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Traversability Cost Prediction of Outdoor Terrains for Mobile Robot Using

Image Features

by Mohammed A. BEKHTI

Needless to say that terrain traversability is the most critical challenge mobile

robots navigating in outdoor environments face due to the wide variety of terrain

configurations. The ability of autonomous systems to accomplish missions in

unknown remote territories depends highly on the embedded algorithm to build

a reliable representations of the load bearing surface. Supervised visual appearance

based methods are the most sought methods due to the abundance of attributes

that can be extracted to describe a terrain nature, where in most cases, traversability

is estimated for a particular terrain class through data labeling. Traversability is

addressed from the vantage point of terrain nature with the assumption all regions

ahead of the mobile robot within a certain class share the same properties. Some

methods add an additional functionality to detect major terrain artifacts obstacles

and rules them out of from potential passable regions. However, we argue that

it is important to consider not only large-scale uneven artifacts, such as pile of

stones, but also small-scale terrain objects that can cause major vibrations. By

considering such small-scale unevenness, it becomes possible to reduce accumulated

damage to the robot and instability of its cargo. This thesis leverages image

properties to improve traversability prediction of non-uniform areas of a terrain

a in self-supervised manner. Multiscale analysis is performed on terrain images

to detect non-uniformity. Terrains are described by a pair of texture information

and vibration data obtained using an inertial unit. These attributes are then used

to predict vibration using image features by independent predictors both of which

consist of Gaussian Process. Experiment results using real data obtained with our

mobile robot in real world environment showed that our approach is reliable to

detect non-uniform regions in a terrain to then apply the proper predictor to estimate

vibrations. Vibration prediction witnessed a significant improvement compared

with classic method of prediction with no non-uniformity detection, with only a

an error of 0.23 and 0.26 for uniform and non-uniform terrain, respectively.
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Chapter 1

Introduction

Autonomous navigation of a mobile robot in natural environments have seen

a growing interest in recent years, especially under the stimulus of successful

planetary exploration missions on Mars under the Mars Exploration Rover (MER)

program initiated by the National Aeronautics and Space Administration (NASA).

The demand for applications employing autonomous mobile robots in outdoor

environments keep increasing. Besides planetary exploration, we can mention:

surveying or intervention in environments hostile to humans (radioactive zone,

polar) (Wagner et al., 2001), military operations such as mine clearance (Larionova,

Marques, and De Almeida, 2006; Ishikawa, 2005), surveillance and protection

(Shin et al., 2013). The primary advantage of performing these missions using

autonomous mobile robots is to avoid human intervention in hazardous areas, or

simply impossible to access. The autonomous operation of these platforms makes

it possible to overcome the challenges that may occur in the case of remotely

operated mobile robots, such as problems of connection degradation/loss or latency

time. Among the various terrestrial locomotion systems available for autonomous

terrain navigation, wheeled systems offer the best compromise between energy

consumption, ability to transport payloads, easiness of control.

For these platforms to be able to navigate autonomously and safely in outdoor

environments, various embedded processes need to be completed in real time. They

must first have the ability to perceive the environment to obtain data necessary to

compute their location, and to create a model the environment to assess terrain

traversability. Based on the latter information, a mobile robot can then calculate

the command to send to the motors to reach the final destination.

Autonomous mobile robots navigating in outdoor environments face two major

problems. The first one being the lack of a priori information of the terrains ahead.

Even when such information exist, it is likely to be imprecise due to the fact that

outdoor environments are dynamic i.e. subject to changes due to weather conditions,

etc. The second one raises from the wide variety of situations that the mobile

robot may encounter: more or less rugged terrain, sand dunes, snowy or even icy,

muddy or dry earth, slopes, etc. Sample terrains that can be found in outdoor

environments are shown in Figure 1.1. Unlike structured outdoor environments

where free space is considered traversable, rough outdoor environments it is simply
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(a) (b)

Figure 1.1: Typical outdoor terrains. (a) SherpaTT robot traversing undulating terrain
abundantly covered with rocks (Cordes, Kirchner, and Babu, 2018); (b) Nomad robot
searching for meteorites on an icy terrain in Antarctica (Wagner et al., 2001).

wrong to make the same assumption. The goal for engineers is then to enable mobile

robots with an intelligence capable of understanding diverse and priori unknown

outdoor environments.

Autonomous mobile robot systems include several sub-modules. The most

common components found in fully autonomous mobile robots are shown in Figure

1.2. Depending on the application, mobile robots may be significantly different in

terms of internal structure. Even so, some fundamental processes such as terrain

traversability analysis are common across all mobile robots. In what follows, we

will introduce the different locomotion systems encountered for outdoor navigation,

give an overview of sensors used to perceive the environment as well define terrain

traversability. Localization and path planning will be introduce in Chapter 2.

1.1 Autonomous Robotic Navigation Systems

1.1.1 Locomotion Systems

One essential element to guarantee a good performance of the mobile robot used

in rough outdoor environments is the locomotion structure. Terrestrial robotic

locomotion systems can be one of three main categories: wheeled (Siagian, Chang,

and Itti, 2013), legged (Wermelinger et al., 2016) (often inspired by humans

or animals), and apodal (Guimarães et al., 2016) (bio-inspired modular robots

Mobile 

Robot

Sensors 

Information

Localization

Terrain Traversability 

Analysis

Path 

Planning 

Position

Occupancy Grid

Costmap

Command

Figure 1.2: Typical components of an autonomous navigation system.
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Figure 1.3: Locomotion transformations of M-TRAN (Kamimura et al., 2002)

that use elements of the structure to apply to the ground propulsion forces).

Recently, engineers have a growing interest in hybrid locomotion as they can combine

different types of locomotion structures. M-TRAN (Modular Transformer) presents

complete reconfiguration capacities enabling it to traverse in very different modes

of locomotion. It is made up of modules each consisting of two half-cylinders

connected by a magnetic link. Consequently, the M-TRAN can pass from a

form of quadruped robot (proceeding by walking) to that of a caterpillar (moving

by crawling) (Kamimura et al., 2002). Transformation of M-Tran into different

locomotion configurations is shown in Figure 1.3. In this study, we are interested in

wheeled locomotion systems, closer to our applications. Regarding wheeled mobile

robots, the variety in the type of locomotion can come from one of the following

aspects:

• propulsion system,

• steering system,

• suspension system.

1.1.1.1 Propulsion

The most widespread propulsion for wheeled mobile robots is obtained by rotating

the wheels. In case of the Lama robot, propulsion comes from the actuation of

internal articulations of the chassis, when it progresses in peristaltic mode as shown

in Figure 1.4 (Wettergreen, Thomas, and Bualat, 1997).

At Jet Propulsion Laboratory (JPL), Pirjanian et al. developed a unique

locomotion systems around the Cliff-bot, where traction is possible by a secondary

winch grapple system (Pirjanian et al., 2002). Cliff climbing by the Cliff-bot assisted

by two anchor-bots is shown in Figure 1.5.
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Figure 1.4: Lama robot on its experiment site (Lacroix et al., 2001).

Figure 1.5: Cliffbot performing a cliff climbing aided by two Anchorbots (Huntsberger et al.,
2007).
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Figure 1.6: Typical steering schemes (Shamah et al., 2001).

1.1.1.2 Steering

Wheeled robotic systems operating in outdoor environments need the ability to

change the direction of their motion i.e. their trajectory. Several kinematic

architectures enabling this are shown in Figure 1.6.

• Ackerman type

This kinematic is commonly used on commercial vehicles. In the event

a mobile platform traversing a planar surface, on one of the axels, the

coordinated rotation of the wheels is guaranteed by the mechanical coupling.

When making a turn, The steering angle of the inner wheel is smaller than

the outer one. The center of turning circle is obtained by the intersection of

the lines perpendicular to the sagittal plane of the steerable and non-steerable

wheels.

• Articulated type

The chassis is made up of several parts that can be oriented relative to each

other by connections. Railways vehicles are an example of this configuration

with passive connections holding the wagons.

• Independent explicit type

The wheels are independently oriented. This configuration is probably the best

mobility option. It enables a mobile robot to execute very difficult maneuvers

such as crab motion and rotation around the center of the platform. However,

this architecture augments the mechanical complexity. It would requires the

implementation of a control system to coordinate the actuators with high

precision. Consequently, this system is less robust, heavy, and maintenance

greedy.

• Skid-steering type

In order to change trajectory, the idea is to impose different speeds on the

wheels located on each side of the chassis. Lateral sliding is an important

component needed for the rotation of the mobile robot. The instantaneous

position of rotation center depends upon two parameters which are the slip

and yaw speeds. Slip makes it difficult to use odometry measurements. Yet,
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skid-steered mobile robots are particularly robust, light, and controlling them

is relatively simple. For these reasons, we choose this configuration for our

study.

1.1.1.3 Suspension

Suspension on an all-terrain locomotion systems increase crossing capabilities as

well as stability as it maintains wheels/soil contact and traction. Suspension systems

can be either passive or active. In the latter category, Jarrault et al. developed a

method that take advantage of the kinematic reconfigurability of the mobile robot

HyLoS 2 to enhance contact forces and tipover stability while traversing significant

terrain blocks (Jarrault, Grand, and Bidaud, 2010). Although, the mobile robot used

for experimentation in this thesis has no suspension system, we believe it is robot

enough to traverse rough terrains within its physical constraints.

1.1.2 Terrain Perception and Traversability

Perception is a crucial requirement to build intelligent mobile robots capable of

autonomously navigating unknown rough environments. The goal is to create

a precise environment model to enable obstacle recognition, identifying passable

from impassable terrains, and selecting the best route to get to the final destination

without endangering its safety and stability. Throughout the years, engineers

have explored a wide range of sensors to build terrain models and traversability

assessment systems. In the following, we give a glimpse of the sensors used

for terrain representation, as well as the mainstream terrain representation and

traversability analysis methods.

1.1.2.1 Sensors

The most commonly used sensors for outdoor domains perception are:

• LiDAR sensors

LiDAR sensor provide measurements of obstacles ahead of the mobile robot.

However, 2D lasers destine to accomplish a plane scan, can only be used

on a flat surface and provided that obstacles are visible at the height of the

laser. hence, they are very efficient and widely used in indoor domains

with obstacles such as walls, but less common in outdoor applications. 3D

lasers provide a more complete representation even in unstructured outdoor

environments. Nonetheless, They are still not popular due to the high cost and

require a significant computational load due to the large amount of data to be

processed.

• Cameras

Cameras are certainly the sensors capable of providing the richest information

on the environment, more than ever after engineers started exploiting several
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images cues like color and texture. Moreover, mounting two cameras on

stereo-vision bench would allow to estimate the depth of each pixel paired

in image pairs and thus associate complete 3D coordinates with each point

(Gallego et al., 2007). Images acquired through a stereo vision bench helps to

compute a 3D point cloud pf the perceived environment, which can be used

to build a numerical terrain model. However, to achieve this representation a

severe computational cost is induced which often requires a slow progression

of the robot. This has prompted engineers to find new ways to accelerate 3D

map reconstruction such as associating stereo vision bench and FPGA (Devy

et al., 2011).

