training and testing dataset for solar power prediction, data were 

recorded over a period of 30 days. We divided the collected data into training and 

(10) 

 

Fig 3. Learning curve of training dataset  

 



testing datasets for short-term prediction. Before performing hyperparameter tuning, 

the training dataset was analyzed using the learning curve of the dataset and 

validation curve of the parameters. 

From Fig 3, it can be seen that for the training dataset, the accuracy values for 

training and validation are in good agreement with one another. The model was 

verified after analyzing its learning curve. If in the learning curve plot, training 

accuracy and validation accuracy curves lie close to one another in the exterior of the 

desired accuracy region, it means underfitting has occurred. On the other hand, if 

there is a gap between the curves of training accuracy and validation accuracy in the 

region desired accuracy, it means overfitting has occurred.  

From the learning curve plot, it can be seen that although the training accuracy and 

validation accuracy curves were close to each other, the desired accuracy region was 

still obtained. The model showed reasonable performance on validation and training 

accuracies. The gap between the training and validation accuracy curves is 

insignificant, indicating that sufficient data were acquired for accurate parameter 

selection. From the Fig. 3 also showed a good spot above 1250 training data. It was 

found that training dataset with less than 500 datapoints led to underfitting, while, the 

one with more than 2250 datapoints led to overfitting. 

The learning curve was also evaluated using stratified k-fold cross-validation. The 

data were divided to 9 using the cross-validation parameter, proportional of the 

training and testing data. From the validation curve, shown in Fig. 4, it is observed 

that for parameter C, a value of 0.1 gives a low accuracy even though training and 

validation values are nearly identical. Therefore, there is a possibility of an 

underfitting situation. Meanwhile, if the value of parameter C reaches 0.8 or 80%, 

then the problem of overfitting may occur. Therefore, the selection of parameter C 

also needs to be considered during hyperparameter tuning to produce accurate 

predictions.  

The SVR utilized hyperparameter tuning in which dependent parameters or kernel 

functions, such as Epsilon, C and RBF Gamma were optimized [11]. Effects of 

Fig 4. Validation curve for parameter C of the training dataset  

 



appropriate hyperparameter tuning reflects in the form of accurate predictions and 

results.  

 

Method 
NRMSE R2 MAPE 

Validation Test Validation Test Validation Test 

SW-SVR 9.98 8.02 0.98 0.99 21.26 24.04 

linear_SVR 9.57 9.37 0.97 0.97 42.78 74.02 

RBF_SVR 10.24 9.42 0.97 0.97 23.70 18.56 

Poly_SVR 12.19 17.35 0.96 0.91 19.47 24.16 

 

All the comparison results are listed in Table 1. Based on these results, the 

predicted and real value distributions were obtained The predicted values were 

evaluated using NRMSE and MAPE, and the evaluations showed different 

characteristics. In NRMSE, the data move the squares so that the presence of outliers 

to be larger if no error distribution outlier would be ideal if at the root squared. 

Therefore, MAPE can be considered to be more robust as it is less sensitive to 

outliers, although this assumption cannot be generalized for every dataset.   

Short-term prediction at testing period can be done by considering a minimum 

MAPE value of 18.56%. The interpretation of MAPE (%) values was explained in 

terms of forecasting by Lin, K-P and Pai, P-F (2016) [12] as mentioned in the 

following: less than 10% indicates excellent forecasting, 10%–20% indicates good 

forecasting, 20%–50% indicates fair forecasting, and 50% or more indicates poor 

forecasting. According to this, MAPE value of RBF-SVR falls under good 

forecasting. There are several variables that affect the solar power generation, such as 

electrical system, instrument system, and wiring. NRMSE results are shown in the 

Fig 5. Linear correlation between actual (kW) and predicted (kW) 

Table 1. Comparison results of SW-SVR, linear_SVR, RBF_SVR, and Poly_SVR 

 



table for short-term prediction at testing period. Minimum NRMSE value is found to 

be 8.02%, which is obtained from SW-SVR. The interpretation of NRMSE (%) values 

was suggested by K. Mohammadi et al (2015) as mentioned in the following: less 

than 10% indicates excellent forecasting, 10%–20% indicates good forecasting, 20%–

30% indicates fair forecasting, and 30% or more indicates poor forecasting. The 

short-term prediction at testing period for SW-SVR shows an excellent forecasting 

result as the NRMSE value is less than 10%. 