• Thermal sensors

Thermal sensors, Commonly known as thermographic cameras, are devices that

use infrared radiations to create an image. While cameras provide significant

visual information of the terrain surface, they fail to give an insight of the

mechanical properties of layers beneath the surface. Cunningham et al.

achieved soil strength assessment by exploiting thermal properties of granular

materiel terrains (Cunningham et al., 2015). In other works, a thermal sensor

was combined with a traditional camera to help extract obstacles (Matthies and

Rankin, 2003).

1.1.2.2 Terrain Traversability

According to Papadakis (Papadakis, 2013), traversability is the ability of a ground

mobile robot to traverse a terrain region. It is measured by taking into account the

terrain model, the mobile robot model, and the kinematic limitations. In terrain

traversability analysis, the goal is to generate a traversability map, often called

traversability costmap, to measure the traversability load for a mobile robot to cross

over a terrain area. In most cases, traversability is dependent of the locomotion

system used, as different locomotion architectures differ remarkably in terms of size

and capabilities. The core of traversability assessment is to use sensors on-board

the mobile robot to deduce whether it is safe to traverse. This task would never

cause any major issues in structured domains, but, analyzing terrain navigability in

outdoor rough environments is very demanding as natural terrains vary on several

aspects such as appearance/geometric properties, terramechanical properties, and

also a priori unknown. hence building a system capable of building a reliable

and faithful model of the load bearing surface is of high importance. To this end,

engineers rushed to propose different solutions to tackle this problem.

In model-based frameworks, traversability analysis is performed using

mechanical properties or simulation (e.g., (Zhou et al., 2014; Mazhar et al., 2013)).

However, the approach relies on a detailed description of terrain properties and

is highly computational (Cunningham et al., 2017); therefore, it is not applicable
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to certain environments. The most popular approach in recent years is to rely on

machine learning techniques and terrain data to infer terrain traversability.

While supervised learning methods proved to be effective (e.g., (Hong et al.,

2002; Manduchi et al., 2005; Suger, Steder, and Burgard, 2015)), there are several

drawbacks to such methods. Manually labeling a large amount of data to train

the classifier is tedious and subject to inconsistency. As a result, this approach is

not flexible as it is unable to adapt to dynamic environments without more data

annotation and training. An alternative to the latter approach, self-supervised

learning, based on proprioceptive recordings, such as inertial data, as label

information to determine whether terrains is traversable, has been intensively

researched (Stavens and Thrun, 2006). The self-supervised approach, also called

the near-to-far strategy Ho, Peynot, and Sukkarieh, 2013a; Krebs, Pradalier, and

Siegwart, 2010, is promising for making mobile robots adaptive to a variety of

environments. A much detailed discussion about the mainstream methods for

terrain traversability estimation is given in Chapter 2.

1.2 Problem, Objective and Approach

In this work, we propose a framework to enable mobile robots to autonomously

learn terrain traversability using only their sensors in a self-supervised manner.

Terrain traversability is predicted as a cost measured with an acceleration sensor

mounted on the mobile robot. Focusing on the usage of image features for

terrains with small-scale unevenness, a texture-based prediction of traversability

was proposed in (Bekhti and Kobayashi, 2016). However, applications of image

texture information has not been thoroughly investigated because, in natural

environments, terrains are often are non-uniform, therein containing spiky regions

such as relatively large stones and roots of trees. This non-uniformity causes

traversability cost prediction to be challenging. Detection of such non-uniformity in

terrains is proposed based on multiscale local image features. It is shown that we can

improve the prediction performance of the texture-based approach. An advantage of

the texture-based approach is that the sensor is affordable and can still detect motion

features of the traversing robot without high-cost 3D sensing of the terrain geometry.

To reduce the difficulty of motion feature prediction due to spiky objects in terrains,

the classification of images into uniform/non-uniform is introduced. Predictors

generated by a Gaussian process (Rasmussen and Williams, 2006) are independently

applied to uniform/non-uniform terrains so that each predictor can be specialized

to learn each type of terrain. The proposed framework for improving the prediction

performance is evaluated through comparison with existing texture-based motion

feature prediction.

Terrains evaluated in this thesis are not always uniform due to irregular

obstacles, such as large stones and roots of trees, and are assumed to be traversable

even at a higher cost than homogeneous terrains. Typical obstacle size varies
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(a) (b)

(c) (d)

(e) (f)

Figure 1.7: Natural terrains. (a) Gravel; (b) Stones; (c) Non-uniform; (d) Grass; (e) Woodchip;
(f) Non-uniform.

between 40 to 80mm in height, which is a significant mobility challenge for the

mobile robot as the wheels radius is 105mm. Terrains are assumed to be rigid.

Deformable terrains (Ho, Peynot, and Sukkarieh, 2013a) that endanger the mobile

robot’s balance, or cause slippage/sinkage Howard et al., 2006, are not covered. In

addition, untraversable terrains are also beyond the scope of this thesis. Samples of

the terrains investigated in this paper are introduced in Figures 1.7 and 1.8.

(a) (b)

(c) (d)

Figure 1.8: Artificial terrains. (a) Slick asphalt; (b) Granulated asphalt; (c) Tiles; (d) Wood.
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Chapter 2

Literature Review

Traversability estimation for autonomous mobile robots navigating in rough

environments focused mainly on visual- and geometry-based methods.

Traversability analysis became the center of extensive research activities following

the promotion of outdoor autonomous driving via the Learning for Autonomous

Ground Robots (LAGR) program (Jackel et al., 2006) by the Defense Advanced

Research Projects Agency (DARPA). Several researchers dealt with near-to-far

frameworks by training long-range classifiers employing appearance/geometric

cues and ground truth traversability quantification either from proprioception

or data labeling. Others introduced metric evaluations to traversability. In what

follows, we will introduce the two mainstream approaches to traversability:

classification and prediction.

2.1 Classification Approach to Traversability Estimation

Proprioceptive traversability measurements are quantification of behaviors that

translate from a direct interaction of the mobile robot and the terrain under-foot.

Such measurements involve wheel torque, wheel sinkage, wheel slip, and

terrain roughness. Near-to-far traversability prediction framework aiming at

training a long-range classifier using image and/or geometry data to estimate

these proprioceptive properties is of growing interest. Accordingly, it requires

collecting a sustainable amount of ground truth proprioceptive measurements and

corresponding exteroceptive cues.

Engineers at Massachusetts Institute of Technology (MIT) and California

Institute of Technology (CalTech) developed frameworks to measure traversability

in granular environments. At MIT, Halatci et al. classified terrains into three

dissimilar traversability groups: sandy, rocky, and mixed (Halatci, Brooks, and

Iagnemma, 2007). This was achieved by a naive Bayes to merge individual

Support Vector Machines (SVMs) employing texture, color, as well as depth

from stereo imagery. Brooks and Iagnemma broaden the framework by training

on proprioceptive properties to enable self-supervised learning of traversability

prediction. Traction coefficient was evaluated by discretizing the range of values

in combination with a multi-class classifier. In a beach type terrain conditions,



12 Chapter 2. Literature Review

Figure 2.1: Heterogeneous Classification Results(Filitchkin and Byl, 2012)

this work accomplished reasonable results but lacked ground truth necessary for

quantitative results (Brooks and Iagnemma, 2012).

At CalTech, Angelova et al. defined traversability as a slip prediction problem.

Terrain nature is estimated from image texture using the nearest neighbor majority

vote of in a dictionary of textons. Given a terrain class, a slip predictor based on

receptive field regression algorithm (Schaal and Atkeson, 1998; Schultz et al., 2010)

is built relying on pitch and roll of the mobile robot on the terrain. A 20% RMS error

performance was achieved through experimentation in sand, gravel, soil, wood

chip, and asphalt (Angelova et al., 2007). Above referred method was integrated

with a path planning and the resulting architecture was tested at JPL’s Mars Yard.

Results of slip precision were not reported (Helmick, Angelova, and Matthies, 2009).

Both research groups addressed slip-prediction in granular materials which are

benign sand environment. However, rough outdoor environments are much more

complex and can embedded loose materials and varying surface configurations that

can endanger the mobile robot.

Traversability analysis is highly correlated with the nature of terrain the mobile

robot is engaging with. Angelova et al. (Angelova et al., 2007) train individual

traversability estimators for each terrain nature. Certain terrain classifiers perform

at pixel level (Filitchkin and Byl, 2012; Manduchi et al., 2005), others on image

segments (Angelova et al., 2007; Howard and Seraji, 2001; Seraji and Howard, 2002)

and some on 3-D point segments (Munoz, Vandapel, and Hebert, 2009; Vandapel

et al., 2004). All these techniques faced challenges to distinguish terrain class at

boundaries, as illustrated by Figures 2.1. This emphasizes necessity to have reliable

boundary segmentation to avoid having outliers. Smoothness restrictions specified

in a Conditional Random Field (CRF) showed an improvement of inference quality

(Munoz, Vandapel, and Hebert, 2009).

Terrain classification based on proprioceptive signals aims at enhancing

precision and performance by choosing the best composition of sensors, descriptors
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and classifiers. Among proprioceptive signals, some engineers rely on vibration

while others focus on slippage and stickiness of the terrain. The goal of this work is

predicting vibration of far range terrains. To fully comprehend motivation behind

the usage of an IMU to measure vibration signals of terrain, a brief review on

proprioceptive classification is discussed.

Terrain classification based on vibration was proposed by Iagnemma and

Dubowsky using accelerometers as the proprioceptive sensor (Iagnemma and

Dubowsky, 2002). Later on, authors used vibrations prompted on a wheel to

approximate cohesion and friction angle in a testbed (Iagnemma et al., 2004). The

very constrained test-bed involved a single rigid wheel assembled on a static vertical

axis. Rotating the wheel at different rates, separate slip ratios are imposed. In

practice, wheeled mobile robot have at least four wheels and loads forced upon each

of them change according to the load-bearing surface nature. Sadhukhan and Moore

used a neural network based classifier to detect terrain nature for a high-speed

regular size vehicle (Sadhukhan and Moore, 2004). The size of mobile robot plays

a important role as small changes in terrain geometry prompts different responses

even at low velocity maneuvers.

In Ojeda et al. (Ojeda et al., 2006), comparison of terrain classification and

characterization is explained. Pioneer 2-AT, a relatively small mobile robot was used

jointly with an Artificial Neural Network (ANN) to classify terrain into distinct types

such as dirt, gravel, pavement, sand and grass. Their classifier misclassified dirt with

sand and grass due to similar vibration characteristics of those terrain types.

Weiss et al. built a terrain classifier based on a Support Vector Machine (SVM) on

frequency representations (namely Fast Fourier Transform (FFT) and Power Spectral

Density (PSD)) of vibration readings acquired from a cart pulled manually on seven

distinct terrain types In (Weiss, Frohlich, and Zell, 2006). To this end, an analysis on a

standard data set was necessary to compare the results of the different approaches. A

comparison of prior classification works based on frequency description of readings

gathered from an ATRV-Jr outdoor robot was presented (Weiss et al., 2007). SVM

offers better results than previous terrain classifiers. A common denominator for

mentioned methods evaluation being carried out at a constant speed scenario. In

contrast, velocity independent terrain identification was tackeled in (DuPont et al.,

2008; Ward and Iagnemma, 2009).

It is important to note that proprioceptive terrain prediction and discriminating

terrain types using accelerometers and gyroscopes is possible only if the

load-bearing surface causes terramechanical behavior in the robot.

Unlike proprioceptive traversability, data annotation refers to feature labeling

with ground truth traversability. This can be achieved either by expert designers or

heuristically. In (Bajracharya et al., 2009a), large variations from the ground plane fit

to a terrain region based on stereo-measured morphology enable obstacle detection.

Yet, since stereo-measurements do not offer precise geometric output at far range

(e.g. for the LAGR robots, the system fails beyond a range of 10 m), a mono-vision
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classifier can help match its close-range performance. Hadsell et al. predicted

obstacles at up to 40 m range from mono-vision system. This was achieved using

a deep convolutional neural network (CNN) and stereo training data. Ground truth

obstacles were defined heuristically relying on difference from the ground plane

fit to a terrain surface in stereo imagery (Hadsell et al., 2009; Hadsell et al., 2008).

Vernaza et al. used a same near-range obstacle interpretation with sub-modular

MRFs to classify at far range (Vernaza, Taskar, and Lee, 2008).

Many techniques acquired ground truth by means of human experts. Happold

et al. represented the mobility cost of terrains to be the sum of geometric attributes

involving height variation, terrain slope, and the ratio of cloud points above the

ground plane. Ground truth traversability annotation was carried out by an expert

engineer that assigned one of four classes (low, intermediate, high, or lethal) to a

terrain cell. Then, the cost was estimated using trained a neural network with color

in imagery using the geometric features (Happold, Ollis, and Johnson, 2006). In

(Bajracharya et al., 2009b; Bajracharya et al., 2008; Howard et al., 2006), the authors

trained a two-class SVM to predict traversability of far terrains in color information

using training samples of a near-range classifier. At first, the near-range geometric

classifier was trained manually by a designer. Authors also showed the ability

to train the near-range classifier through self-supervised proprioceptive sensory

information. Berczi et al. classified terrains ahead into traversable or untraversable

by means of Gaussian Process trained with roughness obtained from stereo imagery

measurement. Ground truth was humanly labeled (Berczi, Posner, and Barfoot,

2015).

Both heuristically and humanly defined ground truth are limited to predict

traversability in outdoor environments. The issue raises from the inability of

humans to adequately and intuitively define what is and what is not traversable

by a mobile robot in an unknown domain as proved by the problems faced by the

Mars rover.

Exteroceptive terrain classification are either geometry- or appearance-based

methods. Single image frames hold color and intensity at each pixel but lack

3-D geometry of the terrain surface. Appearance-based frameworks deal with

the problem from an image processing and classification standpoints that output

a discrete set of terrain classes instead of a traversability measure. Terrain

classification by cameras on-board ground robots belongs to a different category

compared to readings acquired from aerial vehicles. However, the underlying

practices in on-board and aerial camera image classification share several similarities

between one another, literature covering both is introduced below.

Angelova et al. started classification with a fast and simple architecture and

later on move to finer and more advanced classification algorithms based on color

and texture cues (Ward and Iagnemma, 2009). The on-board camera discriminates

load-bearing surface type into distinctive classes labeled by the author like sand,

soil, grass, woodchips, gravel, asphalt. This method failed to recognize that within a
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class of terrain such as grass, very different responses can be induced on the mobile

robot. Flat grass or bumpy grass can imply distinct traversability metrics.

Terrains with significant surface granularity may cause images to captured at

different angles. which may induce different rotation and scale for images obtained

for the same terrain. This raises the importance of the visual descriptor to be

invariant to rotation and scale. Fortunately, recent visual descriptors such as Scale

Invariant Feature Transforms (SIFT) (Lowe, 2004) and Speeded Up Robust Features

(SURF) (Bay, Tuytelaars, and Gool, 2006) enable extraction of robust. Filitchkin and

Byl (Filitchkin and Byl, 2012) take full advantage of these features to discriminate a

predefined set of natural terrain classes and afterwards select appropriate gait for a

quadruped robot.

Aerial classification of outdoor domains came to life with the DARPA PerceptOR

program. Aerial LiDAR data enabled prediction of ground mobile robot

orientation, additionally detecting vegetation. It is regarded as both geometric-

and appearance-based. Sofman et al. combined camera imagery cues and range

readings from a laser mounted on-board an Unmanned Aerieal Vehicle (UAV), to

discriminate terrains into road, grass, tree (Sofman et al., 2006b). This was later

utilized to enable far range navigation for a mobile robot (Silver et al., 2006). The

approach relies on the geometric and semantic interpretation of heterogeneous data

to generate traversability cost chart while every class has a defined a priori traversal

cost.

Hudjakov et al. classified terrains captured by static aerial imagery into road,

house, grass or dirt groups using a convolutional neural network trained by a

database of static images acquired from a UAV (Hudjakov and Tamre, 2009).

Murphy et al. proposed a multi-class Gaussian Process (GP) classifier that compute

likelihood of class membership of the image content rather than using labels In

(Murphy and Newman, 2010). Texture cues of the terrain images play a major role in

discriminating terrain natures. Several texture classification schemes in the literature

benefit from sharp images including a homogeneous texture pattern acquired from

a static camera angle. However, aerial moving vehicles capture images with blurred

artifacts due to motion as well as the vibrations Some image texture descriptors are

influenced by the work of Khan (Khan, Masselli, and Zell, 2012). Khan studied the

performance of various image descriptors from images taken by a flying vehicle with

different resolutions. Alongside two texture descriptors, Local Binary Pattern (LBP)

and Local Ternary Pattern (LTP), SURF descriptor was also investigated.

2.2 Prediction Approach to Traversability Estimation

Stavens et al. developed a method to estimate terrain roughness that was employed

during the DARPA Grand Challenge. Roughness was obtained from IMU feedback

on the mobile robot. Local terrain elevation differences in the LIDAR point cloud

was correlated to ground truth roughness to support long-range prediction (Stavens
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Figure 2.2: DEM of the terrain seen by the mobile robot represented by the cross on the
left, colored by elevation. Occluded regions of the terrain appear in white (Ho, Peynot, and
Sukkarieh, 2013b).

and Thrun, 2006). Attitude-based traversability prediction depends highly on

precise and complete terrain morphology representation. However, most outdoor

environments present irregularities of the ground height and existing objects can

cause the occlusion of a significant region of the terrain ahead of the mobile robot,

as illustrated by Figure 2.2. Ho et al. (Ho, Peynot, and Sukkarieh, 2013b; Ho, Peynot,

and Sukkarieh, 2013a; Ho, Peynot, and Sukkarieh, 2016) provide a method to extend

the elevation map into unknown regions of the terrain to enable worst case mobility

to be estimated. The significant hypothesis is the rigidity of the ground. Ho et al.

expanded the algorithm to predict the deformation of observed terrain based on

past experience. The deformable terrains considered were unstable rock and sand.

Other frameworks involved texture and color features from camera imagery to learn

to predict using proprio-sensors such as suspension angles, bumpers, IMUs, and

motor current (Dongshin Kim et al., 2006; Krebs, Pradalier, and Siegwart, 2010).

To estimate mobility of outdoor domains with dense vegetation, Wellington

et al. pioneered development of algorithms to predict the ground height as well

as obstacle detection in heavily vegetated agricultural domains. They used a

voxel-column representation in a MRF framework to learn obstacle detection and

traversability prediction despite partially the ground being partially occluded by

vegetation. Ground truth ground height was measured by the robot driving over

the terrain (Wellington, Courville, and Stentz, 2005; Wellington and Stentz, 2004;

Wellington and Stentz, 2003).

Learning traversability models in this fashion involves an important amount

of training samples that should represent all possible terrains a mobile robot may

encounter. However, it is highly that very few samples are acquired in hazardous

domains. This increases difficulty to construct a feature-rich terrain model based

only on vehicle experience.
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Methodologies aiming at predicting traversability from attitude consider the

pose the mobile robot while traversing a specific terrain region. Such architectures

involve accurate knowledge about the mobile robot as they are often parameterised

with respect to certain system information. The estimated measure typically relies

on properties of the load-bearing surface and the mobile robot used for the mission.

It is assumed that terrain surface is clearly recognizable. In real world, this

hypothesis is invalid. A reliable Digital Elevation Model (DEM) that describes

elevation variations of the ground is essential for these methods.

Some engineers have used the DEM to compute a set of measurements through

a fuzzy logic network, all contributing to the traversability of a terrain region:

• Terrain discontinuity (Goldberg, Maimone, and Matthies, 2002; Howard and

Seraji, 2001; Seraji and Howard, 2002). This measure stops the mobile robot

from "bottoming out". It is calculated from the maximum difference of adjacent

height estimates, and is compared to the mobile robot minimum clearance.

• Terrain roughness (Goldberg, Maimone, and Matthies, 2002; Howard and

Seraji, 2001; Seraji and Howard, 2002). This measure inhibits the mobile robot

from traversing terrains with important surface irregularities, as it can be

endangered with resultant vibrations. It is calculated from the residual error

on a plane fit to the region, and is compared to a threshold based on the mobile

robot minimum clearance.

• Terrain slope (Goldberg, Maimone, and Matthies, 2002; Howard and Seraji,

2001; Seraji and Howard, 2002). This measure prevents the mobile robot from

sliding or tipping. It is calculated from the slope of the plane fit to a terrain

grid, and weighted against the maximum tolerable pitch angle of the mobile

robot.

• Terrain hardness (Howard and Seraji, 2001; Seraji and Howard, 2002). This

metric helps the mobile robot to recognize hard terrains surfaces to limit

likelihood of bogging. It is calculated by seeking the terrain type from a set

including sand and dirt.

The combined traversability measure is expressed in terms of the mobile

robot parameters; however the optimal adjustment of these parameters can be

counter-intuitive as the optimal selection for parameters usually differs considerably

from the obvious choices (Berczi, Posner, and Barfoot, 2015). Their method targets

the detection of rocky regions. No learning was performed and in many cases the

rocky regions can be camouflaged. Consequently, their method is not robust.

Other researchers employed a DEM to predict the attitude of the mobile robot

while navigating regions (Ho, Peynot, and Sukkarieh, 2013b; Lacroix et al., 2002;

Tarokh and McDermott, 2005). Given the mobile robot’s attitude, traversability

estimate is determined via a simple stability margin metric (Papadopoulos and Rey,
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Figure 2.3: Angle metric (Papadopoulos and Rey, 1996).

1996), as shown in Figure 2.3. The stability margin is defined to be the minimum

angle between the vectors to the edges of the support points of the robot and the

force acting on the robot. As shown 2.3, this is given by θ1. Critical tipover can be

detected if θ1 approaches the value zero.