Table 1 shows the short-term prediction of solar power generation for validation 

period. In the validation period, MAPE scores of SW-SVR, linear_SVR, RBF_SVR, 

and Poly_SVR are 21.26%, 42.78%, 23.7%, and 19.47%, respectively. The results 

vary in the range between 19%–40% approximately, that is between good and fair 

forecasting. A good forecasting is obtained from Poly_SVR and a fair forecasting 

from linear_SVR. In addition, the model has been evaluated by using coefficient of 

determination (R2). R2 scores of SW-SVR, linear_SVR, RBF_SVR, and Poly_SVR 

are 0.98, 0.97, 0.97, and 0.96, respectively. Fig 6. and the R2 scores indicate linearity 

between predicted and actual values for all methods. The value of SW-SVR was close 

to 1 despite the weather conditions where dry or summer season data were recorded 

along with several rainy cloudy days. NRMSE values in validation period for SW-

SVR, linear_SVR, RBF_SVR, and Poly_SVR are 9.98%, 9.57%, 10.24%, and 

12.19%, respectively.  

 

In addition, Table 1 shows the short term prediction of solar power generation for 

testing period. In the testing period, MAPE scores of SW-SVR, linear_SVR, 

RBF_SVR, and Poly_SVR are 24.04%, 74.02%, 18.56%, and 24.16%, respectively. 

The results vary in the range between 19%–74% approximately, that is between good 

and poor forecasting. A good forecasting is obtained from RBF_SVR and a poor 

forecasting from linear_SVR. In addition, the model has been evaluated by using R2. 

In testing period, the R2 scores of SW-SVR, linear_SVR, RBF_SVR, and Poly_SVR 

are 0.99, 0.97, 0.97, and 0.91, respectively. These results indicate linearity between 

predicted and actual values. The value of SW-SVR was close to 1 similar to that of 

Fig 6. Solar power prediction plot with actual, predicted, and residual point 



the validation period. NRMSE values in testing period for SW-SVR, linear_SVR, 

RBF_SVR, and Poly_SVR are 8.02%, 9.37%, 9.42%, and 17.35%, respectively. SW-

SVR is the best method according to the NRMSE results. The hyperparameter tuning 

was calculated until the best results were obtained. The parameters C, gamma, and 

epsilon obtained contribute to the minimization of NRMSE results of the SW-SVR 

method. The testing error of SW-SWR for C = 32, gamma = 0.01, epsilon = 0.01, and 

intercept = 128 is obtained for NRMSE of 8.02%. The parameter C was calculated 

until a steady-state accuracy of training and validation as shown in Fig 4. was 

achieved. The parameter steady state in range of 10 until 100 appeared in case of the 

results of hyperparameter tuning was in this range.  

In addition to Fig 5., another method that can help to compare and display the 

quality of predictions is, the residual plot [3]. Fig 6. shows the residual plot between 

predicted, actual and residual values in the test period of June. From the figure, it is 

evident that the residual values are centered along the x-axis. Further, outlier values 

are not found in the image, which implies that the predicted values show good results. 

In addition, the figure explains the time zone of forecasting for testing data, SW-SVR 

is closely predicting the solar power, the sky condition as training data made the 

forecasting matched for time zone before maximum solar power value at noon. In the 

afternoon, the predicted value missed the maximum data of solar power generation 

because the results were affected by the weather conditions. 

The response variable predicts the solar power generation successfully under all 

weather conditions by using meteorological measurement. In the future work, 

essential meteorological data such as clearness index, rainfall, and sunshine duration 

will be included because it is required to increase the accuracy. Furthermore, by 

maximizing the classification between sunny, cloudy, and rainy days, we could 

decrease the significant error. 

 

 

4 Conclusion and Future Works 
 

In this research, we assessed the performance of SVR methods, such as SW-SVR, 

linear_SVR, RBF_SVR, and Poly_SVR to predict solar power generation of hybrid 

power plant in Indonesia. We used ambient temperature, ambient humidity, and solar 

radiation as explanatory variables. Evaluation of the results was done by statistical 

metrics such as R2, NRMSE, and MAPE. SW-SVR predicted solar power generation 

by using R2 and obtained a value of 0.99 that is close to 1. Further, the NRMSE score 

of SW-SVR method is 8.02%, which implies excellent forecasting. Small errors in the 

result could be due to noisy data, uncompleted data, and missing data. Another 

evaluation metric MAPE, showed good results for the SVR method with a value of 

18.5%. 

These results infer that SW-SVR method could be a promising one and can be 

applied to hybrid power plant in Indonesia. In future works, the algorithm of SW-

SVR will be improved by decreasing the error value of the explanatory variables. An 

alternative to this is to add dataset measurement data such as precipitation, clearness 

index, and sunshine hours, and consider data from global meteorological 

measurement and forecast. 
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