When navigating in outdoor environments, mobile robots encounter various

levels of traversability. On a flat smooth pavement, mobile robots face no major

challenges compared with rough terrains where it is much harder to traverse.

Mission success is highly correlated by the mobile robot’s ability to efficiently

navigate various a priori unknown environment. As this thesis is concerned with

the regression of the continuous traversability cost, the following introduces some

related works. Two groups of traversability assessment methods are discussed.

In the first one, traversability is calculated from proprioceptive readings available

to the robot like power consumption and velocity. For the second group, terrain

traversability estimation can be constructed directly from captured exteroceptive

data such as the ground slope or vegetation density observed in surroundings of

the mobile robot. The benefit of the former method is that it is based on the mobile

robot’s experience traversing a specific terrain, i.e., it can consider changes in terrain

traversability due to unfamiliar atypical terrain surfaces. An evenly distributed

slope surface is fairly accessible however it can become much harder for a mobile

robot to traverse if the load-bearing ground is wet. Exteroceptive methods are

flexible to a wider portfolio of mobile robot platforms. On a given terrain, two

mobile robots may record distinct proprioceptive readings, but the exteroceptive

perception of the environment remains unchanged. Terrain classification into given

discrete groups is the simplest strategy to the traversability analysis. While it does

not clearly state that the individual classes have different mobility property, it is

usually implied. However, a false estimation of the traversability cost may have

irreversible outcomes to the mission.

A combination of individual classes and a continuous metric is introduced

in (Stelzer, Hirschmüller, and Görner, 2012), where traversability is denoted as
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danger level, which is seen as exteroceptive half-continuous-half-discrete measure

representing the terrain difficulty. The danger level estimation is calculated based on

slope, roughness, and step height of the terrain. Danger level values d vary between

[0, 1], where d = 0 denote passable terrains and d = 1 indicating barely traversable

or unknown terrains. Non-traversable terrain morphology is represented by d =

∞. A continuous traversability parameter was computed by interpreting density,

position, and distribution of ladar point cloud for sensed obstacles (Sofman et al.,

2006a). Areas with dense vegetation translate with a high traversability cost value

whereas smooth terrains such as roads are represented with a low traversability cost.

The criteria is projected onto a logarithmic scale to better approximate prediction

errors.

The Cost of Transport (CoT) was first introduced by (Tucker, 1975). It is a

continuous proprioceptive measure expressed as

CoToriginal =
Pi

v
, (2.1)

where Pi is the power input and v is the mobile robot’s velocity. The metric

was borrowed by (Nishii, 2006; Kottege et al., 2015; Mulgaonkar et al., 2016; Xi,

Yesilevskiy, and Remy, 2016; Alexander, 2005) in different forms to suit various

mechanical architectures. The CoT measure is defined for passable terrains as

nonnegative real number, i.e., CoT ∈ [0, ∞[. For nontraversable grounds, the

corresponding CoT is either undefined or infinite. This method shares similarity

with the danger level measure from (Stelzer, Hirschmüller, and Görner, 2012) as

both assigns a continuous value to traversable terrains and infinity to impassable

terrains.

Kottege et al. (Kottege et al., 2015), proposed a variant definition for CoT based

on power consumption. the metric is computed as

CoTpow =
Pin

mgv
, (2.2)

where Pin denote the instantaneous power consumption, m is the weight of the robot,

g is the gravitational force, and v is the velocity of the locomotive. CoT based on

energy consumption is convenient for electrically driven mobile robots, as it involves

instantaneous power consumption Pin, which is give by

Pin = VIin, (2.3)

where V is the voltage and Iin is the instantaneous current drawn by the motors.

Energy consumption based measurement requires knowing power consumed by the

mobile robot, and may not be helpful for application where employed locomotion is

a biologically inspired platform to which measuring the mechanical load would be

relevant.
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Instead, Xi et al. expressed mechanical based CoT as

CoTmech =
E

Ls
, (2.4)

where E denote the energy expenditure and Ls denote stride length (Xi, Yesilevskiy,

and Remy, 2016; Alexander, 2005). However, above described metric does not

take into account additional energy loss via heat generation when the locomotion

is driven.

Nishii (Nishii, 2006), redefined CoT to consider heat loss as

CoTheat =
∑

n
i=1 (Wi + Hi)

mvt
, (2.5)

where Wi denote the mechanical energy consumption, Hi denote heat energy lost,

while i denote moving leg (out of n legs), m is the weight of the robot, v its velocity,

and t its gait cycle duration.

2.3 Hybrid Approach to Traversability Estimation

Even in presence of ideal models of the terrain and robot, traversability prediction

remains a difficult task due to the complexity of the robot-terrain interaction.

Many terrains contain complex surface morphologies such as ripples and dunes

that impact wheel-terrain interaction. Even on a relatively flat terrain surface, a

mobile robot can still slip under the influence of local slopes generated by sinkage.

An example of such scenarios is the difficulty for Curiosity to traverse complex

polygonal dune configurations (Arvidson et al., 2017). Cunningham et al. take

advantage of spatial correlations of slip measurements to overcome the inability to

detect visual variations in sand terrains. After learning prediction models relying

on slip data for visually classified terrain natures, the mobile robot adjusts itself to

new terrains using proprioceptive information. On-line local adaptation improves

prediction performance for far range terrains (Cunningham et al., 2017). Figure 2.4

illustrates results obtained using local adaptation.

2.4 Localization

Localization is one of the core functions of mobile robotics. In fact, it is important

to have an estimate of the position of the mobile robot at all times so that the latter

can carry out a trajectory without collision, duly follows the movement instructions

received to reach the final destination. Given the significance of the problem in

hand, several localization methods have been proposed. In what follows, we briefly

introduce some of the localization methods used in outdoor environments.
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Figure 2.4: Comparison of GP and GP + local information on a subset of Sand samples as
classified from visual. Green is ground truth, red is the GP, and blue includes local offset.
Shaded areas represent 2.5 standard deviation bounds. Predictions were made within 1 m
(Cunningham et al., 2017).

2.4.1 Odometry

Odometry relies on angular displacement measurements of the wheels provided by

internal encoders to estimate the relative position of the mobile robot over time.

Odometry is preferred among engineers for two reasons: 1. odometry is relatively

simple to implement, 2. encoders are commonly found on ski-steering wheeled

mobile robots. However, This method suffers from different errors that can be

caused by variant factors. Systematic odometry errors, produced at every cycle,

are mainly caused by biases in the parameter values of the mobile robot like wheels

radius, encoder resolution, sampling frequency, etc (Bostani, Vakili, and Denidni,

2008). Other errors may come from the assumption of rolling without sliding

on a flat surface, on which classic odometry formulations rely. In outdoor rough

environments, many of the drifts happening induce important occasional errors that

are impossible to quantify and correct in practice. Borenstein et al. introduced

a an algorithm that combines odometry and inertial measurements to improve

localization (Borenstein and Feng, 1996). The authors argue that irregularities in

the terrain such as bumps impact the mobile robot for short periods of time where

encoder and gyro readings varies significantly. Using this observation, the algorithm

uses mostly odometry data, and employ gyro signals when encoder and inertial

readings differ considerably.

2.4.2 Inertial Localization

This method takes advantage of readings provided by inertial measurement units

(IMU), devices composed of 3 gyrometers each measuring the angular speed around
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an axis and three accelerators each recording an acceleration along an axis. It

is then possible to approximate of the position of the mobile robot boarding an

IMU by single and double integrals of data from the gyrometer and accelerometer,

respectively. However, this estimate is vulnerable to measurement noise and subject

to an important drift if the information is not combined with other data. Most

often, engineers implement fusion system where inertial unit data are merged

with data from Global Positioning System (GPS) sensors (Sukkarieh, Nebot, and

Durrant-Whyte, 1999).

2.4.3 Visual Odometry

Data used in this method are image pairs provided by a stereo vision bench. The

process starts from correspondence operation of pixels in the two images then

tracking these pixels in the next image frame. This leads to estimate parameters

of the real displacement by computing the visual movement (Mallet, Lacroix, and

Gallo, 2000). Efficiency of this method depends essentially on the selection of

interest pixels used to approximate displacement changes. Lacroix et al. proposed

an improved version of the classic method by reducing considerably the number of

pixels relevant to the correlation operation, allowing a higher processing frequency

and a faster estimate of the displacement (Lacroix and Jung, 2004).

2.5 Path Planning

Path planning is historically defined by the the piano mover problem, where the goal

is to move the piano from one place to another in the middle of a room containing

other objects (Schwartz and Sharir, 1983). Indeed, moving a piano within a room

faces a problem: given the shape of the piano, is there a practicable path between

the object existing in the room? To resolve this move problem, there must be at

least one valid path that the mover must make between a start configuration and

an arrival configuration. A movement is said to be valid if it is fully located in a

space free of obstacles. Path planning therefore aims at finding a valid route for the

moving entity. However, the problem will be very different depending on the object

constraints. Path planning is very useful for mobile robotics as well as automotive

applications (Diaz de Leon S. and Sossa A., 1998; Kim, Chung, and Park, 2010). It

is also utilized to solve issues related to object manipulation (Saut et al., 2007), or

molecular disassembly (Cortes, Jaillet, and Simeon, 2007).

2.5.1 Planning with Obstacles

To search a route around obstacles, a mobile robots requires a description of its

surroundings. To solve the path planning problem independently of the type of

the mobile robot, Lozano-Perez proposed the so called method Configuration Space

C (Lozano-Perez, 1983). The problem is then defined as follows: give a space C
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Figure 2.5: Configuration space idea: the goal is to search for a route from qI to qG in C f ree

(LaValle, 2006).

composed of obstacle regions Cobst and free spaces C f ree, is there a valid a route

between an initial configuration qI and a final configuration qG in C f ree. The

entire space is given by C = C f ree ∪ Cobst. The complexity of the problem raises

exponentially with the dimension of C which makes it difficult to deal with. A

graphical representation of this formulation is given by Figure 2.5.

In addition to the algebric description of configuration space, most often,

occupancy grids are preferred. A two dimentional grid enables efficient storage of

a wide area by dividing the space into 2D cells. Beside the widely preferred square

cells, engineers introduced different regular polygons with interesting properties

(Ryde and Brünig, 2009). Occupancy grid path planning is used very often in mobile

robotics and is very successful in indoor domains. Marder-Eppstein et al. used an

occupancy grid and the D* search algorithm to enable a mobile robot to navigate in

an office (Marder-Eppstein et al., 2010; Stentz and Mellon, 1993). The authors called

it the office marathon experiment. Occupancy grid generated from configuration

space represents the surroundings of a mobile robot in binary form i.e. cells are

either unoccupied or occupied. Some engineers argue that it is necessary to know

the traversability cost of an unoccupied cell and extended the framework to become

costmap. Martin et al. associated the energy usage commonly known as Hotel Load

to each cell to in the costmap to describe the influence of the terrain on the mobile

robot’s motion (Martin and Corke, 2014). Reduction of the tour energy expanditure

as well as number of excursions of each cell in the cost map is presented in Figure

2.6.
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Figure 2.6: The average reduction in tour cost and number of tours until break with varying
parameters. (Martin and Corke, 2014).

2.5.2 Graph Search

Many researchers perform path planning by means of graph search algorithms.

Graph search aims to find minimal traversability cost from one node to another.

Typically, each cell in an occupancy grid is considered as a node. The movement

between cells is called an edge and translates into an invariant non-negative cost. In

case of obstacles, moving to an occupied cell is materialized by an infinite edge cost.

One of the elementary graph search algorithms found in the literature is the

Dijkstra algorithm (Dijkstra, 1959). It performs a uniform cost route search to achieve

a complete and optimal path through a graph. Optimal paths search targets the

lowest cost, while complete path search aims at finding a path given if it exists.

Dijkstra algorithm is not constrained by any assumption on how to search for a

route. It propagates in every direction, and if necessary in the opposite direction

of the destination which is not always efficient.

To improve efficiency of path search of occupancy grid, the A* and D* graph

methods apply heuristics. Hart et al. extended the Dijkstra’s algorithm by

introducing heuristics to govern path search (Hart, Nilsson, and Raphael, 1968;

Hart, Nilsson, and Raphael, 1972). Their method predicts the best path through

an additive cost function that operates in two stages; the path cost from the start

configuration to the current node, and the heuristic estimate for the cost to reach the

final configuration. A frequently used heuristic is the distance to the goal, which

leads A* to begin the search in the direction of the goal. Several engineers raced to

bring improvements to the classic A* algorithm (Korf, 2010), but the most known

one is the D* algorithm (Stentz, 1993).

D* is a dynamic implementation of A* and is very efficient in calculating the

optimal path. It allows to recalculate the route when new information is available

such as obstacle positions. This method start searching in the opposite direction of

the goal and propagates the cost to the surrounding nodes. In case of an obstacle, all

concerned cells are marked and the algorithm resumes searching the path generated
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previously.

2.6 Fractals for Texture Representation

Defining texture is by far a difficult task. This concept is correlated to homogeneity

and characterization which ensures the discrimination of the different textures in an

image. Indeed, in some cases we want to recognize the same texture in different

scenes with, for example, variable lighting conditions. In monochromatic images, a

zone with homogeneous levels of grey is unenlightening in terms of texture. This

zone is characterized by the mean of grey levels, itself directly dependent on the

lighting conditions. This is particularly the case with asphalt-like terrains where

texture pattern are almost nonexistent, whereas grass grounds are highly textured.

Another important factor involved in texture is the observation scale. A brick wall,

for example, at a short observation range will prompt the viewer to consider the

inside of the bricks as a particular texture and the separations between the bricks

as another element of the scene. Conversely, a more global observation of the wall

highlights the brick pattern redundancy to form the wall.

Approaches to texture characterization usually fall into the following categories:

• structural,

• statistical,

• model-based

• transform.

As an example of a structural method, Haralick defined texture by two primitives

being the microtexture and spatial arrangements known as macrotexture (Haralick,

1979). Apart from the analysis aspect, rather adapted to macroscopic textures, this

method can be efficient to synthesize a texture. Another advantage of this type of

method is it enables a good symbolic representation of the studied texture.

In the statistical approach, the goal is then to represent texture through

non-deterministic attributes. The most classical case, these attributes are measured

at the pixel level more known as first order measurement, or a pair of pixels as in the

co-occurrence matrix more known as measurement of the second order (Haralick,

1979). Second order measures have shown to be effective in the domain of human

texture discrimination (Julesz, 1975). The multidimensional co-occurrence matrix

was applied in biomedical imaging in (Lerski et al., 1993) and outperformed wavelet

packets (Valkealahti and Oja, 1998) for classification of texture.

The model-based approach rely on stochastic models among which fractals.

Parameters of the model are estimated and used for texture analysis. In practice,

these methods are relatively computationally expensive. Fractal methods have

proven to be suitable for the description of natural phenomena as described in

(Chaudhuri and Sarkar, 1995; Kaplan and Kuo, 1995).
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Transform approaches to texture characterization, texture is represented in

another base than the spatial domain of the image. The goal is to find vectors of the

base that are the most informative to recognize the texture. This category includes

methods based on the Fourier transform, Gabor filters and wavelets (Rosenfeld,

1977; Bovik, Clark, and Geisler, 1990; Lu, Chung, and Chen, 1997).

In this thesis, texture features based on fractals are chosen as terrain descriptor,

hence, in the following we give a brief overview of fractals and different methods for

calculation. Mathematician Benoit Mandelbrot defined fractal to nominate objects

with complex geometry that cannot be represented by a finite dimension. One of

fundamental features of fractal objects lays in correlation of metric properties, such

as length and area, and the measurement scale. A classical example of this would

be the length of coastline (Mandelbrot, 1967). When measuring at a scale d, the total

length of a given coastline L(d) is approximated as a set of N segments of length

d. hence, smaller details of the coastline that cold not be observed at weak spatial

resolution become visible at higher resolutions. As a matter of fact, the measured

coastline length L(d) increase when the measurement scale d decreases.

Most often in image processing applications, fractal geometry is used through

the fractal dimension. There exist several methods to calculate the fractal dimension,

each having a different theoretical foundations. This diversity of calculation

algorithms lead often to different dimension for a given object. This is due to

the inability to compute the Hausdorff-Besicovitch dimension with the following

formula:

Dh =
ln(N)

ln ( 1
r )

, (2.6)

where N denote the number of internal homotheties of the object and r denote

the reduction factor. To this end, several methods were proposed to estimate

the parameter N. Calculation methods can be grouped into 3 categories: 1.

Box-Counting methods, 2. Brownien movement based methods, and 3. area

based methods. The first ever developed methods for fractal dimension calculation

were based on the Box-Counting. This is certainly the reason why they are still

being utilized nowadays. However, they do bare a major drawback. Signals are

represented by a mesh of boxes of finite size and this influences the fractal dimension

calculation. At this end, different algorithms were developed to eliminate such

dependency.

2.6.1 Box-Counting algorithms

BC methods follow the following steps; representing the signal through a mesh of

boxes, probability calculation, FD estimation via linear regression. The idea is rather

simple and easy to develop, however, they do have certain negative points.
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2.6.1.1 Classic Box-Counting algorithm

This measurement method was defined by Russel et al., and is the most employed

one (Russell, Hanson, and Ott, 1980). Its general principle is to cover a signal with

boxes of size r. The FD is then given by:

FD = − lim
r→0

log N(r)

log(r)
, (2.7)

where N(r) is the number of boxes necessary to completely cover the signal. This

equation has few limitations. First, it requires a binary signal. Since most images are

coded in grayscale, the binarization results in loss of information. Also, (Normant

and Tricot, 1991) have shown that it is theoretically not well defined and that it is

valid only for statistically self-similar signals. Moreover, repeating the calculation of

the probability N(r) with various sizes of r can precisely produce different values of

N(r). Therefore at every iteration the grid should be randomly repositioned, to be

independent of the size r (Appleby, 1996). Pruess has also shown that the calculation

of the FD can be sensitive to the size of the boxes (Pruess, 1995).

2.6.1.2 Differential Box-Counting algorithms

Chaudhuri and Sarkar proposed an adaptation of the BC method to overcome

limitations discussed in section (Chaudhuri and Sarkar, 1995). This new definition

is known as differential counting of boxes. Its main advantage is it can be directly

applied to gray scale coded images. Thus the binarization step and its drawbacks

are eliminated. The signal is partitioned into boxes of different sizes r and the

probability N(r) is calculated as being the difference between the maximum and

minimum of the gray level in the box. This process is repeated for all boxes and the

fractal dimension FD is calculated as in equation 2.7.

2.6.1.3 Extended Counting algorithms

The extended counting method was suggested as a substitute to the classic box

counting. The main point is that the box counting is applied to several subsets

of the fractal object and the maximum of the dimensions of these is retained as

the fractal dimension of the signal (Sandau and Kurz, 1997). This method can

therefore be compared to the box counting as the fractal dimension is calculated

on binary signals. Although the latter is the most widely used, extended counting

method an advantages. Indeed, it calculates a measure of complexity without the

need to perform a linear regression. This measurement grows monotonically with

complexity and is determined by the most complex region of the signal. It enables

the measurement to be less sensitive to rotation or translation of the signal.
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2.6.1.4 Fractional Brownian Motion methods

Fractal models based on fractional Brownian motion (fBm) are not stationary models

and are often used to describe random processes. Pentland has shown that most

of the fractals encountered in physical models are fractional Brownian functions

(fBf) (Pentland, 1984). A fractional Brownian function is a general definition of a

Brownian motion where the expected value of the difference of intensity of two

points is null, but squared difference of intensity of these points is equal to the

distance between the two points to the power 2H as given below:







E[ f (x)− f (x
′
)] = 0

E[ f (x)− f (x
′
)]2 ≈ ‖x − x

′
‖2H

(2.8)

where H denote the Hurst parameter associated with the fractional Brownian

motion which indicates the roughness of the resultant motion, where a higher value

leads to a smooth motion (Mandelbrot and Ness, 1968). The fractal dimension of an

fBf oh dimension n is expressed by:

FD = n + 1 − H. (2.9)

Since fBf are statistically affine, linear and scale transformations do not affect the

fractal dimension measurement. Consequently, a fractal dimension based on fBf is

invariant. To measure the performance of the estimator of H, it is necessary to study

its bias and variance. An unbiased estimator with minimum variance is efficient if

its variance is inferior to a variance from a different estimator. Assuming that the

signal studied is an fBf, three algorithms are commonly used to estimate the fractal

dimension. They are based on three concepts: the variance (Goodchild, 1980; Soille

and Rivest, 1996), the power spectrum (Pentland, 1984) and the maximum likelihood

(Dahlhaus, 1989).

2.6.2 Area methods

Area measurement rely on mathematical morphologies (triangles, erosion, dilation,

...) at different scales r and calculate the area A(r) of a surface at a given scale. The

fractal dimension is computed through a linear regression of the logarithm of A(r)

with respect to logarithm of r. Under this class, the most commonly used algorithms

are isarithmic (Shelberg, Lam, and Moellering, 1983), and triangles (Clarke, 1986).
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Chapter 3

Traversability Cost Prediction

3.1 Algorithm Architecture

Using data received from sensors, the mobile robot will build a model of the

environment to predict terrain vibrations necessary to enable safe autonomous

navigation. The overall system architecture is given in Figure 3.1. The architecture

consists of the sensors available on the robot, which are a mono-vision system, an

acceleration sensor, and odometers. The camera is responsible for gathering images

of subsequent terrains. The inertial unit measures acceleration signals generated

while traversing. The wheel odometer tracks the position of the mobile platform

over time. The proposed method follows offline and online processes to achieve

traversability cost prediction.

In the offline process, sensor information required for generating the

traversability cost predictor is collected. Multiscale analysis measures a low-level

image feature that is contrast distance feature to localize irregularities in terrain

images. In terrain non-uniformity detection (TNUD), the resulting feature map

from the multiscale analysis, is tested to determine whether the terrain nature is

homogeneous or non-homogeneous. Region of Interest (ROI) localization extracts

image regions traversed by the mobile robot based on its physical features and

the camera model. The texture analysis calculates the texture features using the

fractal dimension. Using the acceleration signal, the vibration analysis calculates the

motion feature. Based on the output of TNUD, image and motion features are used

to approximate either the function for uniform or non-uniform terrains.

In the online process, the same steps accomplished in the above mentioned

offline process are executed to obtain the terrain image properties, that is, the terrain

image properties, texture feature and terrain category. Based on the terrain category

class, the vibrations of the subsequent terrain are inferred using texture information

and the learned function.

3.2 Mobile Robot Description

This study was conducted with a widely used mobile platform (Pioneer 3AT) for

navigation and traversability projects in outdoor environments (Chavez-Garcia et
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Figure 3.1: Overview of the proposed traversability cost prediction based on TNUD.

al., 2018; Metka, Franzius, and Bauer-Wersing, 2013; Ordonez and Collins, 2008;

Collier and Ramirez-Serrano, 2009). The platform is built upon a skid-steering

architecture and is capable of traversing bumps up to 100mm, gaps up to 150mm,

and slopes up to 19◦. The mobile robot carries a vision sensor and an acceleration

sensor, as shown in Figure 3.2. The camera takes terrain images, and the IMU

registers the acceleration signal generated during a sequence of a run. The goal

is to predict traversability metric based on vibrations only from terrain images.

The predicted traversability cost will be used to anticipate the motion nature of

subsequent terrains and is expected to enable a safe run. The focus is not on which

robot offers the best handling of terrain unevenness but on enabling any type of

robot, regardless of its construction/configuration, to traverse non-uniform terrains.

In the bird’s-eye view given by Figure 3.3, the gray circle represents the mobile

robot and the black rectangles are the wheels. The wheel base and the wheels

radius are denoted by L and r respectively. The system requires ωl and ωr as input,

respectively, which are the angular velocities of the left and right wheels. The mobile

Vision 

sensor

Acceleration 

sensor

Onboard 

PC

Figure 3.2: Pioneer 3AT mobile robot hardware setup used for experimentation.
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Figure 3.3: Differential drive kinematic model.

robot’s kinematic model is described as follows:



















z(t) = r
2 (ωl(t) + ωr(t))t cos(φ(t)),

x(t) = r
2 (ωl(t) + ωr(t))t sin(φ(t)),

φ(t) = r
L (ωl(t)− ωr(t)),

(3.1)

where x, z, φ, are the mobile robot’s position and heading angle, respectively.

The wheels angular velocities for both sides are similar; therefore, the robot will

drive straight according to the world Zw-axis. Moreover, the effects of steering

and acceleration/deceleration are nonexistent. The mobile robot has no suspension

system, that is, it is a rigid body. Hence, effects of interaction of the mobile

platform on the right and left wheels will appear on the sensor values. Operating in

outdoor environments comes with a very important lightning conditions challenge.

To simplify the problem setting, experiments were conducted under fair light

conditions with neither shadows nor strong backlight.

3.3 Image Feature Extraction

3.3.1 Terrain Non Uniformity Detection

Terrain non-uniformity detection refers to the task of identifying whether the

subsequent terrain that lays ahead of the mobile robot is uniformly distributed

terrain or contains significantly rugged regions i.e. localize which spatial areas in

the terrain image correspond to the most visually relevant existing terrain artifact.

TNUD is achieved through Main Subject Detection (MSD) which plays a major step

in several image processing applications. In image compression, locating the scene

defining object would enable the system to allocate more bits to the main subject

and its surroundings (Wei, Sang, and Wang, 2009; Yu and Lisin, 2009). Other

researchers also showed interest in MSD for image quality assessment (Osberger,

Bergmann, and Maeder, 1998; Engelke, Nguyen, and Zepernick, 2008), as well as

object recognition (Walther et al., 2002; Rutishauser et al., 2004). While humans

are perfectly capable of identifying the main object of interest, this task proves to

be difficult for automated systems. Methods for MSD can be categorized into two

groups: 1. direct approach, and 2. visual attention prediction. In the latter one,
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the objective is to find regions of interest in an image based on visual fixation.

Researchers gathered both eye-movement data and scores of visual significance

for a considerable volume of images. Experiments showed that a higher number

of fixation for the main subject compared with other regions in an image (Wang,

Chandler, and Callet, 2010). Instead of predicting visual fixations, some research

works attempt to deal with MSD more directly via feature extraction (Ma and Zhang,

2003; Gopalakrishnan, Hu, and Rajan, 2009; Hu et al., 2004). We see TNUD as a direct

approach to MSD and argue that an uneven morphological terrain artifact such as

a bump, can be different from the background in terms of contrast. Therefore, to

perform bumps identification, we compute the lightness contrast distance for each

block in the input terrain image. Let I ∈ R
nRows×nCols denote the input terrain image

where nRows and nCols are the number of rows and columns, respectively. I is

divided into overlapping blocks of size w × w pixels. Bumps tend to have a higher

contrast value than their surrounding regions. Therefore, we measure the distance

contrast between the local and global contrast values of the blocks and input image I,

respectively. For this purpose, two additional scale images are produced by re-sizing

the original image to half and a quarter by bicubic interpolation. Our image pyramid

is a set of three images I ∈ R
nRows×nCols, I1 ∈ R

nRows
2 × nCols

2 , and I2 ∈ R
nRows

4 × nCols
4 . As

terrain artifacts can be of different sizes and resolutions, spatial operators may need

to be scalable. One way of doing this would be to scale the input image instead.

Therefore, we can produce an image pyramid using different scale factors to reduce

the original image. This way, the operator maintains a fixed size. The smallest image

in the pyramid will be analyzed at a larger scale due to the large relative size of the

operator. Consequently, the features measured will be much larger and more global.

On the other hand, the image at scale factor value of ×1 is analyzed at a smaller scale

which will enable to measure tiny features more locally.

Once image pyramid is formed, R, G, B values are converted to L∗, a∗, b∗

measured in the Commission Internationale de l’ Eclairage (CIE 1976) (L∗, a∗, b∗)

color space (CIELAB) as discussed in (Vu and Chandler, 2011). Let R′, G′, B′ denote

the nonlinear RGB intensities of an image. L∗, a∗, b∗ conversion is obtained by

linearizing the R′, G′, B′ to be comparable to the energy of the light. RGB color

space is given by:

A =







A′/12.92, A′ ≤ 0.04045,

[(A′ + 0.055) /1.055]2.4 , A′
> 0.04045,

(3.2)

where A = R, G, orB. CIE XYZ color space is calculated using obtained R, G, B

values as follows:



















X = 0.412453 × R + 0.357580 × G + 0.180423 × B,

Y = 0.212671 × R + 0.715160 × G + 0.072169 × B,

Z = 0.019334 × R + 0.119193 × G + 0.950227 × B.

(3.3)
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Figure 3.4: Contrast distance feature measurement at three different level for a uniform
terrain.

Last, L∗, a∗, b∗ values are computed by:



















L∗ = 116 × g(Y/Yr)− 16,

a∗ = 500 × [g(X/Xr)− g(Y/Yr],

b∗ = 200 × [g(Y/Yr − g(Z/Zr].

(3.4)

where Xr = 0.950456, Yr = 1, Xr = 1.088754 are the CIE XYZ tri-stimulus values of

the D65 white point; the function g is expressed as follows:

g(t) =







t1/3, t > 0.008856,

7.787 × t + 16/116, otherwise.
(3.5)

Using the lightness channel, the global lightness contrast of the image is

measured by:

C(L∗) = STD(L∗)/ max(MEAN(L∗), 1), (3.6)

where STD(L∗) and MEAN(L∗) denote the standard deviation and mean values of

the lightness channel L∗, respectively. Let B ∈ R
w×w denote a block in the lightness

channel of the input image I, and let C(B) denote the lightness contrast measured

for the block B. C(B) is given as :

C(B) = STD(B)/ max(MEAN(B), 1), (3.7)

where STD(B) and MEAN(B) denote the standard deviation and mean values of

the block B, respectively. The contrast distance is calculated using the results of

Equations (3.6) and (3.7) as follows:

CD(B) = ‖C(L∗)− C(B)‖ , (3.8)
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Figure 3.5: Contrast distance feature measurement at three different level for a non-uniform
terrain.

where CD(B) denotes the lightness contrast distance value of the block B. Sample

results are given in Figure 3.4 and 3.5.

To detect non-uniformity in terrain image, all scale maps are combined together

to compute a refined contrast distance map using a maximum operator. As shown in

Figure 3.6, non-uniform image regions tend to have a higher contrast distance value

than the surrounding uniform areas.

The refined contrast distance feature map is then weighted against a threshold,

and based on results of region of interest extraction only and only if the count

of white pixels exceeds a defined gate, a terrain will be declared as non-uniform.

Region of interest extraction will be explained later in this section. A summary of

steps undertaken to label a terrain image is presented by Algorithm 1.

(a) Homogeneous terrain (b) Non-homogeneous terrain
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Figure 3.6: Refined contrast distance feature maps.
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Algorithm 1: TNUD decision process.

input : Refined contrast distance map CDmap of size wmap × hmap

output: TNUD label isTerrainUni f orm

1 numPixels = 0;

2 isTerrainUni f orm = TRUE;

3 for i = 1 to hmap do

4 for j = 1 to wmap do

5 if CDmap(i, j) > CDgate and (CDmap(i, j) ∈ ROIle f t or

CDmap(i, j) ∈ ROIright) then

6 numPixels += 1;

7 if numPixels > uni f ormTerraingate then

8 isTerrainUni f orm = FALSE;

9 i = hmap;

10 j = wmap

11 end

12 end

13 end

14 end

3.3.2 Region of Interest Extraction

From the terrain images, regions traversed by the mobile robot are considered for

texture extraction. For this purpose, the camera model in (Hartley and Zisserman,

2003) is employed to define ROIs. As shown in Figure 3.7, the camera is defined

by the camera frame {Oc,xc,yc,zc} where Oc is the origin. The following equation

projects a point from the world reference frame given by P ∈ R
4 to p ∈ R

3 (both

containing one as the last element) onto the image plane:

p = Kc[R|t]P, (3.9)

where [R|t] ∈ R
4×4 is the extrinsic parameter matrix, and Kc ∈ R

4×3 is the camera

parameter matrix obtained through a calibration process.

yw

yc
zw

xw

zc
�

u
v

Oi

u0
v0

xc

P

p

Oc

Ow

Terrain  plane

Image  plane

Figure 3.7: Camera model to project a 3D point onto the image plane.
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Figure 3.8: Physical properties of the mobile robot and layout representation of world and
camera reference frames.

The above-mentioned model will be combined with the physical characteristics

of the mobile robot, that is, the wheels base L and width Wr to determine the image

regions traversed by the mobile robot. As shown in Figure 3.8, both camera and

world reference frames are centered on the platform. The world reference frame is

given by {Ow,xw,yw,zw} with Ow as the origin. The goal is to find points of inner and

outer bounds of the terrain region crossed by the vehicle. All points belong to the

same line; hence, only the depth components with respect to the wz-axis will change.

For both the left and right sides, the coordinates of these points are expressed as

follows:






























Pro = [ L
2 + Wr, 0, zw]

Pri = [ L
2 , 0, zw]

Plo = [− L
2 − Wr, 0, zw]

Pli = [− L
2 , 0, zw]

, (3.10)

where Pro and Pri denote the points of right outer and inner bounds, respectively.

The results of this operation are shown in Figure 3.9. To increase the number of

terrain samples, two terrain regions will be extracted from a single image. The

warp perspective transformation is performed to remove the trapezoidal shape

introduced when taking a picture.

Figure 3.9: Identification of image regions of interest for texture feature extraction.
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3.3.3 Texture Extraction

Segmentation-based fractal texture (SFTA) is retained for texture extraction (Costa,

Humpire-Mamani, and Traina, 2012). The SFTA method operates in two steps.

In the first step, the input grayscale image is split into binary images using the

two-threshold binary decomposition (TTBD) (Costa, Humpire-Mamani, and Traina,

2012). In the second step, binary images are used to compute the fractal dimension

from its region boundaries. TTBD returns a set of thresholds T calculated by the

multilevel algorithm (Liao, Chen, and Chung, 2001). After obtaining the targeted

threshold number nt, pairs of contiguous thresholds T ∪ {nl} with nl being the

highest value in the input gray scale image, in combination with pairs of thresholds

{tr, nt} with t ∈ T, are employed to obtain the binary images as follows

Ib
x,y =







1, if tl < I(x, y) ≤ tu

0, otherwise
, (3.11)

where Ib
x,y denotes the binary value of image pixel (x, y), tl and tu denote the lower

and the upper threshold values, respectively. Therefore, 2nt binary images will be

obtained. In this paper, the SFTA feature vector includes only the fractal dimension

of the boundaries. Let ∆(x, y) denote the border image of the binary image Ib
x,y, and

which is obtained by the following equation:

∆(x, y) =



















1, if ∃(x′, y′) ∈ Nx,y

s.t. Ib
x′,y′ = 0 ∧ Ib

x,y = 1

0, otherwise

, (3.12)

where Nx,y is the 8-connexity of a pixel (x, y). ∆(x, y) takes on a value of if the pixel at

location (x, y) in the related binary image Ib
x,y has a value of one and has a minimum

one neighbor pixel with a value of zero. The border image serves to compute the

fractal dimension D ∈ R by the box counting method as follows

D0(x, y) = lim
ε→0

log N(ε)

log(ε−1)
, (3.13)

where N(ε) is the number of hyper-cubes of length ε that fill the object. The resulting

SFTA feature vector is denoted by x ∈ R
2nt .

3.4 Motion Feature Extraction

Let ak, k = 1, · · · , K be the vertical acceleration signal generated from the wheel/soil

interaction when traversing a short range distance, where k is the time step and K is

the total time steps. The amplitude distance is used to describe the behavior of the
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Figure 3.10: Data acquisition.

mobile platform, and is measure by:

akd
= max

k=1,··· ,K
ak − min

k=1,··· ,K
ak. (3.14)

According to (Bekhti, Kobayashi, and Matsumura, 2014), all motion features

(amplitude distance, root mean square, kurtosis, skewness, and crest factor) have

a similar level of correlation with the SFTA feature. The amplitude distance feature

was chosen as it is easy to implement and to understand.

Two subsequent terrain segments serve for image feature extraction.

Accordingly, the corresponding acceleration signal segment for motion feature

calculation is paired to the image features by means of the coordinate transformation

and odometry. As shown in Figure 3.10, at time t = 0, the robot is located at the

origin of the world reference frame. The position used to take a new terrain image,

denoted here by ZIi(x,y), is expressed as

ZIi(x,y) = ids, i = 1, · · · , Nimage, (3.15)

where ds denotes the sampling distance, and Nimage is the total number of terrain

images acquired during a run. Due to the camera tilt angle α, terrains will be covered

from a certain position, expressed as

ZIi(x,y) + ZBZ, i = 1, · · · , Nimage, (3.16)

where ZBZ is the blind spot. The motive behind focusing on a short distance range

l covered by the images for texture feature extraction is that pixels further from the

camera focus point are subject to more noise. Thus, visual information may fail to

faithfully represent the environment. The acceleration signal sequence generated

when traversing a distance l is used for motion feature extraction, and is limited

according to the ROI as follows

Ai = [ZIi(x,y) + ZBZ, ZIi(x,y) + ZBZ + l], (3.17)

where Ai denotes the ROI.
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3.5 Traversability Cost Regression using Gaussian Process

In supervised regression, let D =
{

(xj, yj), j = 1, · · · , n
}

denote a training set with

xj ∈ R
d and yj ∈ R, of n observed pairs (xj, yj). The xj are indices to the set known

as inputs and yj are the output values, called targets. Given an input x∗, the goal is

to predict the new target y∗. In practice, it is unlikely that D includes a complete

range of x. Moreover, an input x might have several y responses. This can cause an

induction issue (Mitchell, 1997). That it, a set of assumptions describing relationship

between observed and not yet encountered inputs. In machine learning, this is

known as the inductive bias. The bias used for regression is based on similarity,

i.e., similar input x are highly to be correlated with the same output value y than

different ones. The goal in regression analysis is to model the relationship between

variables x and targets y as follows:

f (x) = xTw, y = f (x) + ε, (3.18)

where f denote the function value, w denote the weights vector for the linear model,

and ε denote the additive noise component. The noise terms are considered to obey

to an independent identically distributed Gaussian distribution with zero mean and

a variance σ2
n and is denoted by:

ε ∽ N (0, σ2
n). (3.19)

Definition: A Gaussian process is a collection of random variables, any of which have

a joint Gaussian distribution (Rasmussen and Williams, 2006). More formally, the

Gaussian process regression is a Bayesian algorithm presuming that a priori the

function values respond as

p(f|x1, x2, · · · , xn) = N (µ, K), µ ∈ R
n, K ∈ R

n×n, (3.20)

where f = [ f1, f2, · · · , fn]⊤ contains the latent function values with f j = f (xj).

For simplicity of notation, we presume µ = 0. The covariance matrix K is an

appealing feature of the model, of which inputs are provided by the covariance

function defined as Kij = cov( fi, f j) = k(xi, xj). The covariance function highlights

the statistical relationship between two points. In practice, the squared exponential

covariance function is the most popular for similarity measurement. It is expressed

as follows:

Kij = k(xi, xj) = σ2 exp

(

−

(

xi − xj

)⊤ (
xi − xj

)

2λ2

)

. (3.21)

Here σ2 controls the variance, and λ is the isotropic length scale parameter

describing the smoothness of a function. the squared exponential is stationary

isotropic, that is, the function depends essentially on the relative distance |xi − xj|
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which makes it invariant to translations in the input space. In the literature, σ2, λ,

and σ2
n are formally known as hyperparameters and are denote as θ = [σ, λ, σn]T.

Because the Gaussian process is defined as a set of jointly Gaussian distributed

random variables, predicting new target values y∗ at for corresponding input

locations x∗ is equivalent to evaluating p(y∗|x∗,D). we recall that D is the training

set of input/output pairs. In what follows, y∗ denote the vector containing l

function values y∗j to be predicted with X∗ the matrix of corresponding input vectors

x∗j , j = 1, · · · , n. The joint prior distribution of the training outputs, y, and the test

outputs y∗ according to the prior is

[

y

y∗

]

∼ N

(

0,

[

K KT
∗

K∗ K∗∗

])

, (3.22)

where K ∈ R
n×l , K∗ ∈ R

n×l , and K∗∗ ∈ R
l×l . The latter entities, in case of a single

test index point ∗ are computed as:

K =













k(x1, x1) k(x1, x2) · · · k(x1, xn)

k(x2, x1) k(x2, x2) · · · k(x2, xn)
...

...
. . .

...

k(xn, x1) k(xn, x2) · · · k(xn, xn)













(3.23)

K∗ =
[

k(x∗, x1) k(x∗, x2) · · · k(x∗, xn)
]

(3.24)

K∗∗ = k(x∗, x∗). (3.25)

The predictive distribution of the latent function for Gaussian Process Regression,

y∗, is given by y∗ ∼ N (µ∗, σ2
∗) where µ∗ and σ2

∗ are given by the followings:

µ∗ = K∗K−1y, (3.26)

σ2
∗ = K∗∗ − K∗K−1KT

∗ . (3.27)
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Chapter 4

Experiment and Results

Developing a reliable terrain traversability analysis to enable mobile robot systems

to navigate autonomously in unknown outdoor environments safely is a very

challenging problem. The outline and development process of the proposed method

for terrain traversability regression based on TNUD was fully detailed in Chapter

3, whereas this chapter introduces and discusses performance results of vibration

prediction.

4.1 Experimental Settings

The experiment was conducted at Sanaru Lake in Hamamatsu, Japan, in a wide

portfolio of terrains, where a full database was recorded, including terrain images

and acceleration signals. Terrain images were taken at a distance interval ds =

500mm with a single camera placed at a height h = 540mm and tilted with an angle

α = 31◦. The acceleration sensor is configured to register vertical acceleration at

a sampling frequency Fs = 100Hz and up to ±8g. This results in an acceleration

segment of 125 samples for a region of interest length l = 250mm. During data

acquisition, the mobile robot was traversing at a constant velocity v = 200mm/s.

The data set was later on divided randomly into training and test sets. The total

number of samples is 2582, from which 90% of samples are allocated for training,

and the remaining 10% of samples are used for testing. The refined maps from

multiscale analysis were weighted against a lightness contrast distance threshold

CDgate. All experiments were performed on an Intel Core i7-3770 3.4 GHz processor

with 8GB of RAM.

The goal of the experiment is to verify the ability of TNUD to detect

non-uniformity in terrain images and predict traversability cost reliably. We validate

the effectiveness of introducing TNUD to the traversability cost prediction by

comparing it with the framework introduced in (Bekhti and Kobayashi, 2016), where

the Gaussian process was directly applied to cost prediction without non-uniformity

detection. For this purpose, we compute the root-mean-squared prediction error
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(RMSE), which is defined by

RMSE =

√

√

√

√

1

N

N

∑
i=1

( f (xi)− µi)2, (4.1)

where N is the number of test samples, µi denotes the predicted mean vibration of

the input image texture xi and f (xi) is the corresponding ground truth vibration.

But first, we will introduce results of intermediate processes leading to motion

prediction.

4.2 Results and Discussion

4.2.1 ROI Extraction

ROI localization as described in section 3.3.1, is the process of recovering the mobile

robot’s wheels tracks boundaries onto the image plane using equations 3.9 and

3.10. To achieve this, the extrinsic parameter matrix [R|t] and the camera intrinsic

parameter matrix Kc are needed. The camera intrinsic parameter matrix was

obtained through a calibration process with planar calibration rig images and using

the Camera Calibration Toolbox for Matlab (Bouguet, 2015). Their respective values are

given below:

[R|t] =













1 0 0 0

0 0.8599 0.5105 −0.5400

0 −0.5105 0.8599 0

0 0 0 1













, (4.2)

Kc =







1370.68 0 980.71 0

0 1369.90 539.52 0

0 0 1 0






. (4.3)

4.2.2 TNUD

Results of terrain nature discrimination using TNUD are given in Table 4.1 and

Figure 4.1. Table 4.1 summarizes the number of samples that were used to train

our method for uniform and non-uniform terrains, as well as the number of samples

to test performance of our method to predict motion information for uniform and

non-uniform terrains. As discussed in section 3.3.1, the refined contrast distance

map is weighted against a threshold to decide the nature of the terrain ahead of the

mobile robot. Consequently, the value of the threshold is very critical to achieve

optimal terrain discrimination. We study also the influence of contrast distance

threshold on TNUD by varying its values from 0.3 to 0.5 with an interval equal to

0.05.
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Table 4.1: Influence of different contrast distance threshold values on number of samples
used for training and testing processes.

Training
Contrast Distance Threshold 0.35 0.4 0.45 0.5

Uniform Terrain Samples 1276 1592 1820 1956

Non-uniform Terrain Samples 1048 732 504 368

Prediction
Uniform Terrain Samples 154 178 214 220

Non-uniform Terrain Samples 104 80 44 38

As shown in Figure 4.1, when the contrast distance threshold value decreases,

we see an increase in number of terrain samples classified as non-uniform and a

decline in number of terrains samples judged to be uniform. An example showing

influence of various contrast distance thresholds on TNUD is shown in Figure 4.2.

Although the motion feature for terrains in Figure 4.2(a) and Figure 4.2(b) are and ,

respectively, they are classified as non-uniform for contrast distance threshold values

0.45 and 0.35. Some uniform terrains may have contrast distance map with values

higher than the contrast distance threshold, therefore, TNUD discriminates these

terrain samples as non-uniform terrains. Experimentation with different contrast

distance threshold proved that a threshold value of 0.5 leads to an optimal TNUD

discrimination i.e. significantly better traversability prediction error. We will show

later in this section 4.2.4 how the contrast distance threshold influences also terrain

traversability estimation.
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Figure 4.1: Number of samples vs. contrast distance threshold. (a) number of
uniform/non-uniform used for training; (b) number of uniform/non-uniform target
samples to predict.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.2: TNUD classification failure. (a) and (b) Grass terrain; (c) and (d) contrast
distance map; (e) and (f) classification as uniform terrain with threshold value 0.5; (g) and
(h) classification as non-uniform terrain with threshold value 0.45; (i) and (j) classification as
non-uniform terrain with threshold value 0.35.
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Table 4.2: Signal to noise ratio (SNR) of acceleration signal at rest.

Mean Standard Deviation SNR

1.0346 0.0101 102.6474
1.0339 0.0102 101.5350
1.0250 0.0096 106.7354
1.0335 0.0099 104.2580

4.2.3 SFTA and Motion Features

The acceleration signal does not undergo any noise filtering operation, and it is

clear whether any filtering is performed at the sensor level. To measure the noise

contribution to the measurements, signal-to-noise ratio (SNR) of the acceleration

signal at rest was computed as follows:

SNR =
µ

σ
, (4.4)

where µ and σ are the mean and standard deviation of the acceleration signal,

respectively. Results of SNR calculation for four signals are given in Table 4.2. SNR

values are high which means that the noise does not impact severely our intended

purpose.

the fractal dimension offers a discrimination of terrains texture attributes.

Principal Component Analysis (PCA) was applied to SFTA feature vector to reduce

the dimension from x ∈ R
16 to z ∈ R

2 to visualize the distribution of the motion

information. As shown in Figure 4.3, terrain configurations are scattered in different

areas.

4.2.4 Motion Prediction

In this section, we propose to study the effect of contrast distance threshold on

motion prediction for uniform and non-uniform terrains, and weigh up performance

Figure 4.3: Distribution of motion information with regard to SFTA for six terrain types:
stones and gravels, grass and leaves, granulated and slick asphalt.
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Table 4.3: Influence of contrast distance threshold on prediction error for
uniform/non-uniform terrains.

TNUD
Contrast Distance Threshold 0.35 0.4 0.45 0.5

Uniform Terrains 0.3623 0.3075 0.2730 0.2373

Non-uniform Terrains 0.4681 0.4411 0.3568 0.268

No TNUD - 0.3567 0.3567 0.3567 0.3567

output with results obtained in (Bekhti and Kobayashi, 2016). We summarize the

regression results in Table 4.3, Table 4.4 and plot Figure 4.4 to ease the interpretation.

Table 4.3 introduces prediction error of motion information for uniform and

non-uniform terrains with respect to different values of contrast distance threshold

as well as prediction error without using TNUD. Additionally, Table 4.4 introduces

prediction failure error of motion information for uniform and non-uniform terrains

with respect to different values of contrast distance threshold as well as prediction

failure error without using TNUD. From Figure 4.4, it is clear that a wrong choice of

contrast distance threshold value leads to a weak prediction error performance. The

weakest performance is observed at contrast distance threshold value equal to 0.3

where prediction error for uniform and non-uniform terrains is poorer than results

obtained without employing TNUD. Same behavior is observed for prediction

failure error output which is a lot higher than TNUD is not used. As discussed

in section 4.2.2, a very low value of the contrast distance threshold prompts TNUD

to classify terrains that are uniform into non-uniform terrains, and thus, impacts

negatively the training process. The best performance is observed at a contrast

distance threshold value equal to 0.5. We see a significant drop in prediction error

for uniform and non-uniform compared with when TNUD is not used. Moreover,

a notable reduction in prediction failure error for both uniform and non-unifom

terrains compared to the classic framework where terrain discrimination is not

applied.

For contrast distance threshold value equal to 0.5, prediction performance

for uniform and non-uniform terrain samples are given by Figure 4.6 and 4.5,

respectively. The current framework sometimes fails to predict the vibrations

in the terrain samples judged by the multiscale analysis to be either uniform

or non-uniform. In the case of non-uniform terrains, as shown in Figure 4.6,

the Gaussian process outputs negative predictions for vibration since we are not

Table 4.4: Influence of contrast distance threshold on prediction failure error for
uniform/non-uniform terrains.

TNUD
Contrast Distance Threshold 0.35 0.4 0.45 0.5

Uniform Terrains 0.8004 0.6032 0.4686 0.4640

Non-uniform Terrains 0.9181 1.0584 0.6765 0.4419

TNUD - 0.6048 0.6048 0.6048 0.6048
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Figure 4.4: Influence of contrast distance threshold on prediction error for
uniform/non-uniform terrains.

imposing any restrictions in this regard. Such negative vibration prediction is not

consistent with the nature of the feature used in this study, which is always positive,

as described by Equation (3.14).

Compared with (Matsumura, Bekhti, and Kobayashi, 2015), where motion

prediction with varying speed based on the 3D reconstruction problem setting was

investigated, our platform run at a constant speed of 0.2 m/s. We propose to study

the effect of speed variations on the prediction of vibrations in future works.
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Figure 4.5: Prediction results for uniform terrains for contrast distance threshold of 0.5.
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Figure 4.6: Prediction results for non-uniform terrains for contrast distance threshold of 0.5.

4.2.5 Computation Cost

The only computations that are performed on the image are the global contrast

measurement and contrast distance maps for scales 1, 2, and 3. The purpose of doing

so was to understand and evaluate the behavior of the contrast distance feature

toward non-uniformity. Multiscale analysis for scales 1, 2, and 3 suffers a slightly

high computation time, as shown in Table 4.5. A scale 1 contrast distance map

was generated with an image of size 1080 × 1920, a scale 2 contrast distance map

was generated with an image of size 540 × 960, and a scale 3 contrast distance

map was generated with an image of size 270 × 480. Since we could confirm that

non-uniform regions have a higher contrast distance feature value than uniform

regions, we propose in future work to accelerate this process by focusing only on the

ROI and not the whole image. The ROI is approximately 10% of the whole image;

thus, the computational time will decrease drastically.

Table 4.5: Computation time.

Process Computation Time

Multiscale analysis–contrast distance scale 1 880 ms

Multiscale analysis–contrast distance scale 2 200 ms

Multiscale analysis–contrast distance scale 3 47 ms

Multiscale analysis–fusion (refined contrast distance map) 2.2 ms

Texture extraction 67 ms

Motion feature 47 µs

Prediction for non-uniform terrains 100 ms

Predictor for uniform terrains 22 ms
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Chapter 5

Conclusion

This thesis investigates terrain traversability prediction based on non-uniformity

detection for uneven outdoor terrain configurations. The work presented has made

contribution in improving prediction performance across several terrain natures.

This final chapter summaries the research accomplished in this thesis and identifies

potential directions for future research.

We proposed to examine how visual properties of terrain can be used to

estimate a vibration traversability metric to translate the potential traversal load.

Traversability metric is derived from correlation of proprioceptive sensor data

obtained from wheel/soil interaction, and exteroceptive data obtained using a

mono-vision camera system. An acceelration sensor mounted on our mobile robot

acquired vertical acceleration that served to calculate motion feature to characterize

the terrain under foot. The corresponding image undergoes our proposed TNUD

method to detect non-uniformity. Using low level image feature namely contrast

distance, we try to detect the irregularities in the terrain texture information. We

argue that non-uniform in contrast to uniform surrounding areas translate into a

high contrast value. Following this, SFTA descriptor is used to extract texture

information from the image based on fractal dimension measurement. Using

above mentioned pair of features, we proposed to train two individual terrain

traversability predictor based on GP. This metric predictor was implemented on

a skid-steering mobile robot to test effectiveness of the proposed scheme. TNUD

relies on a cutoff value for the contrast distance threshold to decide on the nature

of a terrain i.e. uniform or non-uniform. We investigated the influence of this

threshold on the quality of discrimination offered by TNUD. It was shown that

lower values of this threshold may result in wrong classification of terrain nature,

and consequently, affect negatively results for metric prediction. Best results were

obtained at a threshold value equal to 0.5, with a significant improvement compared

to classic methods that do not used TNUD. Moreover, it was also shown that the

texture descriptor based on fractals offers a good representation of terrain natures.

The current framework employs only vibrations to learn terrain nature. While

traversing a terrain irregularity, the attitude of the mobile robot change. We think it

would be interesting to make use of gyro recordings to strengthen our feature set to

represent terrain nature. Moreover, vibration are highly correlated with the velocity
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of travel and the architecture of the mobile robot. It would be interesting to integrate

the mechanical properties into the prediction model, and investigate influence of

travel velocity on the behavior of the mobile robot. We believe this would make the

metric invariant to any speed changes.
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